Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.022 seconds
AbstractAbstract
[en] A simple evaluation of groundwater flux and potential for radionuclide transport at the Aespoe site, from fundamental hydrologic principles, indicates that, based upon data that are available from surface-based investigations, it is not possible to confirm that the bedrock has a high capacity to retard radionuclide release to the surface environment. This result is primarily due to the high spatial variability of hydraulic conductivity, and high uncertainty regarding the relationship among hydrologic and transport parameters within conductive elements of the bedrock. A comparison between Aespoe and seven other study sites in Sweden indicates that it is difficult or impossible to discriminate among these sites in terms of the geologic barrier function, based upon the types of data that are available from present-day methods of site characterization. Groundwater flux is evaluated by a one-dimensional application of Darcy's law to a set of simple, potential pathways for groundwater flow from the repository, which are chosen to yield an appraisal of the wide bounds of possible system behaviour. The configurations of the pathways are specified based on simple assumptions of flow-field structure, and hydraulic driving forces are specified from consideration of regional and local topographic differences. Results are expressed in terms of a parameter group that has been shown to control the barrier function. Comparisons with more detailed hydrological modelling of Aespoe show that, although a reduction in uncertainty is achieved, this reduction is not sufficient to distinguish between good and poor performance of the geologic barrier at the site. 38 refs
Primary Subject
Secondary Subject
Source
Dec 1996; 125 p; ISSN 1104-1374; ; SKI PROJECT 94259; 96063; 96100; 96138; 96120
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue