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Abstract

The combination technique has repeatedly been shown to be an effec-
tive tool for the approximation with sparse grid spaces. Little is known
about the reasons of this effectiveness and in some cases the combination
technique can even break down. It is known, however, that the combina-
tion technique produces an exact result in the case of a projection into a
sparse grid space if the involved partial projections commute.

The performance of the combination technique is analysed using a pro-
jection framework and the C/S decomposition. Error bounds are given
in terms of angles between the spanning subspaces or the projections
onto these subspaces. Based on this analysis modified combination coef-
ficients are derived which are optimal in a certain sense and which can
substantially extend the applicability and performance of the combination
technique.

1 Introduction

Standard finite element approaches for applications with more than four vari-
ables suffer under the curse of dimensionality, their numerical solution is in-
feasible on the computational equipment available nowadays. Zenger [28] has
introduced sparse grid approximations into finite elements which substantially
reduce the computational complexity at a moderate cost to the accuracy allow-
ing the numerical treatment of problems with ten variables and more. Note that
the approximation theory for sparse grids requires slightly stronger smoothness
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conditions in comparison to ordinary finite elements, in particular, so called
mixed Sobolev norms are used instead of the standard Sobolev norms. The
underlying idea of a constrained tensor product decomposition has been first
suggested by Smolyak [25] for numerical integration. The ansatz closely relates
to anova decompositions [26] used in statistics. In fact, sparse grids have been
used for regression problems as well [11, 12, 20]. Note that dimension adaptive
sparse grid techniques, which adapt to the particular smoothness of the solution
in different dimensions, were introduced in [15, 19].

The elements of the sparse grid space can be represented in a hierarchical
basis [27] and many algorithms for hierarchical basis methods including wavelets
can be used for the solution [5, 20]. Compared to the commonly used nodal
basis, a hierarchical basis of, e.g. multilinear functions has its disadvantages, as
the corresponding matrices have reduced sparsity and a less regular structure.
This is due to the fact that the supports of the lower level basis functions are
large and intersect nontrivially with many higher level basis functions. These
difficulties increase with dimension.

An efficient way to avoid the problem of reduced sparsity is given by the com-
bination technique which is mentioned in the original paper by Smolyak [25].
Its introduction in a modern computational framework was given in [18]. Ba-
sically, the combination technique uses the fact that sparse grid spaces can be
seen as the sum of ordinary finite element spaces. The variational problems
can be solved for each of the component spaces independently and the solu-
tion in the sparse grid space is then approximated by a linear combination of
these partial solutions. For elliptic model problems this approach does intro-
duce an additional error which, however, is of the same order as the sparse grid
approximation error [4, 17]. If certain error expansions for the component ap-
proximations exist one can show that the combination technique achieves the
same approximation properties as sparse grids due to the cancellation of some
higher order error terms [4], an effect which is well known from extrapolation
techniques. Further advantages of the combination technique include the in-
herent parallelism and the possibility to utilise the structure, and indeed, even
software for standard finite element approximations.

Many computational problems, including Galerkin finite element methods
for elliptic partial differential equations, can be viewed as projections into finite
dimensional spaces with respect to a suitably chosen scalar product. The com-
bination technique does provide the exact sparse grid solution when the partial
projection operators commute. This is the case for interpolation with tensor
product spaces [18], but for example is not the case for the Poisson problem or
for regression. As mentioned, for the Poisson problem the combination tech-
nique nevertheless does provide a very good approximation [4]. However, the
approximation can be poor for some large scale regression problems, in partic-
ular when strongly correlated features are used – which is not uncommon for
data mining applications. One of the authors has thus introduced a variant of
the combination technique in [21] where the combination coefficients are chosen
adaptively to improve performance.

In the following we look at tools to analyse approximation problems in terms
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of partial projections and their commutators. In the general setting we are given
a function u and wish to find Pu, where P : H → V is the orthogonal projection
from the (usually infinite dimensional) space H onto our constructed solution
space V . We do not know P directly, but have subspaces V1, V2, . . . , Vm which
together make up V , i.e. V = V1 +V2 + · · ·+Vm. We wish to approximate P via
a linear combination of the (known or easily computable) orthogonal projections
PVi : H → Vi onto each of the Vi. Thus we seek combination coefficients ci such
that

m∑
i=1

ciPVi
u ≈ Pu. (1)

Several (new) variants of the combination technique will be explored.
In section 2, we consider the case of two spaces (and possibly their intersec-

tion). Conditions for when combinations of projections form again a projection
are shown, errors for a general combination technique are derived and combina-
tion techniques based on worst case and average case analysis are given. These
methods are also combined with a multiplicative approximation. The optimal
combination technique (”opticom”) is introduced and the error is compared with
the error of the classical combination technique. Finally we show some numer-
ical experiments. In section 3, the case of n partial spaces is examined. It is
shown how the (classical) combination coefficients can be derived from the “in-
clusion/exclusion” principle from combinatorics. The requirements for this to
hold is that the partial spaces need to form a distributed lattice of vector spaces
and, furthermore, the projections onto the elements of this lattice should be
additive functions on this lattice. If the projections onto the subspaces do com-
mute these properties are automatically fulfilled. For this case the combination
coefficients are defined recursively using the Hasse diagram of the lattice. Two
types of new “generalised” combination coefficients are introduced, one which
provides a best approximation “on average”, i.e. with respect to the Frobenius
norm. A second type selects the combination coefficients adaptively so that an
optimal combination approximation is obtained. The corresponding method is
the “opticom” method. Again we provide some numerical examples. Section
3 concludes with a discussion of both the worst case error bound and an error
bound which depends on the vector which is projected. In particular, several
combination techniques (including opticom and the classical one) are compared.
The final section 4 puts this work in the broader context of high dimensional
approximation and shows possible future research projects.

2 Combination techniques for two spaces

In this section the problem of approximating the orthogonal projection into the
sum V = V1+V2 of two closed subspaces Vi ⊂ H of a Hilbert space is considered.
The approximations are either additive, where

T a = c1PV1 + c2PV2 + c12PV1∩V2

3



or multiplicative, where

Tmc = c1PV1 + c2PV2 + c12PV1PV2 .

The following result is based on [1, 2] and shows when an additive combina-
tion technique T a can be a projection into V .

Theorem 1. Let V1, V2 ⊂ V , V1 6= V2, and V12 := V1 ∩ V2 6= 0 with orthogonal
projections PV1 , PV2 , and PV12 , respectively. P := c1PV1 + c2PV2 + c12PV12 with
(c1, c2, c12) 6= (0, 0, 0) is idempotent if and only if

PV1PV2 = PV2PV1 = PV12 , c1 = c2 = 1 and c12 ∈ {−1,−2}.

Proof.

(i) Idempotency of P is equivalent to

c1(1−c1)PV1+c2(1−c2)PV2+c12(1−c12−2c1−2c2)PV12 = c1c2(PV1PV2+PV2PV1)
(2)

and it follows from PV1PV2 = PV2PV1 = PV12 , c1 = c2 = 1 and c12 = −1 or
c12 = −2 that P is idempotent.

(ii) We now multiply (2) with PV12 to get(
(c1 + c2 + c12)− (c1 + c2 + c12)2

)
PV12 = 0

and as PV12 6= 0 one derives c1 + c2 + c12 = 1 or c1 + c2 + c12 = 0 as
necessary conditions for idempotency.

Multiply (2) with PV1 and substitute c12 = 1−(c1+c2) or c12 = −(c1+c2):

c1(1−c1)PV1+c2(1−c2)PV1PV2−(c1+c2)(1−(c1+c2))PV12 = c1c2(PV1PV2+PV1PV2PV1)

and subtract the transpose of this expression to get

c2(1− c1 − c2)(PV1PV2 − PV2PV1) = 0.

If PV1PV2 6= PV2PV1 we have c1 + c2 = 1 and, as c12 6= 0, get c12 = −1.
Inserting this into (2) gives c1(1− c1)(PV1 − PV2)

2 = 0 and so c1 = 1, and
therefore c2 = 0, or PV1 = PV2 , both cases are excluded. Thus PV1PV2 =
PV2PV1 = PV12 and from (2) one gets

c1(1− c1)PV1 + c2(1− c2)PV2 − (c1 + c2 − c2
1 − c2

2)PV12 = 0

or
c1(1− c1)(PV1 − PV12) + c2(1− c2)(PV2 − PV12) = 0

from which it follows that c1 = 1 and c2 = 1.

The next subsection provides some background, in particular the C/S de-
composition and the second subsection introduces several approximations and
provides some error bounds.
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2.1 Angles, commutators and the CS decomposition

We will characterise the error of an approximation to PV in terms of geometric
quantities relating the two spaces V1 and V2. Let us introduce the concept of the
angle α(V1, V2) ∈ [0, π/2] between two closed subspaces of a Hilbert space H.
According to [9] the cosine of the angle between two spaces cos(α(V1, V2)) :=
c(V1, V2) is defined as

c(V1, V2) := sup
{
(f1, f2) | fi ∈ Vi ∩ (V1 ∩ V2)⊥, ‖fi‖ ≤ 1, i = 1, 2

}
.

It follows directly that c(V1, V2) = c(V1∩ (V1∩V2)⊥, V2∩ (V1∩V2)⊥). The angle
is (essentially) defined for (sub)spaces with intersection 0 and is not changed by
adding any orthogonal intersection, i.e. one has c(V1 + V3, V2 + V3) = c(V1, V2)
if V3 ⊥ (V1 + V2). In the case of two one dimensional spaces Vi = 〈vi〉 one
has c(V1, V2) = (v1, v2)/(‖v1‖‖v2‖), i.e. the ordinary angle. For any two spaces
with a null intersection the angle is the minimal angle between any two vectors
v1 ∈ V1 and v2 ∈ V2. In particular, if two spaces are orthogonal, their angle is
π/2 and c(V1, V2) = 0.

The angle can be characterised in terms of the orthogonal projections PVi

into the closed subspaces Vi and the corresponding operator norm, it holds [7]

c(V1, V2) = ‖PV1PV2P(V1∩V2)⊥‖. (3)

For two commuting operators PVi , i.e.

PV1PV2 = PV2PV1 = PV1∩V2

we immediately observe that c(V1, V2) = 0 and so α(V1, V2) = π/2. In particular,
this is the case where two spaces are orthogonal to each other. Note that one
also gets an angle of π/2 for V1 ⊂ V2 (which is different from what one might
expect by intuition).

We now use the following result, see, e.g. [3, 16]:

Lemma 1 (C/S decomposition). Let H be a finite dimensional space and PVi

be the orthogonal projection into the subspace Vi ⊂ H, i = 1, 2. Then there exists
an orthogonal basis of H with respect to which the matrices of the projections
are of the form

PV1 =


I

0
I

I
0

0

 , PV2 =


C2 CS
CS S2

I
0

I
0

 ,

where C,S are positive diagonal real matrices such that C2 +S2 = I, the symbol
I denotes identity matrices of various sizes and the corresponding blocks in the
two projection matrices are of the same size.
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With Lemma 1 we get a particular representation for the following related
projections:

PV1∩V2 =


0

0
I

0
0

0

 , PV1+V2 =


I

I
I

I
I

0

 ,

as well as

PV ⊥
1

= I−PV1 =


0

I
0

0
I

I

 , PV ⊥
2

= I−PV2 =


S2 CS
CS C2

0
I

0
I


and finally, for the product PV1PV2 and the commutator [PV1 , PV2 ] := PV1PV2 −
PV2PV1 we have:

PV1PV2 =


C2 CS
0 0

I
0

0
0

 , [PV1 , PV2 ] =


0 CS

−CS 0
0

0
0

0

 .

Note that the C/S decomposition has a geometric interpretation. Let γi

and σi denote the i-th (diagonal) elements of C and S, respectively. It follows
that γ2

i + σ2
i = 1. As the γi and σi are positive and less than one, there are

αi ∈ (0, π/2) such that γi = cos(αi) and σi = sin(αi). One can rearrange the
leading two by two block matrices of PV1 and PV2 in the C/S decomposition
into a block diagonal matrix with two by two blocks of the form[

1 0
0 0

]
=

[
1
0

] [
1 0

]
and

[
γ2

i γiσi

γiσi σ2
i

]
=

[
γi

σi

] [
γi σi

]
, (4)

respectively. These are just the projections onto the first coordinate axis and
onto the line with direction vector γie1 +σie2. The space V2, which is the range
of PV2 , thus consists of the direct sum of one dimensional spaces which are at
an angle of αi to their corresponding subspaces of V1, and the spaces V1 ∩ V2

and V ⊥
1 ∩ V2.

From the C/S decomposition and the characterisation of the angle in terms
of the projections (3) one gets

c(V1, V2) = ‖PV1PV2P(V1∩V2)⊥‖ =
∥∥∥∥[

C2 CS
0 0

]∥∥∥∥ = ‖C‖ = max
i

γi.
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Thus the angle between two spaces is exactly the minimum of the angles be-
tween any two corresponding (according to equation 4) one-dimensional spaces
in the C/S decomposition of their projections PVi

.
The commutator [PV1 , PV2 ] sets all components outside of the first two blocks

in the C/S decomposition to zero, rotates the components corresponding to
the first blocks each by π/2 and then dilates the components with γiσi. The
(spectral) norm of the commutator is

‖[PV1 , PV2 ]‖ =
∥∥∥∥[

0 CS
−CS 0

]∥∥∥∥ = ‖CS‖ = max
i

γiσi.

It follows directly from 0 < σi < 1 that

‖[PV1 , PV2 ]‖ < c(V1, V2).

Conversely, as γi = c(V1, V2) for some i one gets the bound

c(V1, V2)
√

1− c(V1, V2)2 ≤ ‖[PV1 , PV2 ]‖.

If c(V1, V2) ≤ 1/
√

2 the left hand side is monotone and in this case one gets a
bound for the cosine of the angle in terms of the commutator as

c(V1, V2) ≤
1−

√
1− 4‖[PV1 , PV2 ]‖2

2
.

In summary, for the case of commuting projections, the C and S do not occur
in the C/S decomposition, the commutator is zero and the cosine of the angle
between the two spaces is c(V1, V2) = 0. If the angle between the two spaces is
larger than arccos(1/

√
2) = π/4 then one gets a lower bound for the angle (or

and upper bound for the cosine) in terms of the norm of the commutator.
When the projections commute, the product of the projections is equal to

the projection onto the intersection. More generally, the C/S decomposition
provides a bound for how well the product approximates the projection onto
the intersection by

‖PV1PV2 − PV1∩V2‖ =
∥∥∥∥[

C2 CS
0 0

]∥∥∥∥ = ‖C‖ = c(V1, V2). (5)

Of course, this also follows directly from c(V1, V2) = ‖PV1PV2P(V1∩V2)⊥‖ as
PV1PV2P(V1∩V2)⊥ = PV1PV2(I − PV1∩V2) = PV1PV2 − PV1∩V2 .

Corresponding to the C/S decomposition we now introduce for any vector
u ∈ H a partitioning by

u =


u1

u2

u3

u4

u5

u6


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and observe

‖u‖2 = ‖u1‖2 + ‖u2‖2 + ‖u3‖2 + ‖u4‖2 + ‖u5‖2 + ‖u6‖2.

The norms of the projections PVi
are

‖PV1u‖2 = ‖u1‖2 + ‖u3‖2 + ‖u4‖2, ‖PV2u‖2 = ‖Cu1 + Su2‖2 + ‖u3‖2 + ‖u5‖2,

and the scalar product between the projections is

(PV1u, PV2u) = (u1, C
2u1 + CSu2) + ‖u3‖2 = (Cu1, Cu1 + Su2) + ‖u3‖2.

It follows that

|(PV1u, PV2u)| ≤ ‖Cu1‖‖Cu1 + Su2‖+ ‖u3‖2

≤ c(V1, V2)
√
‖PV1u‖2 − ‖u3‖2 − ‖u4‖2

√
‖PV2u‖2 − ‖u3‖2 − ‖u5‖2 + ‖u3‖2.

2.2 “Two space” combination approximations

We now apply the observations from the previous subsection to get bounds on
the errors of several approximations. Using the C/S decomposition one gets

‖PV1+PV2−PV1PV2−PV1+V2‖ =
∥∥∥∥[

0 0
CS S2 − I

]∥∥∥∥ =
∥∥∥∥[

0 0
CS −C2

]∥∥∥∥ = c(V1, V2).

This is the error of the simplest multiplicative combination approximation.
If we apply the triangular inequality and the equation (5) from the previous

subsection we get ‖PV1 + PV2 − PV1∩V2 − PV1+V2‖ ≤ 2c(V1, V2) as a bound for
the ordinary combination approximation. However, by direct application of the
C/S decomposition one gets

‖PV1 + PV2 − PV1∩V2 − PV1+V2‖ =
∥∥∥∥[

C2 CS
CS −C2

]∥∥∥∥ = c(V1, V2).

Thus the (worst case) error of the combination approximation is the cosine of
the angle between the two spaces, giving good results if the two spaces are
fairly close to orthogonal. Interestingly, the multiplicative approximation does
not appear to have any advantage over the additive version, in contrast to
many practical cases where the multiplicative approximation is observed to yield
better approximations. However, this is due to the fact that the worst case error
was considered. Nevertheless, the results above do indicate that the additive
combination approximation is competitive, in particular, it is better than the
simple additive (Jacobi) approximation PV1 +PV2 for which the worst case error
is ‖PV1 + PV2 − PV1+V2‖ = 1 even in the case of commuting projections, unless
the two spaces V1 and V2 are orthogonal.

The combination approximation

T c := PV1 + PV2 − PV1∩V2

is exact (i.e. T c = PV1+V2 in this case) if the spaces V1 ∩ (V1 ∩ V2)⊥ and
V2 ∩ (V1 ∩V2)⊥ are orthogonal. It turns out, that this approximation is also the
best approximation in terms of the operator norm and one has

8



Proposition 1. For any additive combination approximation T a = c1PV1 +
c2PV2 + c12PV1∩V2 one has

c(V1, V2) ≤ ‖T a − PV1+V2‖.

Moreover, if c1 = c2 = 1 and c12 = −1 one has

‖T c − PV1+V2‖ = c(V1, V2).

Proof. Observe that the error on the intersection V1 ∩ V2 is |c1 + c2 + c12 − 1|
and, as T a − PV1+V2 = PV1∩V2(T

a − PV1+V2) + P⊥
V1∩V2

(T a − PV1+V2) one has

‖T a−PV1+V2‖ = max{|c1 + c2 + c12−1|, ‖(c1PV1 + c2PV2 −PV1+V2)P(V1∩V2)⊥‖}.

It follows that the error is not increased if one replaces c12 with 1 − c1 − c2.
Thus while there might be optimal methods for which c12 6= 1 − c1 − c2 by
replacing the c12 one gets another optimal method. Consider in the following
only methods for which c12 = 1− c1 − c2.

The C/S decomposition provides orthogonal decompositions V1 = U1 ⊕ U2

and V2 = U1 ⊕ U3 where U2 = V1 ∩ V ⊥
2 and U3 = V2 ∩ V ⊥

1 . The errors on U2

and U3 are (if these spaces are not null spaces) |c1−1| and |c2−1|, respectively.
Denote the error on U1 by g(c1, c2) and it follows that

g(c1, c2) ≤ ‖T a − PV1+V2‖ ≤ max{g(c1, c2), |c1 − 1|, |c2 − 1|}.

Note that in the case of c1 = c2 = 1 one has ‖T c−PV1+V2‖ = g(1, 1) = c(V1, V2).
In terms of the notation of the C/S decomposition one has

g(c1, c2) =
∥∥∥∥[

c1I + c2C
2 − I c2CS

c2CS c2S
2 − I

]∥∥∥∥ .

By applying a reverse odd-even permutation (4) to the matrix inside this norm
we get a block diagonal matrix with blocks[

c1 + c2γ
2
i − 1 c2γiσi

c2γiσi c2σ
2
i − 1

]
.

With ξ1 = (c1 + c2)/2− 1 and ξ2 = (c1 − c2)/2 the norms of the blocks can be
seen to be

|ξ1|+
√

γ2
i (ξ1 + 1)2 + σ2

i ξ2
2

and it follows that

g(c1, c2) = |ξ1|+ max
i

√
γ2

i (ξ1 + 1)2 + σ2
i ξ2

2

which is a monotonically increasing function of |ξ2| and one gets

g(c1, c2) ≥ |ξ1|+ c(V1, V2)|ξ1 + 1|

9



and equality holds if c1 = c2. The minimal value of the right hand side is
obtained for ξ1 = 0 and it follows that

c(V1, V2) ≤ ‖T a − PV1+V2‖.

Note that the case ξ1 = 0 corresponds to the classical combination technique
for which it had been demonstrated earlier that the error is equal to c(V1, V2).
It follows thus that the ”classical combination approximation” is optimal in the
worst case sense.

This suggests that maybe the worst case error analysis is not realistic. An
alternative, corresponding to an average case scenario, is provided by the Frobe-
nius norm, which we recall is defined for a matrix A as

‖A‖F =
√

tr(AAT ) =
√∑

i,j

a2
ij , (6)

where tr(A) represents the trace, or sum of the diagonal elements, of A. From
the C/S decomposition we get

‖PV1 + PV2 − PV1∩V2 − PV1+V2‖2F = 2
n∑

i=1

γ2
i (7)

if n is the size of the blocks C and S. For the multiplicative approximation one
gets half the error as

‖PV1 + PV2 − PV1PV2 − PV1+V2‖2F =
n∑

i=1

γ2
i .

For a general additive combination approximation it holds

‖T a−PV1+V2‖2F = 2c1c2Γ(V1, V2)+(c1−1)2n1+(c2−1)2n2+(c1+c2+c12−1)2n12,

where ni is the dimension of Vi ∩ (V1 ∩ V2)⊥, i = 1, 2, n12 is the dimension of
the intersection V1 ∩ V2 and

Γ(V1, V2) =
n∑

i=1

γ2
i = tr(PV1PV2)− n12.

Note that ni is not the size of the ui in the C/S decomposition lemma, but
rather the difference of the dimension of Vi and the dimension of (V1 ∩ V2). It
follows that the best approximation with respect to the Frobenius norm must
satisfy c12 = 1− c1 − c2. To determine c1 and c2 one now needs to minimise a
quadratic function

J(c1, c2) = n1(c1 − 1)2 + n2(c2 − 1)2 + 2Γc1c2
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Figure 1: Examples for the dependence of the coefficients c1, c2, and c12 and the
errors on Γ for n1 = 50 and n2 = 40.

where Γ = Γ(V1, V2). The normal equations for this minimisation problem are[
n1 Γ
Γ n2

] [
c1

c2

]
=

[
n1

n2

]
.

The solution is therefore

c1 = n2
n1 − Γ

n1n2 − Γ2
, c2 = n1

n2 − Γ
n1n2 − Γ2

,

and the minimum of the quadratic function J , i.e. the error of the approxima-
tion, is

‖T (a) − PV1+V2‖2F = minJ(c1, c2) = Γ
2n1n2 − (n1 + n2)Γ

n1n2 − Γ2
.

Since 2n1n2− (n1 +n2)Γ ≤ 2(n1n2−Γ2) this error is always smaller or equal to
the error of the ordinary combination technique (7), it is equal only in the limit
of n = Γ for the special case n1 = n2 = n. Asymptotically with Γ → 0 this gives
the same error as the ordinary combination approximation as the spaces V1 and
V2 get more and more orthogonal until we get the coefficients c1 = c2 = 1 and
recover the ordinary combination technique for the case Γ = 0. In Figure 1(a)
we show the dependence of the coefficients ci on Γ, going from the ordinary
combination technique for Γ = 0 to the case of Γ = n. Consider for this case
a u ∈ V2 ∩ V ⊥

1 . As there is no component in V1 the value of c1 will not have
any influence and only combination coefficient c2 is affecting the approximation.

11



However, since for a Γ close enough to n < n2 one gets c2 < 0.5 the combination
technique results in a dilation by a factor < 0.5 so that the error is over 50% in
any vector space norm. For the special case n1 ≥ n2 = n it follows from Γ → n
that V2 is more and more included in V1 and for Γ = n we recover the case
V2 ⊂ V1.

Figure 1(b) shows the dependence of the error for the ordinary combination
technique, the one with ’optimal’ coefficients in the Frobenius norm, and the
multiplicative method in relation to Γ. We see for Γ → N an increasing error
for the methods and observe that the error of the ’optimal’ (in the average)
method converges to the error of the multiplicative method.

This shows that although we compute coefficients c1, c2, c12 for which the
average case error is minimised it still can be large, especially for functions
u ∈ V2 ∩ V ⊥

1 , n1 > n2.

So far we considered the worst case scenario using the operator norm and
an average case scenario using the Frobenius norm. In the following, consider
an arbitrary, but fixed u ∈ V . One finds that

Proposition 2. Let U1 := V1 ∩ (V1 ∩ V2)⊥, U2 := V2 ∩ (V1 ∩ V2)⊥, γ =
∠(PU1u, PU2u), α1 = ∠(PU1+U2u, PU1u), α2 = ∠(PU1+U2u, PU2u) and

e2(c1, c2, c12) = ‖PV1+V2u− c1PV1u− c2PV2u− c12PV1∩V2u‖2,

e2
o = infc1,c2,c12 e2(c1, c2, c12), and e2

c = e2(1, 1,−1). Then

e2(c1, c2, c12) =
(
xT Ax− 2bT x + 1

)
‖PU1+U2u‖2 +(c1 +c2 +c12−1)2‖PV1∩V2u‖2

where x = (c1 cos α1, c2 cos α2)T , b = (cos α1, cos α2)T and

A =
[

1 cos γ
cos γ 1

]
.

