AbstractAbstract
[en] High-energy solid-state lasers have been shown to be useful for studying the plasma physics of fusion, the national objectives of stockpile stewardship, and possibly future energy production. Solid-state lasers based on flashlamp pump sources will achieve ignition and explore weapons issues during the beginning of the next century. Diode-pumped solid-state lasers represent a next step in continuing to pursue laser fusion after startup and operation of the National ignition Facility. In addition to offering us a pathway to future inertial fusion studies and stockpile stewardship applications near-term uses for advanced high-repetition-rate lasers also abound. Our small-scale experiments at Lawrence Livermore attest to the scientific viability of diode-pumped solid-state lasers for fusion, as do the synergistic laser development efforts in support of numerous military, governmental, and civilian applications
Primary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] When fluid of high density is supported against gravity by a less dense liquid, the system is unstable, and microscopic perturbations grow at the interface between the fluids. This phenomenon, called the Rayleigh-Taylor instability, also occurs when a bottle of oil-and-vinegar salad dressing is turned upside down. The instability causes spikes of the dense fluid to penetrate the light fluid, while bubbles of the lighter fluid rise into the dense fluid. The same phenomenon occurs when a light fluid is used to accelerate a dense fluid, causing the two fluids to mix at a very high rate. For example, during the implosion of an ICF capsule, this instability can cause enough mixing to contaminate, cool, and degrade the yield of the thermonuclear fuel. The LEM is an excellent tool for studying this instability, but what is it? Think of a miniature high-speed electric train (the container) hurtling down a track (the electrodes) while diagnostic equipment (optical and laser) photographs it. The LEM, consists of four linear electrodes, or rails, that carry an electrical current to a pair of sliding armatures on the container. A magnetic field is produced that works in concert with the rail-armature current to accelerate the container--just as in an electric motor, but in a linear fashion rather than in rotation. The magnetic field is augmented with elongated coils just as in a conventional electric motor. This configuration also helps hold the armatures against the electrodes to prevent arcing. The electrical energy (0.6 megajoules) is provided by 16 capacitor banks that can be triggered independently to produce different acceleration profiles (i.e., how the acceleration varies with time)
Primary Subject
Secondary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Livermore isotope scientists are using stable and radioactive isotopes to learn about groundwater sources, ages, travel times, and flow paths and to determine the path and extent of contaminant movement in the water. These studies started at the Nevada Test Site because of concern about the transport in groundwater of contaminants from underground nuclear testing. When water managers can accurately predict where contaminated groundwater will be, they can avoid using it. Groundwater studies have also been performed for the Orange County Water District, Contra Costa County, and other public agencies, as well as at the Livermore site. Livermore scientists are some of the first to marry isotope tracing techniques and numerical groundwater models, using data from the former to verify and validate the predictions of the latter and thus provide a powerful forecasting tool for water managers
Primary Subject
Secondary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The proliferation of nuclear materials is a threat to national security and world peace. This threat complicates the safeguarding and management of fissile materials that have become surplus since the end of the Cold War. The dismantling of weapons and the cessation of new nuclear weapons manufacturing, while positive for world peace, have raised a problem: what to do about the fissile materials recovered from the weapons or in inventories that will remain unused. These materials--primarily plutonium and highly enriched uranium--are environmental, safety, and health concerns. But of more urgency is the threat they pose to national and international security if they fall into the hands of terrorists or rogue nations. As arms reduction continues and amounts of surplus fissile materials increase, the potential for such security breaches will increase
Primary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] A revolutionary new laser called the Petawatt, developed by Lawrence Livermore researchers after an intensive three-year development effort, has produced more than 1,000 trillion (open-quotes petaclose quotes) watts of power, a world record. By crossing the petawatt threshold, the extraordinarily powerful laser heralds a new age in laser research. Lasers that provide a petawatt of power or more in a picosecond may make it possible to achieve fusion using significantly less energy than currently envisioned, through a novel Livermore concept called open-quotes fast ignition.close quotes The petawatt laser will also enable researchers to study the fundamental properties of matter, thereby aiding the Department of Energy's Stockpile Stewardship efforts and opening entirely new physical regimes to study. The technology developed for the Petawatt has also provided several spinoff technologies, including a new approach to laser material processing
Primary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Livermore's EM field experts study and model wave phenomena covering almost the entire electromagnetic spectrum. Applications are as varied as the wavelengths of interest: particle accelerator components, material science and pulsed power subsystems, photonic and optoelectronic devices, aerospace and radar systems, and microwave and microelectronics devices. Building from its seminal work on time-domain algorithms in the 1960s, the Laboratory has fashioned top-notch resources in electromagnetic and electronics modeling and characterization. Using Laboratory-developed two-dimensional and three-dimensional EM field and propagation modeling codes and EM measurement facilities. Livermore personnel can evaluate, design, fabricate, and test a wide range of accelerator systems and both impulse and continuous-wave RF (radio-frequency) microwave systems
Primary Subject
Secondary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Since the founding of Lawrence Livermore National Laboratory, we have been world leaders in evaluating the risks associated with radiation. Ultrasensitive tools allow us not only to measure radionuclides present in the body but also to reconstruct the radiation dose from past nuclear events and to project the levels of radiation that will still be present in the body for 50 years after the initial intake. A variety of laboratory procedures, including some developed here, give us detailed information on the effects of radiation at the cellular level. Even today, we are re-evaluating the neutron dose resulting from the bombing at Hiroshima. Our dose reconstruction and projection capabilities have also been applied to studies of Nagasaki, Chernobyl, the Mayak industrial complex in the former Soviet Union, the Nevada Test Site, Bikini Atoll, and other sites. We are evaluating the information being collected on individuals currently working with radioactive material at Livermore and elsewhere as well as previously collected data on workers that extends back to the Manhattan Project
Primary Subject
Record Type
Journal Article
Journal
Country of publication
ASIA, AUSTRALASIA, BETA DECAY RADIOISOTOPES, BETA-MINUS DECAY RADIOISOTOPES, CESIUM ISOTOPES, DAYS LIVING RADIOISOTOPES, DEVELOPED COUNTRIES, ENRICHED URANIUM REACTORS, FALLOUT, GRAPHITE MODERATED REACTORS, INTERMEDIATE MASS NUCLEI, IODINE ISOTOPES, ISLANDS, ISOTOPES, JAPAN, LWGR TYPE REACTORS, MICRONESIA, NUCLEAR FACILITIES, NUCLEI, OCEANIA, ODD-EVEN NUCLEI, POPULATIONS, POWER REACTORS, RADIOISOTOPES, REACTORS, SPECTROSCOPY, THERMAL REACTORS, WATER COOLED REACTORS, YEARS LIVING RADIOISOTOPES
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] A B-Factory, a virtual open-quotes time machineclose quotes back to the early moments of the Big Bang that created the universe, is not under construction at the Stanford Linear Accelerator Center (SLAC). The $300 million project to produce copious amounts of B mesons is a combined effort of SLAC, Lawrence Berkeley National Laboratory, and Lawrence Livermore National Laboratory. Scheduled for completion in early 1999, the facility will be one of the flagships of the US high-energy physics program. Nearly 200 Laboratory specialists, representing a broad range of disciplines, are contributing to the B-Factory effort. The B-Factory's two underground rings, each 2,200 meters (a mile and a half) in circumference, will generate B mesons by colliding electron and positrons (antimatter counterpart of electrons) at near the speed of light. A key feature of this collider is the fact that electrons and positrons will circulate and collide with unequal (or open-quotes asymmetricclose quotes) energies so that scientists can to better explore the particles generated in the collisions. In helping to design and manufacture many of the major components and detector systems for the B-Factory's twin particle beam rings and its three-story-tall detector, Lawrence Livermore is strengthening its reputation as a center of excellence for accelerator science and technology. In addition, many LLNL capabilities brought to bear on the technical challenges of the B-Factory are enhancing the Laboratory's efforts for the DOE Stockpile Stewardship Program
Primary Subject
Secondary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue