AbstractAbstract
[en] Ataxia telangiectasia (AT) and Fanconi anemia (FA) are recessive genetic diseases featuring chromosomal instability, increased predisposition to cancer and in vitro hypersensitivity to ionizing radiation (AT) or DNA cross-linking agents (FA). Moreover, an in vivo hypersensitivity to γ-rays exposure was reported in both syndromes. Cellular response to irradiation includes growth arrest (cell cycle modification) and cell death (by apoptosis or necrosis). Since it is generally accepted that apoptosis modulates cellular sensitivity to genotoxic stress, it was of interest to investigate the contribution of apoptosis in determining FA and AT responses to DNA Damaging Agents. The results support the contention that the in vivo hypersensitivity to radiation in these syndromes is not related to a higher rate of apoptotic cells but could be to a higher necrotic response triggering inflammatory reactions in the patients affected by this syndromes. (authors)
Primary Subject
Source
27. annual meeting of the European Society for Radiation Biology; Montpellier (France); 1-4 Sep 1996
Record Type
Journal Article
Literature Type
Conference
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Ataxia-telangiectasia is a progressive recessive disease featuring neuro degeneration, immunodeficiency, chromosomal instability, radiation hypersensitivity and increased predisposition to cancer. Impaired induction of the tumor suppressor protein p53 after γ-irradiation was recently reported. All together these characteristics may be compatible with an inability to correctly regulate the apoptotic pathway of cell death in this syndrome. We show here that lymphocyte cultures from AT patients are characterized by a 3 times more elevated spontaneous level of apoptotic cells compared to normal ones. In spite of this, 24 h after exposure to γ-irradiation (5 to 10 Gy), AT lymphocytes show a dramatically reduced capacity to undergo apoptosis compared to normal cells. We obtained similar results on EBV-transformed lymphoblasts. Interestingly, lymphoblasts from obligate heterozygous for the AT mutation(s) show the same features as AT lymphoblasts, i.e. an elevated frequency of spontaneous and a reduced level of radio-induced apoptotic figures in comparison to normal cultured cells. In conclusion, we show here, for the first time, that mutation(s) in AT gene(s) results in an impaired ability to correctly regulate the apoptotic pathway of cell death. (author). 26 refs., 4 figs., 2 tabs
Original Title
Alteration de la reponse apoptotique radio-induite chez des homozygotes et des heterozygotes pour l'ataxie-telangiectasie
Primary Subject
Secondary Subject
Record Type
Journal Article
Journal
Comptes Rendus de l'Academie des Sciences. Serie 3; ISSN 0764-4469; ; CODEN CRASEV; v. 317(11); p. 983-989
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] A defective cellular response to DNA lesions induced be genotoxic agents may be associated to an increased cancer proneness. This has been clearly identified in some rare but extensively studied genetic diseases such as xeroderma pigmentosum (XP), ataxia telangiectasia (AT) and Fanconi anemia (FA). In practical oncology, most patients receive genotoxic therapeutic agents and the presence of so far unidentified sensitive genotypes could account for an increased susceptibility to cancer in a subgroup of exposed patients. The thyroid gland of children is especially sensitive to the carcinogenic effect of ionizing radiation. Evidence for risk is reported even at doses as low as 0.1 Gy, and the excess relative risk to develop a thyroid tumor following a radiation dose of 1 Gy in childhood is of 7.7 [l]. In order to determine if a defect in repair of DNA strand breaks could be involved, as an early step, in the development of secondary thyroid tumors after radiotherapy, we examined, using the alkaline single cell gel electrophoresis assay (SCGE or 'comet'), the response to in vitro γ-rays exposure of lymphocytes of a small group of patients who developed thyroid carcinoma after radiotherapy for a primary tumor. Because of its practical advantages, the alkaline comet assay offers the opportunity to question the role of DNA strand beaks rejoining capacity of the individual in the radiation induced carcinogenesis of thyroid tumors. This preliminary study of a small group of patients with therapeutic irradiation at childhood for a primary tumor indicates that, at the time of blood sampling, lymphocytes of some of these patients demonstrated reduced rejoining capacity. These results suggest that the comet assay might help to distinguish a subgroup of individuals at risk for radiation induced genomic instability and encourage further investigation. (authors)
Primary Subject
Source
27. annual meeting of the European Society for Radiation Biology; Montpellier (France); 1-4 Sep 1996
Record Type
Journal Article
Literature Type
Conference
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue