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Abstract

Recently, a three stage Maximum Likelihood (TSML) classi�er

(1)

has been proposed to reduce the computational requirements of the

ML classi�cation rule. Some modi�cations are proposed here further

to improve this fast algorithm. Winograd's method is proposed for use

with range calculations, and is also used with Lower Triangular and

Unitary canonical form approaches

(2)

in calculating quadratic forms.

New types of range are derived by expanding the discriminant function

which are then used with a TSML algorithm to identify their useful-

ness in eliminating groups at stages I & II. The use of pre-calculated

values is proposed to obviate some multiplications while calculating

the ranges. Further, threshold logic

(3)

is used with an old and a mod-

i�ed TSML classi�er and its e�ectiveness observed in further reducing

computation time. Performance of the old and the modi�ed TSML

algorithms is studied in detail by varying the dimensionality and num-

ber of samples. For the purpose of experiment, 6 channel thematic

mapper (TM) and randomly generated 12 dimensional data sets are

used. A maximum speed-up factor of 4-8 is observed with these data

sets. These experiments are also repeated with modi�ed maximum

likelihood and Mahalanobis distance classi�ers to inspect CPU time

requirements.
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1 INTRODUCTION

In recent decades, analysis of earth resources has generally been carried

out with the help of remotely sensed images from Earth resources satellites

such as LANDSAT MSS, TM, SPOT, IRS, TIMS, etc.,. The analysis of

the remotely sensed data is usually achieved by machine-oriented pattern

recognition techniques, of which one of the most widely used is classi�cation

based on maximum likelihood (ML), assuming Gaussian distribution of the

data. A serious problem of the ML classi�cation rule is its long process-

ing time. This computational cost may become an important problem if

remotely sensed data (images) of a large area are to be analysed, which is

a common feature in Geographic Information Systems (GIS) development

and analysis. Further, the problem will be exacerbated in the case of data

from future multichannel satellites such as the 192 channel HIRIS (High res-

olution Infrared Imaging Spectrometer) and 224 channel AVIRIS (Airborne

Visible and Infrared Imaging Spectrometer). Moreover, the �ne pixel and

grey level resolution of future satellites will further exacerbate this prob-

lem. Analysis of multi temporal images and analysis aided by ancillary data

demands additional computational e�orts with an ML algorithm.

E�orts to reduce processing time have been pursued in two ways; hard-

ware related developments and software oriented developments. Hardware

solutions include the use of enhanced numeric co-processors, use of proces-

sors with increased clock speed, and use of parallel computer architectures.

Settle and Briggs

(4)

and Fu

(5; 6)

implemented an ML classi�er on parallel

computer systems to speed-up the image classi�cation task. Swain et al.,

(7)

implemented a contextual classi�cation algorithm for remotely sensed im-

agery on a multi processor system. Similarly, Garg et al.,

(8)

implemented

the ML classi�cation rule on a 4 transputer array.

A number of authors have proposed numerous software related methods

to reduce the computational requirements of an ML classi�er. Feiveson

(3)

proposed a procedure to reduce computing time by employing thresholding

logic. Here, using the training data, thresholds between pairs of groups

are calculated before the classi�cation task. For a random pixel vector,

the most likely class is selected based upon some prediction (for example,

based upon maximum a priori probability or autocorrelation), and for that

group a probability density function (pdf) is calculated. If this pdf value

is greater than the threshold between the most likely group and any other

group, calculation of the pdf for the other group is omitted, resulting in

a reduction of computing time. Performance of this method will depend

on the accuracy of prediction. Feiveson

(3)

observed a speed-up of 2 with 4

channel LARS C1 Flight data on a Univac 1180 computer system.

Eppler

(2)

proposed some methods to reduce the number of computations

while classifying a pixel vector by using fewer computations in calculating

the pdf of each group. In his algorithm, he proposed the quadratic term in

the pdf to be a monotonically increasing sum of squares by representing the

inverse covariance matrix in two types of canonical form, known as Unitary

and Lower Triangular canonical forms (UCF and LTCF). This formulation

2



gave the advantage of discontinuing the computations of a particular class

hypothesis when the partial sum exceeds the smallest value obtained for

other classes already tested. Eppler

(2)

observed a speed-up of 6.7 with 4

channel LARS C1 ight data. Kriegler

(9)

also proposed a method similar to

Eppler

(2)

based on the inverse of the correlation matrix and his procedure is

reported to be existing in hardwired fashion in the MIDAS image processing

system.

Some authors employed feature selection algorithms to reduce the com-

putational requirements of the ML algorithm.

(10; 11; 12; 13)

It was also ob-

served that the classi�cation accuracy is also increased by the use of trans-

formed variables.

(14)

Further, decision tree classi�ers are proposed to reduce

the processing time.

(15; 16; 17; 18)

In some of these decision tree implemen-

tations, groups are eliminated using a smaller number of features at each

node in the tree.

Odell and Duran,

(19)

Mather,

(20)

Bolstad and Lillesand,

(21)

and Ahearn

and Wee

(22)

proposed methods based on look-up table operations. In a

large image there will be certain combinations of pixel values which occur

numerous times, and this redundancy is exploited in the development of

look-up table algorithms. Shlien

(23)

found that the number of unique pixel

vectors in a LANDSAT MSS image is surprisingly small, being measured

in the order of thousands. If these unique pixels are classi�ed by using an

ML algorithm and this information is stored in a look-up table, it can be

e�ectively used while classifying each of the image pixels by simply reading

its classi�cation result from the look-up table if it matches with any of the

unique pixels. The main drawback of this procedures is the requirement

of additional memory to store look-up tables. However, this is not going

to be a serious problem in future due to developments in memory related

technology.

Lee and Landgrebe

(24)

proposed a multistage ML classi�cation algo-

rithm in which some groups are terminated at each stage using a small

number of variables (bands) using some type of threshold information. Ex-

periments show a speed-up of 3-7 depending on the number of classes and

features. Minskii and Chizhevskii

(25)

and Venkateswarlu and Raju

(1)

pro-

posed fast ML algorithms which use the ranges of a quadratic form.

(26)

Re-

cently, Venkateswarlu and Raju

(27; 28)

proposed some fast ML algorithms

utilising Winograd's logic, threshold logic

(3)

.

In the present work, some modi�cations are proposed to a TSML classi�er

(1)

and its performance is compared with the TSML classi�er and ML algo-

rithms. It was observed that it is not always possible to use a LTCF approach

at stage III in the TSML algorithm because of di�culties in the calculation

of the lower triangular matrix from the relationship given by Eppler

(2)

. To

cope with this type of group, the UCF approach

(2)

is identi�ed as useful

in the study, but the computational complexity of this algorithm in cal-

culating quadratic terms is identi�ed to be the same as the direct matrix

multiplication approach.

(2)

However, this method gives the possibility of us-

ing a partial sum approach

(29)

which is not possible in the direct approach.

Further, the number of multiplications used in calculating quadratic forms
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using a LTCF and a UCF are reduced by using a mathematical develop-

ment known as Winograd's method, with the help of which the number of

multiplications is reduced by approximately half. This method is also used

to calculate ranges of each group's discriminant functions with less compu-

tations compared to the direct approach. New ranges of the discriminant

function are derived by expanding the discriminant function equation; these

ranges are used in developing another new TSML classi�er and its perfor-

mance is studied relative to both the original TSML classi�er

(1)

and the ML

classi�er. Computational time requirements of the proposed algorithms are

compared with ML algorithm with the help of remotely sensed and simulated

data sets. Thresholds

(3)

are used before the �rst stage of the TSML classi-

�er and it is observed that they further reduce the CPU time requirements.

Performance of these algorithms is studied by varying the dimensionality

and number of samples on two computer systems (PC/AT and PC/XT).

This logics are also used with modi�ed maximum likelihood (MML) and

Mahalanobis distance classi�ers to reduce their CPU time requirements.