Consequently, one has

e2
c = (1− (cos2 α1 − 2 cos α1 cos α2 cos γ + cos2 α2))‖PU1+U2u‖2

and
e2
c = e2

o + cos2 γ(‖PU1+U2u‖2 − e2
o). (8)

Furthermore, if γ = α1 + α2 the PU1+U2u, PU1u and PU2u are collinear and
in this case one has e2

o = 0 and e2
c = cos2 γ. The minimum is achieved for

c1 + c2 = 1 in the case of γ = 0 and for

c1 =
1− cos γ cos α2/ cos α1

sin2 γ
, c2 =

1− cos γ cos α1/ cos α2

sin2 γ

when γ > 0.

12



Proof. As the Ui are orthogonal to V1 ∩ V2 one has

e2(c1, c2, c12) =‖PU1+U2u− c1PU1u− c2PU2u− c12PU1∩U2u‖2

+ (c1 + c2 + c12 − 1)2‖PV1∩V2u‖2.
(9)

As ‖PUi
u‖ = cos αi‖PU1+U2u‖ and (PU1u, PU2u) = cos γ‖PU1u‖‖PU2u‖ one

gets

‖PU1+U2u−c1PU1u−c2PU2u−c12PU1∩U2u‖2 =
(
xT Ax− 2bT x + 1

)
‖PU1+U2u‖2.

By inserting this relation and c1 = c2 = −c12 = 1 into (9) one directly gets the
formula for e2

c .
For the least error we consider the tripod defined by PU1u, PU2u and PU1+U2u.

The triangle inequality on the sphere gives γ ≤ α1 + α2 and the three corners
of the tripod are in the same plane if γ = α1 +α2. Consider now the latter case
for γ = 0, therefore we also have α1 = α2 = 0 and so x = (c1, c2)T , b = (1, 1)T

and the error (9) reduces here to

e2(c1, c2, c12) = (c1 + c2 − 1)2‖PU1+U2u‖2 + (c1 + c2 + c12 − 1)2‖PV1∩V2u‖2.

It follows that in this case e2
c = ‖PU1+U2u‖2 and e2

o = 0 and the minimal error
is achieved when c1 + c2 = 1.

If 0 < γ then the matrix A is nonsingular and the minimum of xT Ax −
2bT x + 1 is 1− bT A−1b which is achieved for x = A−1b. Substituting the values
for A and b one then gets

e2
o =

(
1− cos2 α1 − 2 cos α1 cos α2 cos γ + cos2 α2

sin2 γ

)
‖PU1+U2u‖2

and it follows directly that e2
c = cos2 γ‖PU1+U2u‖2 + e2

o sin2 γ from which one
gets the claimed relation between ec and eo. Since x = A−1b the minimum is
achieved for

c1 =
1− cos γ cos α2/ cos α1

sin2 γ
, c2 =

1− cos γ cos α1/ cos α2

sin2 γ
.

The optimal choice of the combination coefficients can thus provide substan-
tial improvements over the traditional choice for small angles γ. Note that one
gets a zero error whenever the three projections PU1u, PU2u and PU1+U2u are
collinear and the commutation property, while sufficient to guarantee this, is
not necessary. Observe as well that the difference between the two methods is
small when γ ≈ π/2.

2.3 Numerical Experiments

We now consider an application from machine learning where we look at the
problem of reconstructing a function from some sample evaluations.
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Starting from a data set (x, yi)M
i=1, x ∈ [0, 1]d, yi ∈ R we assume that a

function f̂ describes the relationship between x and y, i.e. f̂(x) ≈ y. The goal
is now to reconstruct this function out of a function space V based on the given
training data to allow predictions of f̂(z) on new data points z. To achieve
a well-posed problem we employ Tikhonov-regularisation which results in the
following variational problem

R(f) −→
f∈V

min !

with

R(f) =
1
M

M∑
i=1

(f(xi)− yi)2 + λ‖∇f‖2. (10)

The first term enforces closeness of the function f to the data, the second term
results in a certain smoothness of f , and the regularisation parameter λ balances
these two terms. The solution f of this variational problem can be viewed as
the projection of f̂ into the space V, i.e. f = PV f̂ .

We approximate this variational problem through the use of grids Ωl with
mesh size hi := 2−li in dimensions i and employ piecewise linear so called hat
functions

φl,j(x) :=
d∏

t=1

φlt,jt
(xt)

on each grid Ωl, where the one-dimensional basis functions φl,j(x) are defined
as the so-called hat functions

φl,j(x) =
{

1− | x
hl
− j|, x ∈ [(j − 1)hl, (j + 1)hl]

0, otherwise.

The angle between two spaces is now computed with (3)

c(V1, V2) = ‖PV1PV2P(V1∩V2)⊥‖ = ‖PV1PV2−PV1∩V2‖ = sup
g

‖PV1PV2g − PV1∩V2g‖
‖PV2g‖

We apply a Monte-Carlo-approach in the following way: for fixed data positions
xi we take random function values to describe a function g on these and compute
the expression γg := ‖PV1PV2g−PV1∩V2g‖

‖PV2g‖ . If we repeat this a large number of
times the maximum over all γg gives an estimation for the cosine c of the angle
between the spaces Vi.

For simplicity we only consider examples in two dimensions. We give the
cosines of the angle between the two spaces (grids) Ωi,0 and Ω0,i and the corre-
sponding angle, furthermore also the mean over all γg with the corresponding
angle to give an average type result.

We use four data points in four different configurations, a) on the corners of
the hypercube [0, 1]2, b) on the corners of the hypercube [0.25, 0.75]2, c) four
random (but fixed) points in [0, 1]2, and d) the points [0.2∗i, 0.2∗i], i = 1, . . . , 4.
The measured results are given in Tables 1 to 4, respectively.
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level λ c(Ωi,0,Ω0,i) acos(c) mean(γg) acos(mean)
1 1.0 2.5305 · 10−13 90 6.1478 · 10−15 90
1 0.01 1.4213 · 10−10 90 1.3251 · 10−14 90
1 0.0001 7.8201 · 10−10 90 5.7113 · 10−11 90
2 1.0 3.9943 · 10−3 89.7 1.1038 · 10−3 89.9
2 0.01 3.8734 · 10−5 89.998 1.1930 · 10−5 89.9993
2 0.0001 4.0470 · 10−8 90 1.2498 · 10−8 90
3 1.0 5.9229 · 10−3 89.661 1.6467 · 10−3 89.9057
3 0.01 5.6652 · 10−5 89.997 1.7488 · 10−5 89.999
3 0.0001 5.9168 · 10−8 90 1.8310 · 10−8 90
4 1.0 6.4531 · 10−3 89.630 1.7857 · 10−3 89.8977
4 0.01 6.1508 · 10−5 89.997 1.8889 · 10−5 89.9989
4 0.0001 6.4229 · 10−8 90 1.9787 · 10−8 90
5 1.0 6.6729 · 10−3 89.618 1.8456 · 10−3 89.8943
5 0.01 6.3201 · 10−5 89.996 1.9483 · 10−5 89.9989
5 0.0001 6.5993 · 10−8 90 2.0399 · 10−8 90

Table 1: Four data points on the corners of the hypercube [0, 1]2.

In case a) the data points are grid points of the involved grids, so for λ = 0 the
problem reduces to an interpolation problem. We see that the spaces Ωi,0,Ω0,i

are all close to orthogonal and with λ → 0 the deviation gets smaller. Here only
the regularisation operator ∇ causes the (small) non-orthogonality.

The situation is different for the points [0.25, 0.75]2 in case b), the (still
small) deviation gets larger with λ → 0. Now the data points are the main
cause of non-orthogonality, the regularisation with ∇ reduces this effect.

The random position of the points in case c) result in a significantly different
situation. For small λ we get a deviation of almost 45◦ for level 4, while for λ = 1
the regularisation operator dominates and allows only a small non-orthogonality.
Note that for the average case we still have a deviation of 20◦ starting with level

level λ c(Ωi,0,Ω0,i) acos(c) mean(γg) acos(mean)
1 1.0 4.2393 · 10−13 90 1.4388 · 10−14 90
1 0.0001 4.9508 · 10−10 90 1.8927 · 10−11 90
2 1.0 6.5475 · 10−3 89.625 2.2535 · 10−3 89.871
2 0.0001 1.6473 · 10−2 89.056 5.8373 · 10−3 89.666
3 1.0 8.1239 · 10−3 89.535 2.7523 · 10−3 89.842
3 0.0001 1.7102 · 10−2 89.020 6.2032 · 10−3 89.645
4 1.0 8.3019 · 10−3 89.524 2.8296 · 10−3 89.838
4 0.0001 1.7227 · 10−2 89.013 6.2177 · 10−3 89.644

Table 2: Four data points on the corners of the hypercube [0.25, 0.75]2.
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level λ c(Ωi,0,Ω0,i) acos(c) mean(γg) acos(mean)
1 1.0 9.8611 · 10−3 89.435 2.0645 · 10−3 89.882
1 0.0001 1.5160 · 10−1 81.280 3.4440 · 10−2 88.026
2 1.0 1.2087 · 10−2 89.308 3.0671 · 10−3 89.824
2 0.0001 6.0629 · 10−1 52.678 1.6507 · 10−1 80.499
3 1.0 1.5288 · 10−2 89.124 3.8938 · 10−3 89.777
3 0.0001 6.7697 · 10−1 47.392 1.8681 · 10−1 79.233
4 1.0 1.5478 · 10−2 89.113 4.1309 · 10−3 89.763
4 0.0001 6.9539 · 10−1 45.942 1.8967 · 10−1 79.067

Table 3: Four random but fixed data points in [0, 1]2.

level λ c(Ωi,0,Ω0,i) acos(c) mean(γg) acos(mean)
1 1.0 9.3628 · 10−4 89.946 2.4777 · 10−4 89.986
1 0.0001 6.5799 · 10−1 48.854 2.0203 · 10−1 78.345
2 1.0 4.6057 · 10−3 89.736 1.3093 · 10−3 89.925
2 0.0001 6.6614 · 10−1 48.230 2.0902 · 10−1 77.935
3 1.0 5.8815 · 10−3 89.663 1.8220 · 10−3 89.896
3 0.0001 6.8919 · 10−1 46.434 2.1725 · 10−1 77.453
4 1.0 7.9936 · 10−3 89.542 2.3429 · 10−3 89.866
4 0.0001 6.9138 · 10−1 46.260 2.1773 · 10−1 77.424

Table 4: Four points [0.2 ∗ i, 0.2 ∗ i], i = 1, . . . , 4.

2. The situation is similar for the points [0.2 ∗ i, 0.2 ∗ i], i = 1, . . . , 4, but note
that here already for level 1 we observe a deviation of more than 40◦ for small
λ.

Now let us consider one particular additive function u = e−x2
+ e−y2

, which
we want to reconstruct based on 5000 random data samples in the domain [0, 1]2.
We use the combination technique and optimized combination technique for the
grids Ωi,0,Ω0,i,Ω0,0. For λ = 10−4 and λ = 10−6 we show in Figure 2 the value
of the functional (10), in Table 5 the corresponding numbers for the residuals
and the angle γ = ∠(PU1u, PU2u) are given. We see that both methods diverge
for higher levels of the employed grids, nevertheless as expected the optimized
combination technique is always better than the normal one. da muss cos(γ)

statt γ stehen)We also show in Figure 2 the results for an optimized combination technique
which involves all intermediate grids, i.e. Ωj,0,Ω0,j for 1 ≤ j < i, as well. The
generalisation of the computation of the coefficients is straightforward and is
described in section 3.4. Here we do not observe rising values of the functional for
higher levels but a saturation, i.e. higher refinement levels do not substantially
change the value of the functional. This effect for grid based approaches for
function reconstruction was already observed in [10] and is due to the fact that
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Figure 2: Value of the functional (10) and the least squares error on the data, i.e.
1
M

∑M
i=1(f(xi)− yi)2, for the reconstruction of e−x2

+ e−y2
for the combination

technique and the optimised combination technique for the grids Ωi,0,Ω0,i,Ω0,0

and the optimised combination technique for the grids Ωj,0,Ω0,j , 0 ≤ j ≤ i with
λ = 10−4 (left) and 10−6 (right).

level γ e2
c e2

o

1 -0.012924 3.353704 · 10−4 3.351200 · 10−4

2 -0.025850 2.124744 · 10−5 2.003528 · 10−5

3 -0.021397 8.209228 · 10−6 7.372946 · 10−6

4 -0.012931 1.451818 · 10−5 1.421387 · 10−5

5 0.003840 2.873697 · 10−5 2.871036 · 10−5

6 0.032299 5.479755 · 10−5 5.293952 · 10−5

7 0.086570 1.058926 · 10−4 9.284347 · 10−5

8 0.168148 1.882191 · 10−4 1.403320 · 10−4

9 0.237710 2.646455 · 10−4 1.706549 · 10−4

10 0.285065 3.209026 · 10−4 1.870678 · 10−4

Table 5: Residual for the normal combination technique e2
c and the optimized

combination technique, as well as the angle γ = ∠(PU1u, PU2u).
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after a certain discretisation level the error term on the data points cannot be
further reduced by grids with a finer discretisation.

3 Multiple spaces

In this section we look at the combination of more than two spaces. In the first
subsection, the most general case of spaces which form an intersection structure
will be considered. It will be seen that if the set of spaces form a distributive
lattice, then additive measures satisfy the inclusion/exclusion principle which is
equivalent to a general combination formula and a first characterisation of the
(classical) combination coefficients by a linear system of equations is provided.
If the projections onto the subspaces commute they are an additive (operator
valued) function of the hierarchical basis and thus the inclusion/exclusion prin-
ciple holds. In the second subsection, a recursion for the combination coefficients
is derived which is based on the Hasse diagram of the lattice of spaces.

For noncommuting operators the mapping which maps the sets of basis vec-
tors of the subspaces onto the projection into that subspace is not additive. The
the inclusion/exclusion principle cannot be applied here. However, even in this
case the combination technique frequently provides a good approximation, this
is in particular known for the finite element solution of the Poisson problem.
On the other hand, the approximation can be poor for machine learning appli-
cations. Thus two alternatives for the combination coefficients are considered
here. First, we present a method which determines an average approximation
using the Frobenius norm of the error of the combination of projections and
second, we consider the “opticom” method in which the “best possible” linear
combination of projections onto the component spaces is selected. This results
in a nonlinear approximation as both the projections onto the component spaces
and the combination coefficients depend on the data. In a final subsection the
error of a general combination technique is discussed and compared with the
“opticom” method.

3.1 The combination formula in the context of partially
ordered sets

Consider any finite collection of closed linear subspaces V1, . . . , Vm of a Hilbert
space H. This collection is a partially ordered set with respect to the subspace
relation ⊂. The collection forms an intersection structure or closure system if
for every two Vi, Vj there is a Vk such that Vk = Vi ∩ Vj . If, as usual, one
introduces the sum of two spaces Vi and Vj to be

Vi + Vj = {vi + vj | vi ∈ Vi, vj ∈ Vj}

one can define the lattice of subspaces generated by the Vi which contains all Vi

but also any sums and intersections of sums. In addition, include (if necessary)
the space V∞ = {0} as the “zero” element of the lattice and V =

∑m
j=1 Vj as the

18



“one”. This lattice is distributive if for any three spaces U, V,W in this lattice
one has the distributive law

U ∩ (V + W ) = U ∩ V + U ∩W.

Note that not every lattice of spaces defined by ∩ and + is distributive. Con-
sider, in particular, the case of the one dimensional spaces U, V,W generated
by the basis vectors (1, 1), (0, 1) and (1, 0), respectively. Note that in this case
one has U ∩ (V + W ) = U but U ∩ V + U ∩W = {0}.

The configurations considered in the following are based on tensor products
and will all lead to distributive lattices of subspaces. It is known that every dis-
tributive lattice is order isomorphic to a lattice of sets, see [6, Theorem 10.21].
The importance of this isomorphy is that for sets the inclusion/exclusion prin-
ciple holds, see, e.g. [1.3.3,p.179][24]. In general this principle takes the form:
For any intersection structure of sets A1, . . . , Am and any (additive) measure µ
on these sets one has

µ(Ak) =
m∑

i=1

ciµ(Aϕ(i,k)),

where for ϕ(i, k) holds Aϕ(i,k) = Ai ∩ Ak. As the mapping of the lattice of
spaces Vi to the lattice of sets Ai is order preserving one has

Vi ∩ Vk = Vϕ(i,k).

From the following discussion it can be seen that the ci are the combination
coefficients and thus this provides a linear system of equations relating the
combination coefficients (which do not depend on the actual measure nor the
specific sets Ak but just on the intersection structure). As the dimensions form
a measure on the sets Ak one observes in particular the relation

dim(Vk) =
m∑

i=1

ci dim(Vk ∩ Vi).

Adding V =
∑m

i=1 Vm to the collection of subspaces one still has an intersection
structure and it follows that

dim(V ) =
m∑

i=1

ci dim(Vi).

Note that the only properties required for this to hold is that the subspaces
form an intersection structure and the lattice generated by these subspaces
is distributive. As dim(Vi) = ‖PVi‖2F for the Frobenius norm ‖ · ‖F of the
orthogonal projections PVi it follows directly that

‖PVk
‖2F =

m∑
i=1

ci‖PVϕ(i,k)‖
2
F
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and

‖PV ‖2F =
m∑

i=1

ci‖PVi
‖2F .

The simplest case of an intersection structure is totally ordered or a chain,
i.e. for any i, j = 1, . . . ,m one has either Vi ⊂ Vj or Vj ⊂ Vi. We assume now
that the Vi are numbered such that Vi ⊂ Vi+1. We introduce difference spaces
as

Wi = Vi+1 	 Vi := Vi+1 ∩ V ⊥
i

and observe the orthogonal decomposition

Vk = V1 ⊕W1 ⊕ · · · ⊕Wk−1, k = 2, . . . ,m.

Let us introduce a basis e1, . . . , eN of Vm such that e1, . . . , eNk
form a basis for

Vk for any k = 1, . . . ,m or, equivalently, such that eNk−1+1, . . . , eNk
forms a

basis of Wk for k = 1, . . . ,m− 1. Such a basis is called a hierarchical basis [27].
In this case the mapping of Vi onto the set of generating basis vectors ei provides
an isomorphy between the lattice Vi and the set of sets Ai.

The most general case considered here is the setting where the spaces Vi

are tensor products of spaces which themselves form chains. More specifically,
let H = H1 ⊗ · · · ⊗ Hd be a tensor product Hilbert space and for every i let
V i

1 , . . . , V i
mi

be a chain of subspaces of Hi. Now let the collection of subspaces
V1, . . . , Vm be such that

Vk = V 1
i1,k

⊗ · · · ⊗ V d
id,k

.

Assume that each V i
j occurs as a tensor product factor in at least one of the

spaces Vk. For each i = 1, . . . , d let ei
1, . . . , e

i
mi

be a hierarchical basis of the
V i

1 , . . . , V i
mi

. Then for each Vk one can form a basis which consists of tensor
products

ei1,...,id
= e1

i1 ⊗ · · · ⊗ ed
id

and so each Vk is uniquely defined by the set Ak of basis vectors ei1,...,id
. From

this it can be shown that the lattice generated by the sets Vi is distributive.
The mapping which associates Vk with Ak provides an alternative isomorphism
between the lattice of subspaces and sets. Furthermore any additive functions
on the basis vectors can be used for the combination formulas above.

In the special situation where the basis vectors ei1,...,id
are orthogonal any

squared norm ‖PVi
u‖2 is additive and one has for this case the formuli

‖PVi
u‖2 =

n∑
i=1

ci‖PVi∩Vk
u‖2, i = 1, . . . ,m

as well as

‖PV u‖2 =
n∑

i=1

ci‖PVi
u‖2.
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The above relations for ci form a linear system of equations which the ci need
to satisfy and they can be used to compute the ci. As the sets or spaces form
an intersection structure the m by m matrix occurring only depends on m
parameters and thus is a structured matrix which is generated by the measures
of the intersections on an intersection structure. It follows that the ci satisfy
the equations 

n1 nϕ(1,2) · · · nϕ(1,m)

nϕ(1,2) n2 · · · nϕ(2,m)

...
...

. . .
...

nϕ(1,m) nϕ(2,m) · · · nm




c1

c2

...
cm

 =


n1

n2

...
nm

 . (11)

Finally, we note that the classical combination formula can be viewed as an
application of the inclusion/exclusion principle applied to the operator valued
mapping defined on a lattice of linear spaces which maps the space Vi onto the
orthogonal projection PVi : H → Vi. This mapping is additive if the operators
PVi commute.

3.2 Construction of the classical combination coefficients

Consider the case of pairwise commuting projectors, i.e, the case where

PViPVj = PVj PVi = PVϕ(i,j) , for all i, j = 1, . . . ,m.

We assume in the following that the numbering of the spaces Vi is consistent
with the partial order, i.e. that if Vi ⊂ Vj then i ≥ j. As the spaces form a
lattice it follows that

m∏
j=1

PVj
= PTm

i=1 Vi
= PVm

as
⋂m

i=1 Vi = Vm.
The partial order on the spaces Vi defines a partial order on the projections

PVi
and we say that PVi

< PVj
if and only if Vi ⊂ Vj . As usual, the Hasse

diagram of the partial order is the directed graph where the vertices are the
PVi and there is an edge between PVi and PVj if PVi < PVj and there is no PVk

such that PVi < PVk
< PVj . Note that the Hasse diagram has no cycles. We

now introduce the level λ(i) of a projection PVi
in the Hasse diagram by setting

λ(m) = 0 and λ(i) = s if the shortest chain PVi0=m
< PVi1

< . . . < PVis−1
<

PVj=is
is such that there are no PVk

with PVit
< Pk < PVit+1

. In other words,
the level is the distance in the Hasse diagram from the joint space Vm to the
space Vi. It follows that if Vi ⊂ Vj one has λ(i) ≤ λ(j).

Now introduce the level spaces V k by

V k =
∑

λ(i)≤k

Vi.

It follows that V k =
∑

λ(i)=k Vi, and, in particular, one has V λ(1) =
∑m

i=1 Vi

and V 0 = Vm. The orthogonal projections onto the V k shall be denoted by P k.
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One can now show (see [19]) that

P k =
∑

λ(j)=k

PVj
(I − P k−1) + P k−1 (12)

as all the PVj
(I−P k−1) and P k−1 are pairwise orthogonal. In the same reference

it is shown that a combination formula exists, i.e. that for any k one has

P k =
∑

λ(i)≤l

ck
i PVi

(13)

for some ck
i . Inserting this into (12) gives

P k =
∑

λ(i)=k

PVi +
∑

λ(i)≤k−1

ck−1
i PVi −

∑
λ(i)=k

PVi

∑
λ(j)≤k−1

ck−1
j PVj

from which one gets

P k =
∑

λ(i)=k

PVi
+

∑
λ(i)≤k−1

ck−1
i PVi

−
∑

λ(i)=k

∑
λ(j)≤k−1

ck−1
j PVϕ(j,k) .

Comparing this with (13) gives a recursion for the combination coefficients.
In particular, one has c0

1 = 1,

cl
i = 1 for λ(i) = l

and
cl
i = cl−1

i −
∑

λ(k)≤l−1

cl−1
k ·#{j|ϕ(k, j) = i, λ(j) = l} else.

These recursions for a generalised combination technique can be found in [19].
The generalised combination technique has been mentioned in [14] and proven
in [22, 23] with a different approach. With these recursions one can determine
the combination coefficients for fairly general situations where the projections
commute. The coefficients are uniquely determined by the Hasse diagram and
do not depend on the dimensions of the particular spaces.

3.3 Combination coefficients for the best approximation
relative to the Frobenius norm

While the combination coefficients in the previous section are all which is needed
for the case of commuting projections one needs a different approach for non-
commuting projections. Fundamentally, one would like to approximate an or-
thogonal projection P onto the space V = V1 + · · ·+Vm by a linear combination
of the orthogonal projections onto the component spaces Vi. Consider here the
approximation which minimises the error of the operator approximation in the
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Frobenius norm. This corresponds to a best average case approximation and
the combination coefficients ci are obtained by minimising

J(c1, . . . , cm) = ‖P −
m∑

i=1

ciPVi
‖2F .

Inserting the definition ‖M‖2F = tr(MT M) one gets

J(c1, . . . , cm) =
m∑

i,j=1

cicjΓij − 2
m∑

i=1

cini + n,

where n is the dimension of V , ni = tr(PVi
) are the dimensions of the spaces

Vi, and Γij = tr(PViPVj ), in particular Γii = ni. The normal equations for this
optimisation problem are then

n1 Γ12 · · · Γ1m

Γ21 n2 · · · Γ2m

...
...

. . .
...

Γm1 Γm2 · · · nm




c1

c2

...
cm

 =


n1

n2

...
nm

 (14)

One now gets the following bounds (using the Schwarz inequality for the
matrix scalar product tr(AT B)):

dim(Vi ∩ Vj) = tr(PVi∩Vj
) ≤ Γij ≤ min(ni, nj) ≤

√
ninj .

These bounds provide estimates for the coefficients ci, which, in general, would
be hard to compute in practice as the Γij are typically unknown. For the com-
muting case, the Γij are all either 0 or tr(Pϕ(i,j)) = nϕ(i,j) and the classical
combination coefficients have to satisfy the normal equations. While this ap-
proach does require the determination of the Γij – which can be a substantial
computational problem – it is linear and the same coefficients can be used for
any data. However, like for the classical combination coefficients, this method
may lead to very poor approximations as well as has been demonstrated for the
case of two spaces.

3.4 The opticom choice

Instead of using a method to provide a best approximant on average, we now
attempt to find the best approximant for the given data. More specifically, the
functional

J(c1, . . . , cm) = ‖Pf −
m∑

i=1

ciPVif‖2

is minimised here. By simple expansion one gets

J(c1, . . . , cm) =
m∑

i,j=1

cicj(PVif, PVj f)− 2
m∑

i=1

ci‖PVif‖2 + ‖Pf‖2.
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While this functional depends on the quantity Pf to be approximated, the
location of the minimum of J does not. The best combination coefficients then
satisfy

‖PV1f‖2 (PV1f, PV2f) · · · (PV1f, Pmf)
(PV2f, PV1f) ‖PV2f‖2 · · · (PV2f, Pmf)

...
...

. . .
...

(Pmf, PV1f) (Pmf, PV2f) · · · ‖Pmf‖2




c1

c2

...
cm

 =


‖PV1f‖2
‖PV2f‖2

...
‖Pmf‖2

 .

Thus this matrix has the typical structure of a normal equation matrix. The
determination of the best combination coefficients by solving such a system
actually creates little overhead. Nevertheless, in general a large increase in
computational complexity is due to the need for the determination of the scalar
products (PVif, PVj f) and the norms ‖PVif‖2. The computation of the scalar
products in particular is often difficult as it requires embedding the problem in
a space which contains both Vi and Vj . For details in the case of an application
in machine learning see [13].

3.4.1 Numerical Experiments

We again consider the machine learning application from section 2.3. Instead of
employing only two grids and their intersection we use all grids which normally
arise for level n of the sparse grid combination technique [12, 18], i.e. all grids
Ωl with

|l|1 := l1 + ... + ld = n− q, q = 0, .., d− 1, lt ≥ 0. (15)

Note that the formula for the original combination technique is

fc
n(x) :=

d−1∑
q=0

(−1)q

(
d− 1

q

) ∑
|l|1=n−q

fl(x).

In Figure 3 we give results using both the original combination technique
and the optimal one for the two-dimensional data already considered in section
2.3. We show both the residual (10) and the least squares error. Again the
ordinary combination technique diverges after level 3, whereas the residual for
the optimal always declines, although only small amounts after level 6 or so.
Note that for λ = 10−6 and level 10 the residual for the optimised combination
technique using the grids after (15) is 9.27 ·10−7 as opposed to 5.83 ·10−6 which
we observed in section 2.3 for the optimised combination technique involving
the grids Ωj,0,Ω0,j , 0 ≤ j ≤ n. We also observe that now the least squares error
part of the functional (10) is still decreasing for higher levels, which is not the
case for the grids considered in section 2.3.

3.5 Error bounds for the combination technique

In this subsection the errors of combination techniques are analysed in terms
of geometric quantities, in particular, in terms of angles between spaces and
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Figure 3: Value of the functional (10) and the least squares error on the data, i.e.
1
M

∑M
i=1(f(xi)− yi)2, for the reconstruction of e−x2

+ e−y2
for the combination

technique and the optimised combination technique with λ = 10−4 (left) and
10−6 (right) and level n = 0, . . . , 10.

between vectors. In a first part a bound for the worst case error of the classical
combination technique is obtained based on results in [8]. This bound uses an
error bound for the multiplicative combination technique. In a second part,
error bounds for a general combination technique are obtained. In particular
the best possible error which is achieved by the opticom method is determined
and a formula for the difference between the optimal error and an error of a
general combination technique is provided.

Let U1, . . . , Um be closed subspaces of the Hilbert space H and PUi be the
orthogonal projections onto Ui. Furthermore, let U :=

⋂m
i=1 Ui and set

E(U1, . . . , Um) = ‖PUm · · ·PU1 − PU‖.

Recall the definition of the cosine c(V1, V2) of the angle between two spaces V1

and V2 from section 2.1. It follows from theorem 2.7 in [8] that

E(U1, . . . , Um) ≤ α(U1, . . . , Um)

where

α(U1, . . . , Um) =

√√√√√1−
m−1∏
i=1

1− c(Ui,
m⋂

j=i+1

Uj)

.

This provides a characterisation of E in terms of the geometric quantities
c(V1, V2). In the special case where Ui∩(Ui∩Uj)⊥ is orthogonal to Uj∩(Ui∩Uj)⊥

for every pair Ui, Uj one can see that α(U1, . . . , Um) = 0 and α(U⊥
1 , . . . , U⊥

m) = 0.
Let, as before, V1, . . . , Vn be closed subspaces of H and let V =

∑n
i=1 Vi. In

deriving a bound for the worst case error of the (classical) combination technique
one uses the multiplicative combination approximation which is defined as:

PV ≈ Tmc =
n∑

k=1

∑
1≤i1<···ik≤n

(−1)kPVik
· · ·PVi1

.
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The multiplicative approximation satisfies

I − Tmc = (I − PVn
) · · · (I − PV1)

which allows the application of the above bound for the product of projections.

Proposition 3. Let Tmc be the multiplicative combination approximation for
V = V1 + · · ·+ Vn. Then one has

‖Tmc − PV ‖ ≤ α(V ⊥
1 , . . . , V ⊥

n ).

Proof. Let Ui = V ⊥
i and U =

⋂n
i=1 Ui. Then PV = I − PU and one has

PV − Tmc = PUn
· · ·PU1 − PU

and by the theorem of Deutsch and Hundal [8] one gets

‖Tmc − PV ‖ ≤ α(U1, . . . , Un)

which is the claimed bound.

The combination approximation can be written as

PV ≈ T c =
n∑

k=1

∑
1≤i1<···ik≤n

(−1)kPVi1∩···∩Vik
.

An application of the previous bound for the multiplicative combination tech-
nique yields:

Proposition 4. Let T c be the combination approximation for V = V1+· · ·+Vn.
Then one has

‖T c − PV ‖ ≤ α(V ⊥
1 , . . . , V ⊥

n ) +
n∑

k=2

∑
1≤i1<···ik≤n

α(Vi1 , . . . , Vik
).

Proof. First one observes that the combination approximation is obtained by
approximating the products of projections onto the spaces Vi in the terms of
Tmc by the projections onto the intersections of the spaces. Then one invokes
the triangular inequality and the bound from the theorem 2.7 in [8] to get
the desired result. Note that in the last bound one only needs to sum from
k = 2.

This concludes our discussion of worst case error bounds for the classical
combination technique.

Consider now an arbitrary combination approximation defined by

T au =
n∑

i=1

ciPViu
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of the projection of an arbitrary u ∈ V into the space V1 + · · · + Vm, where
c = (c1, . . . , cn) are the combination coefficients. The squared Euclidean norm
of the error of this approximation is

e(c)2 = ‖PP
Vi

u−
n∑

i=1

ciPVi
u‖2.

By simple expansion one has

e(c)2 =
∑
i,j

cicj(PVi
u, PVj

u)− 2
∑

i

ci‖PVi
u‖2 + ‖PP

Vi
u‖2.

This is a quadratic function of the coefficients and the smallest value of this
function is obtained by standard means.

Let γi,j be the angle between the vectors PVi
u and PVj

u and let αi be the
angle between PVi

u and PP
j Vj

u. It follows that

(PVi
u, PVj

u) = cos γij‖PVi
u‖‖PVj

u‖

and
‖PVi

u‖ = cos αi‖PP
Vj

u‖.

In terms of these geometric quantities the error is

e(c)2 =

∑
i,j

cicj cos γij cos αi cos αj − 2
∑

i

ci cos2 αi + 1

 ‖PP
Vi

u‖2.

A further simplification of this expression is obtained with the introduction
of the vector x with components xi = ci cos αi, the vector b with components
bi = cos αi and the matrix A with elements aij = cos γij for i 6= j and aii = 1.
With this we get

e(c)2 =
(
xT Ax− 2bT x + 1

)
‖PP

i Vi
u‖2. (16)

Using some standard linear algebra it follows

Proposition 5. Let A, x and b be defined as above and let A be invertible. The
minimum of the squared norm of the combination error is achieved for x = A−1b
and equals

min
c

e(c)2 =
(
1− bT A−1b

)
‖PP

Vi
u‖2.

Furthermore, one has

e(c)2 −min
c′

e(c′)2 = (Ax− b)T A−1(Ax− b)‖PP
i Vi

u‖2.

Of course the case x = A−1b is nothing else than the opticom method dis-
cussed previously.
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The errors can be reformulated in terms of the combination coefficients in-
stead of x. If M is the matrix with elements mij = cos αi cos αj cos γij if i 6= j
and mii = cos2 αi one has for the optimal combination coefficients copt:

e(copt)2 =
(
1− cT

optMcopt

)
‖PP

Vi
u‖2

and
e(c)2 − e(copt)2 = (c− copt)T M(c− copt)‖PP

Vi
u‖2.

We end this section with a discussion of the qualitative types of precision
which can be achieved with combination approximations. One can now distin-
guish four sets S1 ⊂ S2 ⊂ S3 ⊂ S4 of vectors defined by the performance of the
combination technique with coefficients ci. We say u ∈ S1 if the linear combi-
nation of projections onto the partial spaces is equal to the projection onto the
sum of the spaces, i.e. T c

u = PP
Vi

. If S1 is the full space the corresponding
combination technique is exact. If the projection operators onto the partial
spaces Vi commute, the set S1 is the full space for the classical combination
technique, which equals the opticom method in this case.

If we assume that the spaces Vi are one-dimensional, then for the opticom
method the set S1 contains all vectors u which are not orthogonal to any of the
Vi [21]. We will show an example later where u is orthogonal to one Vi and for
which the opticom method is not exact.

Consider now any method for which the sum of the combination coefficients
cT e = 1. In this case one has Vm ⊂ S1 where Vm = V1 ∩ . . .∩Vm is the smallest
subspace. One can see that this holds for the classical combination technique.
As an exact approximation is always optimal this condition has to hold for the
opticom coefficients and from this one gets a condition which links the αi and
the γij :

eT D−1A−1De = 1,

where e is a vector with all components one and D is a diagonal matrix with
entries cos αi such that b = De, and x = Dc.

The second set S2 in the above collection is the set of elements for which
the combination technique produces a best possible combination approximation.
This is by design always achieved by the opticom method and so S2 is the full
space for the opticom method. However, other methods may also produce a best
possible approximation for some vectors u. The following example illustrates
this case. Assume that u is such that all the projections PVi

u are pairwise
orthogonal and so A = I. From the above one has x = b and so all ci =
1. This can occur, e.g. when all the Vi are pairwise orthogonal but in other
cases as well. If one has Vi ∩ Vj = 0 for i 6= j the combination coefficients
are all one for the classical combination technique. While in general for non
orthogonal Vi one may not get optimal results the combination approximation
is optimal if the PVi

u are pairwise orthogonal. However, this does not necessarily
mean that in this case the combination approximation is also exact. A simple
example of this is where V1 is spanned by (1, 0) and where V2 is spanned by
(1, 1) and where u = (1,−1). As u is orthogonal on V2, one has A = I and
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the optimal combination approximation is the sum of the projections onto the
subspaces which is (1, 0). As u is orthogonal to the second space this is the best
combination approximation but the error is not zero, although u ∈ V1 +V2. One
can easily construct similar examples for more spaces which shows that there
are optimal reconstructions, in the sense of Proposition 5, which are obtained
from the classical combination technique but which are not exact.

The set S3 additionally contains vectors for which the combination technique
provides an approximation which is close to optimal. A particular case where
this might occur is when there is a basis which is close to orthogonal and spans
the spaces Vi. In this case, there is a matrix A0 and a vector b0 such that A−1

0 b0

results in the classical combination technique and where A = A0 + εA1 and
b = b0 + εb1. The difference with respect to the opticom is in this case

e(c)2 − e(copt)2 = (A−1
0 b0 −A−1b)T A(A−1

0 b0 −A−1b).

It follows that

e(c)2 − e(copt)2 = (AA−1
0 b0 − b)T A−1(AA−1

0 b0 − b)

and this is

e(c)2 − e(copt)2 = ε2(A1A
−1
0 b0 − b1)T A−1(A1A

−1
0 b0 − b1)T .

Thus if the angles between the spaces are all π/2+O(ε) the classical combination
technique will provide an approximation of the order of O(ε) to the optimal one.
As long as this error is acceptable the set S3 can be chosen to be the full space.

The last set S4 furthermore includes cases where the combination technique
“fails” or, more concisely, is far from optimal. Consider the example of two
spaces where the first space V1 is spanned by (1, 0)T and the second space
V2 is spanned by (a, 1)T . For any u which is not orthogonal to any Vi the
opticom method is now exact. The classical combination approximation has
c1 = c2 = 1. An elementary calculation shows that the norm of the error is√

u2
1 + u2

2 asymptotically for a →∞. in a and so the set S4 would contain all u
with a large u2. It follows that the classical combination technique can produce
results which are far from optimal and this was confirmed by the experiments
discussed earlier and in the previous section.

4 Conclusions

The use of finite element approaches for problems with functions of more than
about four variables has been observed as computationally infeasible due to the
curse of dimensionality. The sparse grid approximation has introduced a way to
overcome this curse and has allowed the solution of problems with up to around
ten independent variables. One cost incurred is that for many applications the
matrices involved become fairly dense and have a less simple structure than
matrices for standard finite element methods. This is a consequence of the now
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necessary use of a hierarchical basis instead of the local basis functions used
otherwise.

The combination technique has made a substantial impact as it did allow to
approximate the sparse grid solution by a linear combination of the solutions
on regular subgrids which generate the sparse grid. Thus for the solution only
problems on regular grids need to be treated and the sparse grid approximation
is obtained by a simple linear combination. For many problems, in particular
the solution of partial differential equations, this approach was demonstrated
to be highly effective. The error occurred by this combination approximation
has been seen to be of the same order as the original sparse grid approximation
error. However, in the PhD thesis of one of the authors it was found that some
data mining applications show substantially larger errors of the combination
technique. It is thought that this is due to correlations of the predictor variables.

In this work we study an approach which modifies the original combination
technique so that the combination coefficients are chosen adaptively. An “opti-
mal combination technique” is obtained which we suggest to call the “opticom”
method. It is shown that this technique can substantially improve approxima-
tions for sparse grid fitting problems. However, one can see that (in some rare
cases) the combination approach itself, even with flexible coefficients, has its
limitations. One of the authors has thus suggested in the past to combine this
approach with iteration to get a method which generalises Krylov space itera-
tions. In the future we plan to study this method further, and, in particular, to
develop a convergence theory. In the earlier work it has been suggested that this
iterative method converges almost as fast as multiplicative Schwartz methods
while maintaining the parallelism of additive methods. While there is a close
connection between sparse grid and multigrid algorithms which has been ex-
plored by other authors, the combination technique thus provides a connection
to domain decomposition techniques.

Traditional sparse grid approximations push the limit of treatable problems
from up to four dimensional problems to over ten dimensional ones. Nevertheless
the question remains how to deal with problems of hundreds or even thousands
of variables which occur in machine learning and other fields like, e.g. biology.
The suggested opticom method fits nicely with dimension adaptive approaches
which are thought to be able to address this curse. However, there are severe
computational issues to be resolved for such approaches, this is a field of active
investigation.

In the work presented in this paper some of the foundations have been laid for
the development of the theory and implementation of such very high-dimensional
schemes which share some commonalities with anova decompositions and addi-
tive models used in statistics. We hope that the numerical analysis of the com-
bination methods will also benefit the work in statistics in these areas. At the
heart of both techniques is the tensor product structure of many of these prob-
lems. The methods can be viewed as an effective compression scheme for tensor
product spaces. The effectiveness of such a scheme does rely on smoothness
properties which are higher than for ordinary approximation techniques. The
consequences of these requirements have still to be fully understood. Another
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aspect are the concentration phenomena which occur for many highdimensional
measures. One of the authors has been studying how this might affect approx-
imation and we believe that concentration will be an important component in
highdimensional approximation theory and thus in the theory for approximation
by sparse grid combination techniques.
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