Pittenger, L.
Lawrence Livermore National Lab., CA (United States). Funding organisation: USDOE, Washington, DC (United States)1996
Lawrence Livermore National Lab., CA (United States). Funding organisation: USDOE, Washington, DC (United States)1996
AbstractAbstract
[en] This Subsystem Design Requirement document is a development specification that establishes the performance, design, development and test requirements for the target positioner subsystem (WBS 1.8.2) of the NIF Target Experimental System (WBS 1.8)
Primary Subject
Source
24 Oct 1996; 15 p; CONTRACT W-7405-ENG-48; ALSO AVAILABLE FROM OSTI AS DE98050725; NTIS; US GOVT. PRINTING OFFICE DEP
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Primary Subject
Source
Petrick, M. (ed.); p. IV.4.1-IV.4.2; 1972; Argonne National Lab; Argonne, IL; 12. symposium engineering aspects of magnetohydrodynamics; Argonne, Illinois, USA; 27 Mar 1972
Record Type
Book
Literature Type
Conference
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Tobin, M; Van Wonterghem, B; MacGowan, B J; Hibbard, W; Kalantar, D; Lee, F D; Pittenger, L; Wong, K
Lawrence Livermore National Lab., CA (United States). Funding organisation: USDOE Office of Defense Programs (DP) (United States)1999
Lawrence Livermore National Lab., CA (United States). Funding organisation: USDOE Office of Defense Programs (DP) (United States)1999
AbstractAbstract
[en] One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition the authors describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools
Primary Subject
Source
17 Dec 1999; 187 Kilobytes; 1. International Conference on Inertial Fusion Sciences and Applications; Bordeaux (France); 13-17 Sep 1999; DP--0210000; W-7405-ENG-48; Available from PURL: https://www.osti.gov/servlets/purl/756847-7MoTWQ/webviewable/
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Tobin, M.; Van Wonterghem, B.; MacGowan, B.J.; Hibbard, W.; Kalantar, D.; Lee, F.D.; Pittenger, L.; Wong, K.
Inertial fusion sciences and applications 992000
Inertial fusion sciences and applications 992000
AbstractAbstract
[en] One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition we will describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools. (authors)
Primary Subject
Source
Labaune, Ch. (Ecole Polytechnique, Lab. pour l'Utilisation des Lasers Intenses, CNRS, 91 - Palaiseau (France)); Hogan, W.J. (Lawrence Livermore National Lab., CA (United States)); Tanaka, K.A. (Osaka Univ., Suita (Japan). Inst. of Laser Engineering); 1201 p; ISBN 2-84299-179-6; ; 2000; p. 757-764; 1. International Conference on Inertial Fusion Sciences and Applications; Bordeaux (France); 12-17 Sep 1999
Record Type
Book
Literature Type
Conference
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue
Courchinoux, R.; Labrouche, J.; DiPeso, G.; Pittenger, L.; Schirmann, D.
Inertial fusion sciences and applications 992000
Inertial fusion sciences and applications 992000
AbstractAbstract
[en] We performed flyer plate impacts to test a method of shielding equipment in the NIF and LMJ target chambers. Low-density aluminum foams were submitted to a 218 Pa.s mechanical impulses. The results indicate that it will be suitable as a consumable structure for shielding the target positioner. (authors)
Primary Subject
Source
Labaune, Ch. (Ecole Polytechnique, Lab. pour l'Utilisation des Lasers Intenses, CNRS, 91 - Palaiseau (France)); Hogan, W.J. (Lawrence Livermore National Lab., CA (United States)); Tanaka, K.A. (Osaka Univ., Suita (Japan). Inst. of Laser Engineering); 1201 p; ISBN 2-84299-179-6; ; 2000; p. 866-869; 1. International Conference on Inertial Fusion Sciences and Applications; Bordeaux (France); 12-17 Sep 1999; 3 refs.
Record Type
Book
Literature Type
Conference
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue