AbstractAbstract
[en] Purpose: The spine can be treated with an electron beam when its maximum posterior depth is within the therapeutic range of electrons. Electron fields treated at extended source-to-surface distances (SSDs), however, have larger penumbras and narrower therapeutic isodose widths relative to those at the standard SSD of 100 cm. We investigated the use of tertiary collimation close to the patient surface for these fields to sharpen the penumbra, minimizing dose to normal tissue and maximizing target coverage. Methods and Materials: Using film dosimetry in a polystyrene phantom, we measured the dose distribution for electron fields at extended SSD under varying collimation conditions. Beam penumbra and therapeutic width as a function of depth, SSD, applicator insert size, and tertiary collimator opening were determined. We also measured the dose distributions in the junction region for various gaps between x-ray fields and an electron field as used for craniospinal irradiation. Results: Measurements show that tertiary collimation close to the skin surface reduces penumbra width (lateral distance between the 90 and 20% isodose lines) by 56% and increases therapeutic isodose width (lateral width of the 90% isodose curve) by 25% at a depth of dmax relative to standard collimation. These numbers change to 23 and 13%, respectively, at an average depth of the spine. When lateral brain and posterior spine fields are used to irradiate the entire craniospinal axis, tertiary collimation aids in reducing the volume of the hot spot in the junction region by as much as 10% without compromising target coverage. Conclusions: Tertiary collimation for extended SSD electron fields is preferable to standard collimation in order to minimize dose to normal tissue and increase target coverage. This technique can be applied to both spinal and craniospinal irradiation. Support structures for the tertiary blocking are needed because the weight of the lead is usually too great for placement on the skin
Primary Subject
Source
S0360301697001089; Copyright (c) 1997 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 37(5); p. 1187-1192
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Purpose: To evaluate the efficacy of stereotactic radiotherapy (SRT) in patients with recurrent high-grade gliomas by comparing two different treatment regimens, single dose or fractionated radiotherapy. Methods and Materials: Between April 1991 and January 1998, 71 patients with recurrent high-grade gliomas were treated with SRT. Forty-six patients (65%) were treated with single dose radiosurgery (SRS) and 25 patients (35%) with fractionated stereotactic radiotherapy (FSRT). For the SRS group, the median radiosurgical dose of 17 Gy was delivered to the median of 50% isodose surface (IDS) encompassing the target. For the FSRT group, the median dose of 37.5 Gy in 15 fractions was delivered to the median of 85% IDS. Results: Actuarial median survival time was 11 months for the SRS group and 12 months for the FSRT group (p = 0.3, log-rank test). Variables predicting longer survival were younger age (p = 0.006), lower grade (p = 0.0006), higher Karnofsky Performance Scale (KPS) (p = 0.0005), and smaller tumor volume (p 0.02). Patients in the SRS group had more favorable prognostic factors, with median age of 48 years, KPS of 70, and tumor volume of 10 ml versus median age of 53 years, KPS of 60, and tumor volume of 25 ml in the FSRT group. Late complications developed in 14 patients in the SRS group and 2 patients in the FSRT group (p < 0.05). Conclusion: Given that FSRT patients had comparable survival to SRS patients, despite having poorer pretreatment prognostic factors and a lower risk of late complications, FSRT may be a better option for patients with larger tumors or tumors in eloquent structures. Since this is a nonrandomized study, further investigation is needed to confirm this and to determine an optimal dose/fractionation scheme
Primary Subject
Source
S0360301699003363; Copyright (c) 1999 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 45(5); p. 1133-1141
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue