Filters
Results 1 - 10 of 17
Results 1 - 10 of 17.
Search took: 0.021 seconds
Sort by: date | relevance |
AbstractAbstract
No abstract available
Primary Subject
Source
(c) 2008 Doody's Review Service; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Purpose: To demonstrate the feasibility of using CBCT in a real-time image guided radiation therapy (IGRT) for single fraction heterotopic ossification (HO) in patients after hip replacement. In this real-time procedure, all steps, from simulation, imaging, planning to treatment delivery, are performed at the treatment unit in one appointment time slot. This work promotes real-time treatment to create a paradigm shift in the single fraction radiation therapy. Methods: An integrated real-time IGRT for HO was developed and tested for radiation treatment of heterotopic ossification for patient after hip replacement. After CBCT images are acquired at the linac, and sent to the treatment planning system, the physician determines the field and/or draws a block. Subsequently, a simple 2D AP/PA plan with prescription of 700 cGy is created on-the-fly for physician to review. Once the physician approves the plan, the patient is treated on the same simulation position. This real-time treatment requires the team of attending physician, physicist, therapists, and dosimetrist to work in harmony to achieve all the steps in a timely manner. Results: Ten patients have been treated with this real-time treatment, having the same beams arrangement treatment plan and prescription as our clinically regular CT-based 2D plans. The average time for these procedures are 52.9 ±10.7 minutes from the time patient entered the treatment room until s/he exited, and 37.7 ±8.6 minutes from starting CBCT until last beam delivered. Conclusion: The real-time IGRT for HO treatment has been tested and implemented to be a clinically accepted procedure. This one-time appointment greatly enhances the waiting time, especially when patients in high level of pain, and provides a convenient approach for the whole clinical staff. Other disease sites will be also tested with this new technology.
Primary Subject
Secondary Subject
Source
(c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Purpose: To evaluate the dosimetric impact on treatment planning for partial breast stereotactic irradiation using Cyberknife with MLC versus Iris Cone. Methods: Ten patients whom underwent lumpectomy for DCIS or stage I invasive non-lobular epithelial breast cancer were included in this study. All patients were previously treated on the Cyberknife using Iris cone with the prescription dose of 37.5Gy in 5 fractions covering at least 95% of PTV on our phase I SBRT 5 fraction partial breast irradiation trial. Retrospectively, treatment planning was performed and compared using the new Cyberknife M6 MLC system for each patient. Using the same contours and critical organ constraints for both MLC and Iris cone plans, the dose on target and critical organs were analyzed accordingly. Results: Dose to critical organs such as ipsilateral lung, contralateral lung, heart, skin, ipsilateral breast, and rib were analyzed, as well as conformity index and high dose spillage of the target area. In 9 of 10 patients, the MLC plans had less total ipsilateral breast volume encompassing the 50% prescription isodose (mean:22.3±8.2% MLC vs. 31.6±8.0 Iris, p=0.00014) .The MLC plans mean estimated treatment delivery time was significantly less than the Iris plans (51±3.9min vs. 56.2±9min, p=0.03) Both MLC and Iris cone plans were able to meet all dose constraints and there was no statistical difference between those dose constraints. Conclusion: Both MLC and Iris Cone can deliver conformal dose to a partial breast target and satisfy the dose constraints of critical organs. The new Cyberknife with MLC can deliver a more conformal dose in the lower dose region and spare more ipsilateral breast tissue to the 50% prescription isodose. The treatment time for partial breast SBRT plans was also reduced using MLC. Project receives research support from Accuray Inc.
Primary Subject
Secondary Subject
Source
(c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm3) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan, the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment
Primary Subject
Source
(c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Purpose: Post-treatment radiation injury to central and peripheral airways is a potentially important, yet under-investigated determinant of toxicity in lung stereotactic ablative radiotherapy (SAbR). We integrate virtual bronchoscopy technology into the radiotherapy planning process to spatially map and quantify the radiosensitivity of bronchial segments, and propose novel IMRT planning that limits airway dose through non-isotropic intermediate- and low-dose spillage. Methods: Pre- and ∼8.5 months post-SAbR diagnostic-quality CT scans were retrospectively collected from six NSCLC patients (50–60Gy in 3–5 fractions). From each scan, ∼5 branching levels of the bronchial tree were segmented using LungPoint, a virtual bronchoscopic navigation system. The pre-SAbR CT and the segmented bronchial tree were imported into the Eclipse treatment planning system and deformably registered to the planning CT. The five-fraction equivalent dose from the clinically-delivered plan was calculated for each segment using the Universal Survival Curve model. The pre- and post-SAbR CTs were used to evaluate radiation-induced segmental collapse. Two of six patients exhibited significant segmental collapse with associated atelectasis and fibrosis, and were re-planned using IMRT. Results: Multivariate stepwise logistic regression over six patients (81 segments) showed that D0.01cc (minimum point dose within the 0.01cc receiving highest dose) was a significant independent factor associated with collapse (odds-ratio=1.17, p=0.010). The D0.01cc threshold for collapse was 57Gy, above which, collapse rate was 45%. In the two patients exhibiting segmental collapse, 22 out of 32 segments showed D0.01cc >57Gy. IMRT re-planning reduced D0.01cc below 57Gy in 15 of the 22 segments (68%) while simultaneously achieving the original clinical plan objectives for PTV coverage and OAR-sparing. Conclusion: Our results indicate that the administration of lung SAbR can Result in significant injury to bronchial segments, potentially impairing post-SAbR lung function. To our knowledge, this is the first investigation of functional avoidance based on mapping and minimizing dose to individual bronchial segments. The presenting author receives research funding from Varian Medical Systems, Elekta, and VisionRT
Primary Subject
Source
(c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Purpose: Two-dimensional GRID therapy, traditionally planned and delivered using a dedicated GRID block or MLC modulation, has shown clinical efficacy in treating bulky tumors. However, the large dose to normal tissues outside target can be limiting. We hypothesize that modulation in the third dimension will improve dose sparing of normal tissues, maximize the bystander effect within the target, and ultimately improve the therapy effectiveness. This study aims to investigate the feasibility of a three-dimensional GRID technique using conventional LINACs to achieve a 3D lattice of high dose volumes within a target. Methods: Datasets of patient’s having large tumor sizes were used to investigate the planning and delivering of 3D GRID using a Varian TrueBeam linac. Original patient contours of PTV are exported from a TPS to DICOManTX where 3D GRID targets are generated in programmable configurations. A structure of avoidance (SOA), i.e., PTV minus GRID targets, is also generated to facilitate inverse planning to achieve the desired pattern. The artificial structures were sent back to the TPS where an IMRT or VMAT plan is designed to deliver a desired high dose to GRID targets while minimizing the dose to the SOA as much as possible. Results: The programmable GRID target generator enables us to modify the target geometry to maximize the peak-to-valley ratio. Preliminary results show that plans based on spherical GRID targets achieve a higher peak-to-valley dose ratio compared with cylindrical targets. High dose spillage outside the target was eliminated. IMRT planning requires the number of beams to be larger than 16, while for VMAT the number of arcs should be at least 4 in order to achieve dosimetric goals. Conclusion: Planning and delivering 3D GRID therapy using conventional LINACs was shown to be feasible. More research and development are required before this new modality can be implemented clinically
Primary Subject
Secondary Subject
Source
(c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Purpose: Traditional extended SSD total body irradiation (TBI) techniques can be problematic in terms of patient comfort and/or dose uniformity. This work aims to develop a comfortable TBI technique that achieves a uniform dose distribution to the total body while reducing the dose to organs at risk for complications. Methods: To maximize patient comfort, a lazy Susan-like couch top immobilization system which rotates about a pivot point was developed. During CT simulation, a patient is immobilized by a Vac-Lok bag within the body frame. The patient is scanned head-first and then feet-first following 180° rotation of the frame. The two scans are imported into the Pinnacle treatment planning system and concatenated to give a full-body CT dataset. Treatment planning matches multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. VMAT fields of the torso are optimized to satisfy lung dose constraints while achieving a therapeutic dose to the torso. The multiple isocenter VMAT fields are delivered with an indexed couch, followed by body frame rotation about the pivot point to treat the lower body isocenters. The treatment workflow was simulated with a Rando phantom, and the plan was mapped to a solid water slab phantom for point- and film-dose measurements at multiple locations. Results: The treatment plan of 12Gy over 8 fractions achieved 80.2% coverage of the total body volume within ±10% of the prescription dose. The mean lung dose was 8.1 Gy. All ion chamber measurements were within ±1.7% compared to the calculated point doses. All relative film dosimetry showed at least a 98.0% gamma passing rate using a 3mm/3% passing criteria. Conclusion: The proposed patient comfort-oriented TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs
Primary Subject
Source
(c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Purpose: To demonstrate the feasibility of a CBCT-based on-site simulation, planning, and delivery (OSPD) for whole brain radiotherapy, in which all steps from imaging, planning to treatment delivery are performed at the treatment unit in one appointment time slot. This work serves as the proof of concept for future OSPD single fraction radiation therapy. Methods: An integrated on-site imaging, planning and delivery workflow was developed and tested for whole brain radiotherapy. An automated two-opposed-oblique-beam plan is created by utilizing the treatment planning system scripting and simple field-in-field IMRT. The IMRT plan is designed with maximum 8 control points to cover the target volume consisting of the brain to C1/C2 of the spinal cord, with dose homogeneity criteria from −5% to +7% of the prescription dose. Due to inaccuracy of reconstructed Hounsfield unit numbers in CBCT images, the dose distribution is calculated with non-heterogeneity correction introducing only clinically insignificant dose discrepancy. A coherent and synchronized workflow was designed for a team of attending physician, physicist, therapists, and dosimetrist to work closely with the ability to quickly modify, approve, and implement the treatment. Results: Thirty-one patients have been treated with this OSPD treatment, without compromising the plan quality compared to our regular clinically used parallel apposed 2D plans. The average time for these procedures are 48.02 ±11.55 minutes from the time patient entered the treatment room until s/he exited, and 35.09 ±10.35 minutes from starting CBCT until last beam delivered. This time duration is comparable to the net time when individual tasks are summed up during our regular CT- based whole brain planning and delivery. Conclusions: The OSPD whole brain treatment has been tested to be clinically feasible. The next step is to further improve the efficiency and to streamline the workflow. Other disease sites will be also tested with this new technology
Primary Subject
Secondary Subject
Source
(c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Purpose: Maximum available kinetic energy of accelerated heavy ions is a critical parameter to consider during the establishment of a heavy ion therapy center. It dictates the maximum range in tissue and determines the size and cost of ion gantry. We have started planning our heavy ion therapy center and we report on the needed ion range. Methods: We analyzed 50 of random SBRT-spine, SBRT- lung, prostate and pancreatic cancer patients from our photon clinic. In the isocentric axial CT cut we recorded the maximum water equivalent depth (WED4Field) of PTV’s most distal edge in four cardinal directions and also in a beam direction that required the largest penetration, WEDGantry. These depths were then used to calculate the percentage of our patients we would be able to treat as a function of available maximum carbon and helium beam energy. Based on the Anterior-Posterior WED for lung patients and the maximum available ion energy we estimated the largest possible non-coplanar beam entry angle φ (deviation from vertical) in the isocentric vertical sagittal plane. Results: We found that if 430MeV/u C-12, equivalently 220MeV/u He-4, beams are available, more than 96% (98%) of all patients can be treated without any gantry restrictions (in cardinals angles only) respectively. If the energy is reduced to 400MeV/u C-12, equivalently 205MeV/u He-4, the above fractions reduce to 80% (87%) for prostate and 88% (97%) for other sites. This 7% energy decrease translates to almost 5% gantry size and cost decrease for both ions. These energy limits in combination with the WED in the AP direction for lung patients resulted in average non-coplanar angles of φ430MeV/u = 68°±8° and φ400MeV/u = 65°±10° if nozzle clearance permits them. Conclusion: We found that the two worldwide most common maximum carbon beam energies will treat above 80% of all our patients
Primary Subject
Source
(c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Purpose: Stereotactic radiosurgery (SRS), which delivers a potent dose of highly conformal radiation to the target in a single fraction, requires accurate tumor delineation for treatment planning. We present an automatic segmentation strategy, that synergizes intensity histogram thresholding, super-voxel clustering, and level-set based contour evolving methods to efficiently and accurately delineate SRS brain tumors on contrast-enhance T1-weighted (T1c) Magnetic Resonance Images (MRI). Methods: The developed auto-segmentation strategy consists of three major steps. Firstly, tumor sites are localized through 2D slice intensity histogram scanning. Then, super voxels are obtained through clustering the corresponding voxels in 3D with reference to the similarity metrics composited from spatial distance and intensity difference. The combination of the above two could generate the initial contour surface. Finally, a localized region active contour model is utilized to evolve the surface to achieve the accurate delineation of the tumors. The developed method was evaluated on numerical phantom data, synthetic BRATS (Multimodal Brain Tumor Image Segmentation challenge) data, and clinical patients’ data. The auto-segmentation results were quantitatively evaluated by comparing to ground truths with both volume and surface similarity metrics. Results: DICE coefficient (DC) was performed as a quantitative metric to evaluate the auto-segmentation in the numerical phantom with 8 tumors. DCs are 0.999±0.001 without noise, 0.969±0.065 with Rician noise and 0.976±0.038 with Gaussian noise. DC, NMI (Normalized Mutual Information), SSIM (Structural Similarity) and Hausdorff distance (HD) were calculated as the metrics for the BRATS and patients’ data. Assessment of BRATS data across 25 tumor segmentation yield DC 0.886±0.078, NMI 0.817±0.108, SSIM 0.997±0.002, and HD 6.483±4.079mm. Evaluation on 8 patients with total 14 tumor sites yield DC 0.872±0.070, NMI 0.824±0.078, SSIM 0.999±0.001, and HD 5.926±6.141mm. Conclusion: The developed automatic segmentation strategy, which yields accurate brain tumor delineation in evaluation cases, is promising for its application in SRS treatment planning.
Primary Subject
Secondary Subject
Source
(c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
1 | 2 | Next |