2 MAXIMUM LIKELIHOOD CLASSIFIER

Let !

1

; : : : ; !

m

denote m distinct populations (classes) with known d dimen-

sional probability density functions p

1

(X); : : : ; p

m

(X), respectively. The a

priori probabilities that an observation is selected from populations !

1

; : : : ; !

m

are denoted by q

1

; : : : ; q

m

respectively. According to the Bayesian ML classi-

�cation rule,

(30)

assuming equal costs for misclassi�cations, a random vector

X (of dimension d) is classi�ed as class !

k

if

q

k

p

k

(X) = maxfq

i

p

i

(X)g for i = 1; : : : ; m (1)

Assuming equal a priori probabilities for all the classes, decision rule (1)

becomes (see Swain and Davis

(30)

for derivation) :

X � !

k

if

d

k

(X) = minfd

i

(X)g; i = 1; : : : ; m (2)

Here

d

k

(X) = B

k

+Q

k

(X) (3)

Q

k

(X) = (X �M

k

)

T

P

�1

k

(X �M

k

) (4)

B

k

= ln j

P

k

j

Here, M

k

;

P

k

are the mean vector and covariance matrices of the k

th

class which are calculated from the training data.

P

k

is a symmetric pos-

itive de�nite matrix.

P

�1

k

; j

P

k

j are the inverse and determinant of the

covariance matrix

P

k

.

In equation (3), d

k

(X) is generally called the discriminant function and

Q

k

(X) the quadratic term. Calculation of the quadratic term makes the

ML classi�cation rule computationally ine�cient. Direct calculation of the

quadratic term for a group requires d(d+1) multiplications and about the
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same order of additions and subtractions.

(31)

So, classi�cation of a pixel

vector X into one of the m groups necessitates md(d+1) multiplications.

This direct implementation is common in most image processing software

systems.

(31)

3 DEVELOPMENT OF FASTMLALGORITHMS

Here, in the development of fast ML classi�ers, linear algebraic rules related

to positive de�nite matrices and quadratic forms are used . The LTCF and

UCF approaches are used in the calculation of quadratic terms which facili-

tates the use of partial sum logic.

(29; 32; 33)

A linear algebra theorem which

de�nes the ranges of the quadratic form is used as a prime group elimination

criterion. Ranges of the quadratic term are used for group elimination in

the search process instead of the actual quadratic term values; details are

mentioned in the following. By the use of a LTCF approach, the number

of multiplications required to calculate the quadratic term may be reduced

by approximately one half, but the computational complexity of the UCF

approach is identi�ed to be the same as the literal ML algorithm. In order

further to reduce the computational requirements of these two approaches,

Winograd's method is proposed.

Some of the proposed algorithms are heuristic in nature and some have

strong mathematical support. In the case of heuristic algorithms it is not

possible to estimate the theoretical speed-up, whereas it is possible with

methods which have mathematical support. For these algorithms the the-

oretical speed-up is de�ned as the ratio of the number of multiplications

required to classify a pixel vector with an ML algorithm to the number

of multiplications required for the proposed algorithm for the same opera-

tion. It is not possible to count (estimate) the number of multiplications

for heuristic algorithms such as partial sum logic because the e�ectiveness

of these algorithms depends on the nature of the data (classes). The the-

oretical speed-up will give an estimate of the e�ciency of the algorithm.

In order to discover the actual advantage of the proposed algorithm, some

data will be classi�ed with the ML and proposed methods, and the ratio of

CPU time requirements of these methods provides the actual e�ectiveness

(actual or observed speed-up) of the proposed algorithm. This actual speed-

up can be used to decide which logic is superior in reducing the CPU time

requirements of ML classi�cation rule.

3.1 Lower Triangular Canonical Form (LTCF) Approach

The matrix

P

�1

k

can be represented in terms of a lower triangular matrix

L

k

as:

(2)

P

�1

k

= L

T

k

L

k

(5)

Using this lower triangular matrix, the quadratic function in equation

(4) can be calculated with equations (6), (7) and (8).
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y

kK

= V

T

kK

(X �M

k

) (7)

Q

k

(X) =

d

X

K=1

y

2

kK

(8)

Here, V

T

kK

is the K

th

row of the lower triangular matrix L

k

. As, V

T

kK

is zero beyond the K

th

element, the number of multiplications involved

in computing y

kK

is K only. That is, calculation of one group's discrim-

inant function requires only 0.5d(d+1)+d multiplications. For m classes,

the number of multiplications will be equal to m(0.5d(d+1)+d), which is

approximately half of the direct calculation through equation (4). So, the

theoretical speed-up of this method can be given as:

Theoretical Speed� up =

2(d+ 1)

d+ 3

3.2 Unitary Canonical Form (UCF) Approach

It is well known that a positive de�nite matrix such as

P

k

can be decom-

posed (Singular Value Decomposition) into:

(2)

P

k

= U

T

k

D

k

U

k

(9)

where,

U

k

= a matrix whose i

th

column is the eigenvector which corresponds to

i

th

largest eigenvalue of

P

k

D

k

= a diagonal matrix whose diagonal elements are eigenvalues of

P

k

and D

k;j;j

< D

k;i;i

for all j > i.
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Using the U

k

, the quadratic function (equation (4)) can be calculated

as follows:

(2)
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y

kK

= V

T

kK

(X �M

k

) (11)

Q

k

(X) =

d

X

K=1

y

2

kK

D

k;K;K

(12)

Here, V

T

kK

is the K

th

column (i.e K

th

eigen vector of

P

�1

k

) of matrix U

k

.

By use of this method, the calculation of a quadratic form demands the same

number of multiplications as that of the ML algorithm. That is, this method

demands d(d+1) multiplications to calculate the quadratic form. However,

this method allows the use of a partial sum (truncation) approach.

(2; 1)

In

the following, eigenvectors are assumed to be normalised with corresponding

eigenvalues to eliminate the division operation in equation (12). That is :

V

T

kK

=

V

T

kK

p

D

k;K;K

(13)

3.3 Winograd's Method

Consider the identity:

x

1

y

1

+ x

2

y

2

= (x

1

+ y

2

)(x

2

+ y

1

)� x

1

x

2

� y

1

y

2

(14)

Winograd's identity is an expansion of equation (14) for the even number

n = 2k of pairwise products (say multiplication of two vectors X and Y of

size n ) and is given as :

X

T

Y =

2k

X

i=1

x

i

y

i

=

k

X

u=1

(x

2u�1

+y

2u

)(x

2u

+y

2u�1

)�

k

X

u=1

x

2u

x

2u�

�

k

X

u=1

y

2u

y

2u�1

(15)
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Here, x

i

; y

i

are elements of vectors X and Y. If n is odd, simply apply the

method in equation (15) by adding an extra zero element to both vectors. It

has been shown that methods based on three or more pairwise products will

not give results better than two pairwise products.

(34)

In the following pages,

small letters in the equations where Winograd's method is used signify that

they are elements of vectors or matrices of the respective capital letters.

3.4 Quadratic Form Range Theorem

According to Graybill,

(26)

if A is a symmetric matrix of dimension d x d

with characteristic roots E

1

> E

2

> : : : > E

d

, then

E

d

�

X

T

AX

X

T

X

� E

1

for any vector X 6= 0 (16)

Here, X

T

AX is a quadratic form.

From equation(16), E

d

X

T

X;E

1

X

T

X can be inferred as the range of the

quadratic term X

T

AX .

Similarly, the range of the quadratic term in equation(4) can be repre-

sented as:

E

k;d

(X �M

k

)

T

(X �M

k

) � Q

k

(X) � E

k;1

(X �M

k

)

T

(X �M

k

) (17)

Here, E

k;d

; E

k;1

are the lowest and highest eigenvalues of the k

th

group's

inverse covariance matrix (

P

�1

k

). So the range of the discriminant function

in equation (3) can be represented as:

(25)

B+E

k;d

(X�M

k

)

T

(X�M

k

) � d

k

(X) � B+E

k;1

(X�M

k

)

T

(X�M

k

) (18)

This can be also denoted as :

B

k

+ q

k;min

(X) � d

k

(X) � B

k

+ q

k;max

(X); or

d

k;min

(X) � d

k

(X) � d

k;max

(X) (19)

By using the lower triangular matrix and range rule of the discriminant

function, a fast ML classi�cation rule is developed with three stages

(1)

); at

each stage some groups are eliminated from the search process. It is observed

that in this TSML algorithm some groups will be eliminated just by using

ranges, and only for groups which are not eliminated by these ranges will

discriminant functions be calculated. If all groups are eliminated using only

ranges then a good speed-up is observed; otherwise the calculation of ranges

becomes a burden and the algorithm performs worse than the original ML

algorithm.

For example, consider a 10 group problem in 4 channel MSS data anal-

ysis. In order to classify a sample (pixel vector), approximately 200 mul-

tiplications (10.4.(4+1)) are needed for the ML algorithm. Suppose now
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that the TSML method is applied on a pixel vector and 3 groups are elim-

inated up to the second stage. That is, by using around 64 multiplications

(the sum of the total number of multiplications for both range calculations

and the actual group discriminant function calculation of the most probable

group using the LTCF approach ) only three groups are eliminated from

the search process. In order to classify the pixel, an additional 84 multipli-

cations are needed assuming LTCF is used in the third stage. So in total

about 150 multiplications are used, less than 200 and in this example the

TSML classi�er is advantageous in classifying this pixel. If a direct matrix

multiplications approach is used at the third stage then the total number of

multiplications becomes 184, still less than 200. Thus, here the use of ranges

does not reduce the classi�cation time appreciably. One can say that the

performance of this TSML is a function of the number of groups eliminated

up to stage 2 and the remaining groups for which actual discriminant func-

tion is required. So TSML algorithm can further be improved by proposing

e�cient methods to calculate ranges and quadratic terms. In the following

some e�cient methods are proposed to calculate these ranges and quadratic

terms.

3.5 Winograd's Method with Quadratic Form Range Theo-

rem

From equation (19) one can infer :

q

k;min

= E

k;d

[(X �M

k

)

T

(X �M

k

)]

= E

k;d

[X

T

X �X

T

W

k

+M

T

k

M

K

] (20)

where,

W

k

= 2:M

k

By applying Winograd's method, equation (20) can be written as:

E

k;d

[

l

X

u=1

(x

2u�1

+ x

2u

)(x

2u

+ x

2u�1

)

�

l

X

u=1

x

2u

x

2u�1

�

l

X

u=1

x

2u�1

x

2u

�

l

X

u=1

(x

2u�1

+ w

k;2u

)(x

2u

+ w

k;2u�1

)

+

l

X

u=1

x

2u�1

x

2u

+

l

X

u=1

w

k;2u�1

w

k;2u

+M

T

k

M

k

] (21)

where d is assumed to be an even number and l =d/2.
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By eliminating common terms, (21) may be written as :

E

k;d

[

l

X

u=1

(x

2u�1

+ x

2u

)(x

2u

+ x

2u�1

)

�

l

X

u=1

(x

2u�1

+ w

k;2u

)(x

2u

+ w

k;2u�1

)

�

l

X

u=1

x

2u�1

x

2u

+

l

X

u=1

w

k;2u�1

w

k;2u

+M

T

k

M

k

] (22)

The �rst term in equation (22) can be written as

P

�1

k

(x

2u

+ x

2u�1

). As

x

2u�1

; x

2u

are elements of a pixel vector, X their values usually lie between

0-255 (grey scale). As x

2u�1

; x

2u

values lie between 0-255 their sum lie in

between 0-510. So, instead of calculating the square of their sum, if a look-

up table (say TAB) is prepared such that squares of each of the values in

between 0-510 are stored in that table (array) then they can be used while

calculating the �rst term for any random sample with any group.

The second term is independent of group parameters such as the mean

vector, so once calculated it can be used with all q

k;min

; k = 1; : : : ; m. More-

over, this term can be used with the actual discriminant function calculation

with UCF approach aided by Winograd's approach. The last two terms are

independent of the pixel vector X. So, once they are calculated for a group

they will not change. E�ectively, calculation of d

k;min

involves calculation

of the middle term for which d/2 (l) multiplications are needed. The above

derivation can also be applied for the e�ective calculation of q

k;max

and the

�nal equation for the same can be given as :

q

k;max

= E

k;1

[

l

X

u=1

(x

2u�1

+ x

2u

)(x

2u

+ x

2u�1

)

�

l

X

u=1

(x

2u�1

+ w

k;2u

)(x

2u

+ w

k;2u�1

)

�

l

X

u=1

x

2u�1

x

2u

+

l

X

u=1

w

k;2u�1

w

k;2u

+M

T

k

M

k

] (23)

or

q

k;max

= q

k;min

E

k;maxmin

where,

E

k;maxmin

=

E

k;1

E

k;d

(24)
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( the ratio of maximum and minimum eigenvalues of

P

�1

k

)

By using the above maximum and minimum ranges of the discriminant

functions, groups will be eliminated from the search process at stages I and

II in the TSML algorithm.

(1)

By using the above equations, the number of

multiplications required to calculate ranges is reduced to half compared to

earlier approach.

3.6 Winograd's Approach with UCF Approach

By expanding terms, the quadratic form in equation (4) can be written as:

Q

k

(X) = X

T

P

�1

k

X �X

T

W

k

+M

T

k

P

�1

k

M

k

(25)

Here,

W

k

= 2:

P

�1

k

M

k

In this equation, the last term is independent of X, and its calculation is

required only once. Here, Winograd's method can be e�ectively used while

calculating the second and �rst terms. In the following, equation (25) is

referred to as the expanded discriminant function.

Using the UCF approach (equations (11) - (13)), this �rst term can be

written as :

X

T

P

�1

k

X =

d

X

i=1

[V

T

ki

:X ]

2

(26)

Here, V

T

ki

is the i

th

eigenvector of the k

th

group which is normalised with

the corresponding eigenvalue. Calculation of the quadratic term in equation

(26) involves the scalar product V

T

ki

X . By using Winograd's method, V

T

ki

X

can be written as :

V

T

ki

X =

l

X

u=1

(x

2u�1

+v

k;i;2u

)(x

2u

+v

k;i;2u�1

)�

l

X

u=1

x

2u

x

2u�1

�

l

X

u=1

v

k;i;2u

v

k;i;2u�1

(27)

As the square of V

T

ki

:X is needed in equation (26), calculation of all the

terms in equation (27) is required. However, the second term in equation

(27) is known from calculating the ranges of the discriminant function (see

section 3.5). As the last term is independent of X its calculation is required

only once for each group. E�ectively, calculation of V

T

ki

X using equation

(27) involves the calculation of only the �rst term, for which only d/2 (l)

multiplications are needed.

Similarly, the calculation of X

T

W

k

in equation (25) using Winograd's

method can be written as :

11



X

T

W

k

=

l

X

u=1

(x

2u�1

+w

k;2u

)(x

2u

+w

k;2u�1

)�

l

X

u=1

x

2u

x

2u�1

�

l

X

u=1

w

k;2u

w

k;2u�1

(28)

The second term in this equation can be seen as a common term for all

the groups, and is not required to be calculated. Further, the last term is

independent of X and need only be calculated once. So, the calculation of

X

T

W

k

using this equation involves the calculation of the �rst term only,

and for this d/2 multiplications are su�cient.

By combining equations (27) and (28), the e�ective discriminant function

can be written as :

Q

k

(X) =

d

X

i=1

[

l

X

u=1

(x

2u�1

+ v

k;i;2u

)(x

2u

+ v

k;i;2u�1

)

�

l

X

u=1

x

2u

x

2u�1

�

l

X

u=1

v

k;i;2u�1

v

k;i;2u

]

2

�

l

X

u=1

(x

2u�1

+ w

k;2u

)(x

2u

+ w

k;2u�1

)

+

l

X

u=1

w

k;2u�1

w

k;2u

+M

T

k

�1

X

k

M

k

(29)

In summary, the total number of multiplications used while calculating

the discriminant function with equation (29) can be given as d [d/2 +1 ] +

d/2 = d(d+2)/2 and so, the theoretical speed-up of this algorithm can be

given as:

Theoretical Speed� up =

2(d+ 1)

(d+ 2)

3.7 Winograd's Approach with LTCF Approach

As mentioned earlier, the quadratic form (Q

k

(X)) can be written in the form

of equation (25). The �rst term in this equation can be calculated with a

LTCF approach discussed above. Further, this calculation can be improved

by using Winograd's method.

Using the LTCF approach the �rst term in equation (25) can be written

as :

X

T

P

�1

k

X =

d

X

i=1

[V

T

ki

X ]

2

(30)

Here, V

T

ki

is the i

th

row of the lower triangular matrix (L

k

) calculated

from equation (5). As mentioned earlier, V

T

ki

X requires i multiplications

because of the zero valued elements in vector V

T

ki

after its i

th

element.

12



By applying Winograd's method to pairs of elements, the quadratic form

can be represented in a LTCF approach as :

= [ l

k;1;1

x

1

]

2

+ [ (l

k;2;1

+ x

2

)(l

k;2;2

+ x

1

)� x

1

x

2

l

k;2;1

l

k;2;2

]

2

+ [ (l

k;3;1

+ x

2

)(l

k;3;2

x

1

)� x

1

x

2

�
l

k;3;1

l

k;3;2

+ l

k;3;3

x

3

]

2

+

[

2

X

u=1

(x

2u�1

+ l

k;4;2u

)(x

2u

+ l

k;4;2u�1

)

�

2

X

u=1

x

2u

x

2u�1

�

2

X

u=1

l

k;4;2u�1

l

k;4;2u

]

2

+::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

+::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

+[

h

X

u=1

(x

2u�1

+ l

k;d;2u

)(x

2u

+ l

k;d;2u�1

)

�

h

X

u=1

x

2u

x

2u�1

�

h

X

u=1

l

k;d;2u�1

l

k;d;2u

]

2

(31)

In the above expansion, d is assumed to be even. If d is odd, then the

last term can be written as :

[

h

X

u=1

(x

2u�1

+ l

k;d;2u

)(x

2u

+ l

k;d;2u�1

)

�

h

X

u=1

x

2u

x

2u�1

�

h

X

u=1

l

k;d;2u�1

l

k;d;2u

+ l

k;d;d

x

d

]

2

(32)

Here, h = d div 2 ( i.e, d = 2h+1 )

In equation (31), the terms underlined can be seen as common for all the

groups for that pixel X. In fact, while calculating the term

P

l

u=1

x

2u

x

2u�1

in equation (31), these values which are available from calculation of ranges

using Winograd's approach can be used. Thus, no extra computations are

needed to calculate these terms. The terms with over lines are independent

of X, and are required to be calculated only once.

E�ectively, the total number of multiplications used while calculating the

expansion in equation (31) can be represented as a series, 1; 1; 2; 2; 3; 3; : : : ;.

Assuming d extra multiplications for the calculation of squares, the total

number of multiplications can be given as =

d(d+8)

4

. So, the theoretical

speed-up of this LTCF method aided by Winograd's method can be given

as :

Theoretical Speed� up =

4(d+ 1)

(d+ 8)
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See Figure 1 for the theoretical speed-up details of LTCF, UCF, UCF

with Winograd's Method and LTCF with Winograd's method for varying

dimensionality (number of bands). By observing the respective equations

for speed-up, one can �nd that UCF aided byWinograd's approach is almost

same as the LTCF approach.

