Filters
Results 1 - 10 of 21
Results 1 - 10 of 21.
Search took: 0.026 seconds
Sort by: date | relevance |
AbstractAbstract
[en] An overview is presented of global climatic change. The greenhouse effect is an established physical phenomena. The reradiative effects of various anthropogenic gases are scientifically demonstrable, and the increasing concentration of such gases in the atmosphere is irrefutable. The delinquent information is the magnitude of the agravated greenhouse effect (AGE)-induced climatic change, the temporal pace of the change and its spatial distribution. The pace of the climatic change implied by many of the general circulation model (GCM) estimates is for a northern hemispheric warming 10-50 times faster than the change since the last ice age. At a relatively aggregated representation, researching the impact of climate change involves estimating energy use and greenhouse gas atmospheric retention, climate modeling and socio-economic impact models. Recognizing that certain of the impacts of anthropogenic gasses will prove to be cumulative, non-reversible and synergistic, it would be prudent to examine mitigating options for immediate implementation. Given the current degree of scientific uncertainty, response priorities would be on the no-regrets or covering-the-bets options. 14 refs., 1 fig., 1 tab
Primary Subject
Secondary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The potential role of reforestation policies in reducing Canada's contribution to atmospheric CO2 is examined. The results indicate sequestering carbon by reforestation of forest lands may be a cost-effective means for Canada to offset domestic emissions of CO2 from other sources, and that planting forests on marginal agricultural lands also warrants consideration. But these policies need to be compared with alternatives for reducing CO2 emissions to determine their relative cost-effectiveness. It is found that reforestation is more costly than policies to increase the fuel efficiency of automobiles, but economically more efficient than converting vehicles to natural gas. Forestation can make an important contribution to reduced atmospheric accumulation of carbon after the more cost-effective strategy, replacing less fuel-efficient automobiles, is exhausted (i.e. when the marginal costs of automobile emissions increase beyond those of forestation alternatives). Finally, it is demonstrated that, because of its vast forests, Canada is a net carbon sink. 26 refs., 2 figs., 4 tabs
Primary Subject
Secondary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The radiation response of V79 Chinese hamster cells grown as multicellular spheroids has been investigated by determining survival curves for treatment under a variety of different oxygen concentrations. Spheroids were irradiated under fully oxygenated conditions in air-equilibrated medium at 370C, in medium exposed to lower oxygen tension (5% O2) for times varying from 1 hr to 3 days, or under anoxic conditions. For comparison with the spheroids, using identical treatment conditions, V79 cells were grown in suspension as a subconfluent monolayer attached to Sephadex (microcarrier) beads and irradiated under fully oxygenated or anoxic conditions. The radiation response of cells at different depths within the spheroid was investigated by using a sequential trypsinization technique developed to remove eight or nine shells of cells successively from the spheroid surface. When irradiation was given under fully oxygenated conditions the outer few cell layers were more sensitive than the inner cells, a finding which is not understood. As expected the inner cells in spheroids irradiated in air (at 370C) or in 5% O2 are more resistant than the outer cells. For an acute exposure to 5% O2 (1 hr) in the inner cells displayed full radiobiological hypoxia; however, for chronic exposures to low oxygen this was not the case. These results with the sequential trypsinization procedure suggest that the radiation response of cells in spheroids is more complex than anticipted
Original Title
60Co
Primary Subject
Record Type
Journal Article
Journal
Radiation Research; ISSN 0033-7587; ; v. 86(2); p. 368-386
Country of publication
ANIMAL CELLS, BETA DECAY RADIOISOTOPES, BETA-MINUS DECAY RADIOISOTOPES, COBALT ISOTOPES, CONNECTIVE TISSUE CELLS, ELECTROMAGNETIC RADIATION, ELEMENTS, INTERMEDIATE MASS NUCLEI, IONIZING RADIATIONS, ISOMERIC TRANSITION ISOTOPES, ISOTOPES, MINUTES LIVING RADIOISOTOPES, NONMETALS, NUCLEI, ODD-ODD NUCLEI, RADIATIONS, RADIOISOTOPES, SOMATIC CELLS, YEARS LIVING RADIOISOTOPES
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Original Title
PWR
Primary Subject
Secondary Subject
Source
American Nuclear Society meeting; San Francisco, CA, USA; 12 - 16 Nov 1979; CONF-791103--; Published in summary form only.
Record Type
Journal Article
Literature Type
Conference
Journal
Transactions of the American Nuclear Society; ISSN 0003-018X; ; v. 33 p. 969-970
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Nitracrine (NC) is an electron affinic DNA intercalating agent and a potent hypoxia-selective cytotoxin and radiosensitizer in cell culture. Although NC is too cytotoxic and too rapidly metabolized to provide hypoxic cell radiosensitization in tumors, it is of mechanistic interest as an example of a DNA affinic radiosensitizer. We have observed a rapid chemical reaction between NC and reduced glutathione (GSH), which suggests that the observed potent in vitro cytotoxicity and radiosensitization might be dependent on thiol depletion by the large extracellular reservoir of drug. However, no GSH depletion was observed under conditions providing radiosensitization or rapid cell killing, and prior depletion of GSH by buthionine sulphoximine had no effect on cytotoxicity or formation of macromolecular adducts. Further, the intracellular reaction of NC with GSH is slower than predicted on the basis of the measured second order rate constant and the total intracellular concentrations of both species. The results are consistent with a role for DNA binding in protecting NC from reaction with GSH, and in improving the efficiency with which reduced electrophilic metabolites react with DNA in preference to GSH
Primary Subject
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD; v. 16(4); p. 1001-1005
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Kriste, A.G.; Ferry, D.M.; Anderson, R.F.; Wilson, W.R.
12th Quadrennial Congress of the International Association for Radiation Research incorporating the 50th Annual Meeting of Radiation Research Society, RANZCR Radiation Oncology Annual Scientific Meeting and AINSE Radiation Science Conference2003
12th Quadrennial Congress of the International Association for Radiation Research incorporating the 50th Annual Meeting of Radiation Research Society, RANZCR Radiation Oncology Annual Scientific Meeting and AINSE Radiation Science Conference2003
AbstractAbstract
[en] We have previously demonstrated that the nitroarylmethyl quaternary ammonium (NMQ) prodrugs of mechlorethamine (HN2) can be activated under anoxia by ionizing radiation (Kriste et al. Radiation Research, 158, 753 - 762, 2002). The HN2 released by these model compounds, however, is insufficiently potent for the prodrugs to be therapeutically useful. To address this concern, NMQ trigger units (4-nitroimidazole, 2-nitropyrrole and 3-nitrothiophene; all demonstrate one-electron release of HN2) were tethered to the DNA intercalator, AMAC (IC50 values of 1.3 to 66 nM against human and rodent tumour cells). We now report whether AMAC can be radiolytically released from NMQ-AMAC prodrugs in a hypoxic tissue-like environment. Initially radiolysis was investigated in anoxic 0.1 M Formate buffer. Here, the G value for AMAC release was 0.33 ± 0.02μmol/J. In anoxic human plasma, radiolytic release was half as efficient (G(AMAC)= 0.18 ± 0.03μmol/J). To investigate AMAC release in tissue, V79-171b rodent tumour cells were seeded onto Millicell-CM cell culture inserts and grown to 10 - 20 cell diameters. These multicellular layers (MCLs) were equilibrated with prodrug (1μM, 4 hours), and transferred to a gassing chamber (95% nitrogen or oxygen, 2 minutes). MCLs were irradiated (high dose linear accelerator, 0 - 800 Gy, 35 Gy/pulse) and lysed. HPLC analysis indicated that each prodrug was taken up intracellularly to ca. 50 μM. Furthermore, AMAC release was linear with radiation dose and was inhibited under oxia. In this tissue, G values spanned a range from 9.0 to 15 nmol/J. These low values, ca. 5 % of the plasma value, are interpreted as reflecting unfavourable prodrug localization into acidic intracellular endosomes, with no clear E(1) dependance. Whether radiolytic reduction occurs via eaq - or H. abstraction to generate carbon-centred radicals is unknown. MCL studies with NMQ prodrugs that release alternate amine containing cytotoxins are currently in progress
Primary Subject
Source
International Association for Radiation Research (International Organisation without Location); Australian Institute of Nuclear Science and Engineering (AINSE), Lucas Heights, NSW (Australia); 414 p; 2003; p. 240; ICRR 2003: 12. Quadrennial Congress of the International Association for Radiation Research; Brisbane, QLD (Australia); 17-22 Aug 2003; Available in abstract form only, full text entered in this record
Record Type
Miscellaneous
Literature Type
Conference
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue
Wilson, W.R.; Patterson, A.V.
12th Quadrennial Congress of the International Association for Radiation Research incorporating the 50th Annual Meeting of Radiation Research Society, RANZCR Radiation Oncology Annual Scientific Meeting and AINSE Radiation Science Conference2003
12th Quadrennial Congress of the International Association for Radiation Research incorporating the 50th Annual Meeting of Radiation Research Society, RANZCR Radiation Oncology Annual Scientific Meeting and AINSE Radiation Science Conference2003
AbstractAbstract
[en] There is now abundant evidence that hypoxic contributes to treatment failure in radiation therapy. As a target for therapeutic intervention, hypoxia is especially attractive because it is a common feature of most human tumours and therefore a potential 'pan target' across many tumour types. However, attempts to exploit hypoxia face the problem that oxygen concentrations in some normal tissues are also heterogeneous and that O2 distributions in tumours and normal tissues overlap. Simply adjusting the K value (O2 concentration for 50% inhibition of activation) does not provide a satisfactory solution. Bioreductive drugs like tirapazamine with high K values are activated significantly in several normal tissues, while nitro compounds and quinones with low K values spare the hypoxic tumour cells at 'intermediate' O2 tensions (1-10 mM O2 ) which are considered to be major contributors to tumour radioresistance. A potential strategy for overcoming this dilemma is to design prodrugs that are activated only at very low K values, but give relatively stable cytotoxic metabolites capable of diffusing to cells at higher O2 concentrations. This approach redefines the therapeutic target as cells adjacent to zones of pathological hypoxia (<1 mM O2 ), providing discrimination from physiological hypoxia in normal tissues. Detecting bioreductive prodrugs capable of providing bystander killing of this kind is not straightforward. We have adapted a multicellular layer (MCL) co-culture model for quantifying bystander effects in GDEPT (Wilson et al., Cancer Res., 62: 1425-1432, 2002), and have used this to measure bystander effects of hypoxia-activated prodrugs. This model uses differences in metabolic activation of bioreductive drugs between A459 cell lines with low and high cytochrome P450 reductase activity, rather than O2 gradients, to effect localised prodrug activation. It shows that TPZ and the nitroimidazole RSU-1069 have little or no bystander effect, but that dinitrobenzamide mustards related to CB 1954 show marked bystander killing. Additional studies characterising the extracellular metabolites of dinitrobenzamide prodrugs show they have suitable properties for diffusion into well-oxygenated regions from hypoxic zones
Primary Subject
Source
International Association for Radiation Research (International Organisation without Location); Australian Institute of Nuclear Science and Engineering (AINSE), Lucas Heights, NSW (Australia); 414 p; 2003; p. 116; ICRR 2003: 12. Quadrennial Congress of the International Association for Radiation Research; Brisbane, QLD (Australia); 17-22 Aug 2003; Available in abstract form only, full text entered in this record
Record Type
Miscellaneous
Literature Type
Conference
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] New approaches to killing chemoresistant and radioresistant hypoxic cells of solid tumours include the selective release of potent cytotoxins from relatively non-toxic prodrugs through reductive metabolism and/or radiolytic reduction. Central to these studies, is an understanding of the mechanism of cytotoxin release and the basis of hypoxia-selectivity, since such information can be used to design compounds of high potency against solid tumours. Pulse radiolysis studies can offer unique insights into these underlying mechanisms in aqueous solution through the determination of thermodynamic one-electron reduction potentials of the prodrugs, rate constants for the formation and spectral charaterization of one-electron reduced prodrugs, the kinetics release of the cytotoxins from one-electron reduced prodrugs and the influence of molecular oxygen on the obligate radical intermediates. A series of different triggers, which are found to vary greatly in the rate constant for release of the effectors upon one-electron reduction of the prodrugs, will be discussed. Release of effector from a prodrug does not solely depend upon the type of trigger but can also be dependent on the type of linker and released effector. For example, whereas fast quantitative release of the mustard effector mechlorethamine is seen from the quaternary nitroimidazole upon one electron reduction, release of N-[2-(dimethylamino)ethyl] acridine-4-carboxamide (DACA), requires a higher level of reduction of the same trigger. Release of cytotoxic ligands from metal complexes requires that the metal centre is reduced. When the metal centre is lower than DACA bound as a ligand, reduction is seen to occur solely on the ligand without release from the metal centre
Primary Subject
Source
Australian Inst. of Nuclear Science and Engineering (AINSE), Lucas Heights, NSW (Australia). Funding organisation: Melbourne Univ., Parkville, VIC (Australia); Queensland Univ., St. Lucia, QLD (Australia); Peter MacCallum Cancer Institute, Melbourne, VIC (Australia); St George Cancer Care Center, Kogarah, NSW (Australia); 97 p; 1996; p. 33; Radiation' 96: 18. AINSE radiation chemistry conference; Lucas Heights (Australia); 10-12 Nov 1996; 15. AINSE radiation biology conference; Lucas Heights (Australia); 10-12 Nov 1996; 3. national workshop on experimental radiation oncology; Lucas Heights (Australia); 10-12 Nov 1996; 1 ref., 1 fig.
Record Type
Miscellaneous
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The nitroacridine nitracrine (1-NC) is a DNA intercalator and a hypoxia-selective, electron-affinic radiosensitizer. Sensitization of Chinese hamster fibroblast cultures at 0 degrees C by the nitro positional isomers of 1-NC has now been compared to help establish structure-activity relationships. The des-nitro analog (E(1) at pH 7 = -899 mV) did not sensitize, suggesting that an electron-affinic chromophore is required. All the nitroacridines (E(1) range -376 to -257 mV) sensitized hypoxic cells with a maximum sensitizer enhancement ratio of about 1.7, but with a 200-fold range in potency. When mean intracellular drug concentrations were compared, 2-, 3-, and 4-NC had potencies which were similar, independent of E(1), and no greater than predicted for non-DNA binding nitroheterocycles. Sensitization by these three isomers occurred at intracellular concentrations likely to saturate the potential intercalation sites on DNA. A large fraction of the radical sites sensitized by O2 are apparently inaccessible to these drugs. It is suggested that sensitization results from electron transfer from migrating transient charge carriers of low reduction potential to immobile bound intercalators. An additional sensitizing mechanism may be available to 1-NC, which was 20 times more potent, a potency not accounted for by E(1), cell uptake, or DNA binding affinity. The dissociation kinetics of the DNA-drug complex was faster for 1-NC than for the other isomers. The higher potency of 1-NC may reflect a short mean residence time (less than 1 ms) in its intercalation site, allowing significant mobility on the DNA within the lifetime of relatively stable radiation-induced target radicals
Primary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Resistance of noncycling cells to amsacrine (m-AMSA) has been widely reported and may limit the activity of this drug against solid tumors. The biochemical mechanism(s) for this resistance have been investigated using spontaneously transformed Chinese hamster fibroblasts (AA8 cells, a subline of Chinese hamster ovary-cells) in log- and plateau-phase spinner cultures. In early plateau phase most cells entered a growth-arrested state with a G1-G0 DNA content and showed a marked decrease in sensitivity to cytotoxicity induced by a 1-h exposure to m-AMSA or to its solid tumor-active analogue, CI-921. Studies with radiolabeled m-AMSA established that similar levels of drug were accumulated by log- and plateau-phase cells and that there was no significant drug metabolism in either of these cultures after 1 h. However, marked differences in sensitivity to m-AMSA-induced DNA breakage were observed using a fluorescence assay for DNA unwinding. Changes in sensitivity to DNA breakage occurred in parallel with changes in sensitivity to m-AMSA-induced cell killing. DNA breaks disappeared rapidly after drug removal (half-time approximately 4 min), suggesting that these lesions were probably mediated by DNA topoisomerase II. Resistance to m-AMSA may therefore be associated with changes in topoisomerase II activity in noncycling cells
Primary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
1 | 2 | 3 | Next |