Charged state distributions of swift heavy ions behind various solid targets (36 ≤ Zp ≤ 92, 18 MeV/u ≤ E ≤ 44 MeV/u)
AbstractAbstract
[en] Noting the lack of and the increasing need for information concerning heavy ion stripping in the intermediate velocity regime, the authors have studied a large number of ion-target systems experimentally. They present experimental charge state distributions obtained at the GANIL accelerator for several projectiles (36 ≤ Zp ≤ 92) with energies ranging from 18 MeV/u to 44 MeV/u, emerging from various target foils (4 ≤ Zt ≤ 79) of natural isotopic composition. The target thicknesses (from 1 microg/cm2 up to several mg/cm2) are chosen to cover the pre- and post-charge-state equilibrium regimes. Charge state fractions, mean charge state, charge distribution width, and emerging ion energy are tabulated for each of the 107 projectile-target element-target thickness combinations. They also present an improvement of the semi-empirical formulae proposed by Baron et al. to predict the mean charge states and the distribution widths at equilibrium. These formulae are compared with the available experimental data
Primary Subject
Record Type
Journal Article
Literature Type
Numerical Data
Journal
Country of publication
Descriptors (DEI)
Descriptors (DEC)
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue