Solid-state 13C NMR of the retinal chromophore in photointermediates of bacteriorhodopsin: Characterization of two forms of M
AbstractAbstract
[en] Solid-state 13C NMR spectra of the M photocycle intermediate of bacteriorhodopsin (bR) have been obtained from purple membrane regenerated with retinal specifically 13C labeled at positions 5, 12, 13, 14, and 15. The M intermediate was trapped at -40 degree C and pH = 9.5-10.0 in either 100 mM NaCl [M (NaCl)] or 500 mM guanidine hydrochloride [M (Gdn-HCl)]. The 13C-12 chemical shift at 125.8 ppm in M (NaCl) and 128.1 ppm in M (Gdn-HCl) indicates that the C13 double-bond C14 double bond has a cis configuration, while the 13C-13 chemical shift at 146.7 ppm in M (NaCl) and 14.57 ppm in M (Gdn-HCl) demonstrates that the Schiff base in unprotonated. The principal values of the chemical shift tensor of the 13C-5 resonance in both M (NaCl) and M (Gdn-HCl) are consistent with a 6-s-trans structure and a negative protein charge localized near C-5 as was observed in dark adapted bR. The ∼5 ppm upfield shift of the 13C-5 M resonance relative to 13C-5 bR568 and bR548 is attributed to an unprotonated Schiff base in the M chromophore. Of particular interest in this study were the results obtained from 13C-14 M. In M (NaCl), a dramatic upfield shift was observed for the 13C-14 resonance relative to unprotonanted Schiff base model compounds. In contrast, in M (Gdn-HCl) the 13C-14 resonance was observed at 125.7 ppm. The different 13C-14 chemical shifts in these two M preparations may be explained by different Cdouble-primeN configurations of the retinal-lysine Schiff base linkage, namely, syn in NaCl and anti in guanidine hydrochloride
Primary Subject
Record Type
Journal Article
Journal
Country of publication
Descriptors (DEI)
Descriptors (DEC)
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue