Greenlee, Jordan D.; Anderson, Travis J.; Koehler, Andrew D.; Weaver, Bradley D.; Kub, Francis J.; Hobart, Karl D.; Specht, Petra; Dubon, Oscar D.; Luysberg, Martina; Weatherford, Todd R., E-mail: jordan.greenlee.ctr@nrl.navy.mil2015
AbstractAbstract
[en] Proton-induced damage in AlGaN/GaN HEMTs was investigated using energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM), and simulated using a Monte Carlo technique. The results were correlated to electrical degradation using Hall measurements. It was determined by EDS that the interface between GaN and AlGaN in the irradiated HEMT was broadened by 2.2 nm, as estimated by the width of the Al EDS signal compared to the as-grown interface. The simulation results show a similar Al broadening effect. The extent of interfacial roughening was examined using high resolution TEM. At a 2 MeV proton fluence of 6 × 10"1"4 H"+/cm"2, the electrical effects associated with the Al broadening and surface roughening include a degradation of the ON-resistance and a decrease in the electron mobility and 2DEG sheet carrier density by 28.9% and 12.1%, respectively
Primary Subject
Source
(c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Epitaxial MnAl films with a high chemical ordering were synthesized and characterized during a series of irradiations by 2 MeV protons (H+). The chemical ordering was first reduced to a minimum at a total fluence (TF) of 1 × 1015 H+/cm2, and consequently was recovered at the final total fluence of 2 × 1015 H+/cm2. We attributed the recovery of chemical ordering to thermal effects and the enhanced diffusion caused by the high energy protons. In addition, the damages by the protons have little effect on the magnetic scattering processing in MnAl characterized by the anomalous Hall effect.
Source
(c) 2013 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL