V.Daniel Elvira, Paul Lebrun and Panagiotis Spentzouris email daniel@fnal.gov
Fermi National Accelerator Lab., Batavia, IL (United States). Funding organisation: USDOE Office of Energy Research (ER) (United States)2002
Fermi National Accelerator Lab., Batavia, IL (United States). Funding organisation: USDOE Office of Energy Research (ER) (United States)2002
AbstractAbstract
[en] Geant4 is a tool kit developed by a collaboration of physicists and computer professionals in the high energy physics field for simulation of the passage of particles through matter. The motivation for the development of the Beam Tools is to extend the Geant4 applications to accelerator physics. The Beam Tools are a set of C++ classes designed to facilitate the simulation of accelerator elements: r.f. cavities, magnets, absorbers, etc. These elements are constructed from Geant4 solid volumes like boxes, tubes, trapezoids, or spheers. There are many computer programs for beam physics simulations, but Geant4 is ideal to model a beam through a material or to integrate a beam line with a complex detector. There are many such examples in the current international High Energy Physics programs. For instance, an essential part of the RandD associated with the Neutrino Source/Muon Collider accelerator is the ionization cooling channel, which is a section of the system aimed to reduce the size of the muon beam in phase space. The ionization cooling technique uses a combination of linacs and light absorbers to reduce the transverse momentum and size of the beam, while keeping the longitudinal momentum constant. The MuCool/MICE (muon cooling) experiments need accurate simulations of the beam transport through the cooling channel in addition to a detailed simulation of the detectors designed to measure the size of the beam. The accuracy of the models for physics processes associated with muon ionization and multiple scattering is critical in this type of applications. Another example is the simulation of the interaction region in future accelerators. The high luminosity and background environments expected in the Next Linear Collider (NLC) and the Very Large Hadron Collider (VLHC) pose great demand on the detectors, which may be optimized by means of a simulation of the detector-accelerator interface
Primary Subject
Source
2 Dec 2002; 5640 Kilobytes; AC02-76CH03000; Available from PURL: https://www.osti.gov/servlets/purl/805249-YBfDQO/native/
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
V.Daniel Elvira, Paul Lebrun and Panagiotis Spentzouris, E-mail: daniel@fnal.gov
Fermi National Accelerator Lab., Batavia, IL (United States). Funding organisation: USDOE Office of Energy Research (ER) (United States)2002
Fermi National Accelerator Lab., Batavia, IL (United States). Funding organisation: USDOE Office of Energy Research (ER) (United States)2002
AbstractAbstract
[en] Geant4 is a tool kit developed by a collaboration of physicists and computer professionals in the high energy physics field for simulation of the passage of particles through matter. The motivation for the development of the Beam Tools is to extend the Geant4 applications to accelerator physics. The Beam Tools are a set of C++ classes designed to facilitate the simulation of accelerator elements: r.f. cavities, magnets, absorbers, etc. These elements are constructed from Geant4 solid volumes like boxes, tubes, trapezoids, or spheres. There are many computer programs for beam physics simulations, but Geant4 is ideal to model a beam through a material or to integrate a beam line with a complex detector. There are many such examples in the current international High Energy Physics programs. For instance, an essential part of the R and D associated with the Neutrino Source/Muon Collider accelerator is the ionization cooling channel, which is a section of the system aimed to reduce the size of the muon beam in phase space. The ionization cooling technique uses a combination of linacs and light absorbers to reduce the transverse momentum and size of the beam, while keeping the longitudinal momentum constant. The MuCool/MICE (muon cooling) experiments need accurate simulations of the beam transport through the cooling channel in addition to a detailed simulation of the detectors designed to measure the size of the beam. The accuracy of the models for physics processes associated with muon ionization and multiple scattering is critical in this type of applications. Another example is the simulation of the interaction region in future accelerators. The high luminosity and background environments expected in the Next Linear Collider (NLC) and the Very Large Hadron Collider (VLHC) pose great demand on the detectors, which may be optimized by means of a simulation of the detector-accelerator interface
Primary Subject
Source
2 Dec 2002; 83 p; AC02-76CH03000; Available from PURL: https://www.osti.gov/servlets/purl/805249-YBfDQO/native/
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue