Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
Yan, Wannian; Fan, Lingzhi; Li, Jin; Wang, Yijiang; Han, Huanxing; Tan, Fei; Zhang, Pengfei, E-mail: tanfeitrue@126.com, E-mail: pfzhang2014@163.com2020
AbstractAbstract
[en] A highly sensitive quantum dot (QD)–based western blot assay with extended dynamic range was developed. Bimodal size distribution QD (BQ) immunoprobes composed of small size single QD (7.3 nm) and big size QD nanobead (QB) (82.9 nm) were employed for fluorescent western blot immunoassay on a membrane. Small size QD immunoprobes contributed to wider dynamic range of assay, while big size QB immunoprobes provided higher detection sensitivity. This BQ-based western blot assay can achieve a wide dynamic range (from 7.8 to 4000 ng IgG) and is nearly as sensitive as commercial available ultrasensitive chemiluminescent methods, just using a simple gel imager with UV light (365 nm) excitation and red light filter (610 nm). The fluorescent signals of BQ western blot were stable for 10 min, while chemiluminescent signals faded after 1 min. Moreover, this BQ immunoprobe was utilized for the detection of housekeeping protein and specific target proteins in complex cell lysate samples. The limit of detection of housekeeping protein is 0.25 μg of cell lysate, and the signal intensities were proportional to loading protein amount in a wide range from 0.61 to 80 μg. We believe that this new strategy of bimodal size distribution nanoparticles can also be expanded for other functional nanoparticle-based biological assays to improve the sensitivity and extend the dynamic range.
Primary Subject
Secondary Subject
Source
Copyright (c) 2020 © Springer-Verlag GmbH Austria, part of Springer Nature 2020
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue