Conceptual designs for very high-temperature CANDU reactors
AbstractAbstract
[en] Although its environmental benefits are demonstrable, nuclear power must be economically competitive with other energy sources to ensure it retains, or increases, its share of the changing and emerging energy markets of the next decades. In recognition of this, AECL is studying advanced reactor concepts with the goal of significant reductions in capital cost through increased thermodynamic efficiency and plant simplification. The program, generically called CANDU-X, examines concepts for the future, but builds on the success of the current CANDU designs by keeping the same fundamental design characteristics: excellent neutron economy for maximum flexibility in fuel cycle; an efficient heavy-water moderator that provides a passive heat sink under upset conditions; and, horizontal fuel channels that enable on-line refueling for optimum fuel utilization and power profiles. Retaining the same design fundamentals takes maximum advantage of the existing experience base, and allows technological and design improvements developed for CANDU-X to be incorporated into more evolutionary CANDU plants in the short to medium term. Three conceptual designs have been developed that use supercritical water (SCW) as a coolant. The increased coolant temperature results in the thermodynamic efficiency of each CANDU-X concept being significantly higher than conventional nuclear plants. The first concept, CANDU-X Mark 1, is a logical extension of the current CANDU design to higher operating temperatures. To take maximum advantage of the high heat capacity of water at the pseudo-critical temperature, water at nominally 25 MPa enters the core at 310oC, and exits at ∼410oC. The high specific heat also leads to high heat transfer coefficients between the fuel cladding and the coolant. As a result, Zr-alloys can be used as cladding, thereby retaining relatively high neutron economy. The second concept, CANDU-X NC, is aimed at markets that require smaller simpler distributed power plants (∼300 - 500 MWe). The steam cycle and coolant conditions are proposed to be the same as CANDU-X Mark I. The major difference between the reactors is that natural convection would be used to circulate the primary coolant around the heat transport system. This approach enhances cycle efficiency and safety, and is viable for reactors operating near the critical point of water because of the large increases in heat capacity and thermal expansion coefficient across the core. The third concept, CANDUal-X, is a dual cycle concept, with core conditions similar to the Mark 1 and NC. In this concept, coolant leaving the core is first expanded through a VHP turbine in a direct cycle. Employing a dual steam cycle avoids a high-pressure steam generator. The conditions of the core and the VHP expansion can be designed such that the exhaust from the turbine is used as the heat source for an indirect cycle; that is, the secondary side can be equivalent to that presently employed in conventional CANDU plants. An advantage of this concept over conventional direct cycle nuclear plants is that only one relatively small turbine is exposed to radioactive coolant, and it is located within containment. In summary, the reactors described above represent concepts that evolve logically from the current CANDU designs to higher efficiency, with only modest extensions of current technology. This paper presents a technical overview of the different conceptual designs, as well as a brief discussion of the enabling technologies that are common to each, which is the focus of current R and D. (author)
Primary Subject
Source
Canadian Nuclear Society, Toronto, Ontario (Canada); 49.1 Megabytes; ISBN 0-919784-66-6; ; 2000; [14 p.]; Proceedings of the Canadian Nuclear Society 21st annual conference; Toronto, Ontario (Canada); 11-14 Jun 2000; Available on Compact Disc from the Canadian Nuclear Society, Toronto, Ontario (Canada); 17 refs., 1 tab., 4 figs.
Record Type
Miscellaneous
Literature Type
Conference
Country of publication
Descriptors (DEI)
Descriptors (DEC)
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue