Muenzenberg, G.
Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany, F.R.)1989
Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany, F.R.)1989
AbstractAbstract
[en] The discovery of the elements 107, 108, and 109 in a region of dominating shell stabilization is the most important step on the way to the superheavy nuclei in recent years. These experiments leading to the presently upper end of the periodic table were possible with the velocity filter SHIP to separate the heavy nuclei produced in complete fusion reactions of heavy ions. The identification of the unknown nuclei was established by α-α mother-daughter correlation of the nuclei decaying after the implantation into position sensitive surface-barrier detectors. With this method it is possible to identify even single nuclei of unknown isotopes unambiguously. The limits of sensitivity are production cross-sections of a few picobarns and about 2 μs of nuclear lifetime. With this method the elements 107, 108, and 109 were observed for the first time by their α-decay and identified unambiguously. For element 107 the isotopes with masses 261 and 262, for the element 108 the isotopes with masses 264 and 265, and for element 109 the isotope with mass 266 were found. The halflives range from 0.1 ms to 0.1 s. The highly fissile transactinide nuclei were produced in cold fusion of heavy ions using 207,208Pb and 209Bi targets, respectively, and 50Ti, 54Cr, or 58Fe beams. The evaluation of the excitation functions for the production of very heavy evaporation residues shows a strong decrease above 25 MeV excitation energy caused by a destruction of the groundstate shell effects at high excitation energies. The strong competition of barrier transmission and survival probability results in rather narrow excitation functions and small production cross sections. The maximum cross section is observed close to the Coulomb barrier and corresponding to projectile energies near 5 MeV/u. (orig.)
[de]
Die Entdeckung der Elemente 107, 108 und 109 in einer Region ueberwiegend schalenstabilisierter Kerne am oberen Ende des Periodensystems ist der bedeutendste Schritt auf dem Wege zu den superschweren Kernen in den juengsten Experimenten zur Erforschung der schweren Elemente. Die experimentellen Voraussetzungen hierzu wurden durch das Geschwindigkeitsfilter SHIP geschaffen, welches die durch Schwerionenfusion erzeugten Kerne unter Ausnutzung der Reaktionskinematik im Fluge separiert. Die Identifikation erfolgt durch α-α Mutter-Tochter Korrelation in den Zerfallsketten der in Oberflaechensperrschichtzaehler implantierten Kerne. Mit dieser Methode koennen einzelne Kerne auch unbekannter Isotope identifiziert werden. Ihre Empfindlichkeitsgrenze liegt bei einigen Picobarn mit Separationszeiten von etwa 2 μs. Mit dieser Methode gelang es, die Elemente 107, 108 und 109 durch Beobachtung ihres α-Zerfalls auf der Basis weniger Atome erstmals eindeutig nachzuweisen. Es wurden fuer Element 107 die Isotope der Massen 261 und 262, fuer Element 108 die Isotope 264 und 265, sowie fuer Element 109 das Isotop 266 gefunden. Die Halbwertszeiten dieser Kerne liegen im Bereich von 0.1 ms bis 0.1 s. Die Erzeugung der leicht spaltbaren Transaktinidenkerne erfolgt ueber kalte Fusion schwerer Ionen, d.h. von 207,208Pb bzw. 209Bi Targets mit 50Ti, 54Cr und 58Fe Projektilen. Der Verlauf der Anregungsfunktionen fuer die Verdampfungsrestkernbildung zeigt einen starken Abfall oberhalb 20 MeV Anregungsenergie, welcher auf eine Zerstoerung der Grundzustandsschaleneffekte bei hoher Kernanregung hindeutet. Wegen der starken Konkurrenz von Barrierentransmission und Ueberlebenswahrscheinlichkeit sind die Anregungsfunktionen schmal und die Bildungsquerschnitte klein. (orig./HSI)Original Title
Wie weit sind wir auf dem Weg zu den superschweren Kernen?
Primary Subject
Source
Oct 1989; 124 p
Record Type
Report
Literature Type
Progress Report
Report Number
Country of publication
ALPHA DECAY, BISMUTH 209 TARGET, CHROMIUM 54 REACTIONS, DEFORMED NUCLEI, ELEMENT 106 259, ELEMENT 106 260, ELEMENT 106 261, ELEMENT 107 261, ELEMENT 107 262, ELEMENT 108 264, ELEMENT 108 265, ELEMENT 109 266, ENERGY DEPENDENCE, EVAPORATION MODEL, EXCITATION FUNCTIONS, FISSION BARRIER, FISSION FRAGMENTS, GROUND STATES, HALF-LIFE, HEAVY ION FUSION REACTIONS, HEAVY NUCLEI, INTEGRAL CROSS SECTIONS, IRON 58 REACTIONS, KINETIC ENERGY, LEAD 207 TARGET, LEAD 208 TARGET, MASS DEFECT, MICROSEC LIVING RADIOISOTOPES, MILLISEC LIVING RADIOISOTOPES, NUCLEAR DEFORMATION, PROGRESS REPORT, Q-VALUE, REVIEWS, SPONTANEOUS FISSION, SPONTANEOUS FISSION RADIOISOTO, TITANIUM 50 REACTIONS, TRANS 104 ELEMENTS
ALPHA DECAY RADIOISOTOPES, CROSS SECTIONS, DECAY, DEFORMATION, DOCUMENT TYPES, ELEMENT 106 ISOTOPES, ELEMENT 107 ISOTOPES, ELEMENT 108 ISOTOPES, ELEMENT 109 ISOTOPES, ELEMENTS, ENERGY, ENERGY LEVELS, EVEN-EVEN NUCLEI, EVEN-ODD NUCLEI, FISSION, HEAVY ION REACTIONS, ISOTOPES, MATHEMATICAL MODELS, NUCLEAR DECAY, NUCLEAR FRAGMENTS, NUCLEAR MODELS, NUCLEAR REACTIONS, NUCLEI, NUCLEOSYNTHESIS, ODD-EVEN NUCLEI, ODD-ODD NUCLEI, POTENTIAL ENERGY, RADIOISOTOPES, SECONDS LIVING RADIOISOTOPES, SYNTHESIS, TARGETS, TRANSPLUTONIUM ELEMENTS, TRANSURANIUM ELEMENTS
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Schoenhofen, M.; Feldmeier, H.; Cubero, M.
Gesellschaft fuer Schwerionenforschung m.b.H., Darmstadt (Germany, F.R.)1989
Gesellschaft fuer Schwerionenforschung m.b.H., Darmstadt (Germany, F.R.)1989
AbstractAbstract
[en] In order to develop a relativistic transport model of heavy-ion collisions it is important to find a consistent framework for describing both aspects of the nuclear interaction, the longe-range part mediated by the mean-field and the short-range part for which 'hard' two-body collisions are responsible. In this paper, we are concerned with the long-range part of the interaction which enters the relativistic Vlasov equation. (orig./HSI)
Primary Subject
Source
Mar 1989; 9 p; 17. international workshop on gross properties of nuclei and nuclear excitations; Hirschegg, Kleinwalsertal (Austria); 16-20 Jan 1989; Available from Gesellschaft fuer Schwerionenforschung m.b.H., Darmstadt (Germany, F.R.)
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
BOLTZMANN-VLASOV EQUATION, DEEP INELASTIC HEAVY ION REACT, GEV RANGE 01-10, HEAVY ION REACTIONS, INTERACTION RANGE, LONGITUDINAL MOMENTUM, NUCLEAR REACTION KINETICS, NUCLEON-NUCLEON INTERACTIONS, NUCLEON-NUCLEON POTENTIAL, OXYGEN 16 REACTIONS, OXYGEN 16 TARGET, PHASE SPACE, RELATIVISTIC RANGE, SCALAR FIELDS, SPATIAL DISTRIBUTION, TRANSPORT THEORY, TRANSVERSE MOMENTUM, VECTOR FIELDS
BARYON-BARYON INTERACTIONS, DIFFERENTIAL EQUATIONS, DISTANCE, DISTRIBUTION, ENERGY RANGE, EQUATIONS, GEV RANGE, HADRON-HADRON INTERACTIONS, INTERACTIONS, KINETICS, LINEAR MOMENTUM, MATHEMATICAL SPACE, NUCLEAR REACTIONS, PARTIAL DIFFERENTIAL EQUATIONS, PARTICLE INTERACTIONS, POTENTIALS, REACTION KINETICS, SPACE, TARGETS
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue