AbstractAbstract
[en] Several topics in field theory are investigated. (1) Massive higher spin actions are obtained as gauge theories from the dimensional reduction of the corresponding massless ones. (2) The author considers a model of spin4 and spin2 interaction through the Bel-Robinson tensor of spin2 field, which in conserved at free level. The coupling is inconsistent, yet there are indications that adding still higher spin couplings would be a promising direction to achieve consistency. (3) Energy and Stability of Einstein-Gauss-Bonnet models of gravity are studied. It is shown that flat space is stable while AdS is not. (4) Gauged Wess-Zumino-Witten models are studied in detail. The equivalence to GKO construction of conformal field theory is considered. BRST quantization of the models is given. (5) Nonrenormalizability of quantum gravity is, in the binomial first order metric formulation, traced to a mismatch between the symmetries of its quadratic and cubic term. (6) The possibility that the gravitational model defined in D = 3 by an action which is the sum of Einstein and Chern-Simons terms is a viable quantum theory is investigated. It is shown that it is compatible with power-counting renormalizability. Gauge invariant regularizations, however, have not been found to exist. Detailed BRS analysis shows that there are possible anomalies
Primary Subject
Secondary Subject
Source
1990; 85 p; Brandeis Univ; Waltham, MA (USA); University Microfilms, PO Box 1764, Ann Arbor, MI 48106, Order No.90-17,979; Thesis (Ph. D.).
Record Type
Miscellaneous
Literature Type
Thesis/Dissertation
Country of publication
Descriptors (DEI)
Descriptors (DEC)
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue