Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
Parate, Kanak; Kumar, Ratnesh, E-mail: kanakparate@gmail.com, E-mail: ratnesh.eq@gmail.com2019
AbstractAbstract
[en] The paper presents a comprehensive review on shear strength provisions of RC beam–column joint in various national codes viz. ACI 318-2014, NZS 3101-1:2006, EN 1998-1:2004, CSA A23.3:2004, AIJ:2010, and IS 13920:2016. The shear strength equation given in these codes are generic and simple in application, which is based on the contribution of only a few governing parameters. However, the effects of governing parameters in different codes are considered in different ways. As a result, the code prediction varies significantly among themselves as well as with experimental studies. Considering these differences, the influence of various governing parameters on the joint shear strength are evaluated. A database is compiled from 492 experimental results of beam–column joints from literature. To find the cause of variation between code prediction and experimental observations, different type of failure modes of beam–column joints is studied. Consequently, two parameters namely, aspect ratio of joint and area ratio of column to beam cross-section is observed to be affecting the code predictions considerably. The influence of these two parameters on the joint shear strength is validated with the compiled experimental results. Therefore, to ameliorate the code prediction, two approaches i.e. aspect ratio approach and area ratio approach are proposed. The first approach is based on the effect of variation of strut angle on joint shear strength, whereas, the second approach proposes various empirical modification factors based on area ratio of column to beam cross-section. By using these two approaches, it is observed that the difference between the code predictions and experimental results can be minimized considerably. These approaches make the code prediction suitable for design purpose.
Primary Subject
Source
Copyright (c) 2019 Springer Nature B.V.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Bulletin of Earthquake Engineering (Online); ISSN 1573-1456; ; v. 17(3); p. 1407-1493
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue