d1e12380>Furthermore, an overview of nanofluids’ thermophysical properties, physical models, and heat transfer models isincluded in this work. In order to realize the unexpected discoveries and overcome classical models’ limitations, several researchers have suggested new physical concepts and mechanisms, and they have created new models to enhance the transport properties. This review study includes numerous aspects of the nanofluids’ science by investigating applications, thermal properties and giving critical chronological milestones about the nanofluids’ evolution. Also, the present review discusses in detail various modeling and slip mechanisms for the heat transfer of nanofluids. Potential novel 2D materials as nanofluids have also been discussed and reported. A brief overview of the potential applications utilizing nanofluids has been reviewed, and future research gaps have been reported. Furthermore, recommendations were extracted regarding current scientific gaps and future research directions to cover the physical phenomenon, stability, thermophysical properties, overview of some applications, and the limitations hindering these nanofluids’ deployment. The review is presumed to be valuable for scholars and researchers working in the area of numerical simulations of nanofluids and experimental aspects and help them understand the fundamental physical phenomena taking place during these numerical simulations and experiments and explore the potential of nanofluids both in academia and industry.