Using the modi�ed approach to calculate ranges and with small modi�-

cation in the logic at stages I & II a modi�ed TSML classi�er is proposed.

The main di�erence between this method and the previous TSML method

can be seen as follows. In this method, the most likely group (at Stage

I) will be found from minimum ranges of the groups only, whereas in the

old method the most likely group is found using maximum ranges. Thus

this modi�ed method obviates the calculation of maximum ranges of the

discriminant function. Further, it uses Winograd's approach to calculate

ranges.

Modi�ed Three Stage ML Classi�er

1. CalculateM

k

;

P

k

;

P

�1

k

; j

P

k

j; E

k;d

; E

k;1

; k = 1; : : : ; m using the train-

ing data.

2. Read new random pattern vector X.

Stage I

3. Calculate

P

l

u=1

(x

2u�1

+ x

2u

) and

P

l

u=1

x

2u�1

x

2u

(Here, l = d/2).

4. Calculate minimum ranges of the discriminant function (in equation(18))

for each group (d

k;min

(X)).

5. Find minimum of d

k;min

(X); k = 1; : : : ; m. Call the corresponding

group number Iclass; Iclass is the most probable class.

6. Let A = fj=j = 1; : : : ; m; and j = Iclassg; that is, A contains the

numbers of groups other than Iclass.

7. For each j�A, remove j from A if d

j;min

(X) > d

Iclass;max

(X). If A is

empty, then classify X as group Iclass and go to Step 2.

8. Otherwise, calculate actual discriminant function value for group Iclass,

i.e, d

Iclass

(X), using the LTCF approach aided byWinograd's method.

Stage II

9. For each j�A, remove j fromA if d

j;min

(X) > d

Iclass

(X). If A is empty,

then classify X as Iclass and go to Step 2.

Stage III

10. For each j�A, calculate the actual discriminant function d

j

(X) using

LTCF aided by Winograd's method . If this d

j

(X) > d

Iclass

(X), then

remove j from A; otherwise Iclass =j, then remove j from A. Finally,

if A is empty then X is classi�ed as group Iclass. Go to step 2.

14



3.8 Ranges of The Expanded Discriminant Function

From the quadratic forms range theorem, the range of the expanded function

in equation (25) can be written as :

E

k;d

(X)

T

(X) + C

k

� X

T

P

�1

K

X + C

k

� E

k;1

(X)

T

(X) + C

k

(33)

where,

C

k

= �X

T

W

k

+M

T

k

P

�1

k

M

k

By normalising the above ranges with X X, the ranges can be re-written

as :

E

k;d

+
C

k

�

X

T

P

�1

k

X

X

T

X

+
C

k

� E

k;1

+
C

k

(34)

where,

C

k

=

C

k

X

T

X

In equation (33), the ranges of the quadratic form are similar to those

de�ned in the TSML Classi�er.

(1)

Calculation of ranges with equation (34)

obviates one multiplication compared to equation (33) . The ranges in

equation(18) necessitates the calculation of the Euclidean distance (X �

M

k

)

T

(X�M

k

), and is not used at all in the algorithm. That is, some groups

will be eliminated based upon this range at Stages I and II. If the groups are

not eliminated even after the second stage, the actual discriminant function

is required to be calculated,

(1)

but by observing the ranges in equation (

34), it can be seen that the ranges of any group can be found by calculating

C

k

and X

T

X . Moreover, X

T

X is common for all the groups, and can be

calculated simply from the look-up table (TAB) which is discussed in the

following. Further,
C

k

can be used at Stage III, in calculating actual dis-

criminant function values. As, the
C

k

values are used both at stages I & III,

the computational advantage is expected to be more if these ranges are used

with TSML. Further, while calculating the term X

T

W

k

in
C

k

Winograd's

approach can be used.

4 MODIFIEDMAXIMUM LIKELIHOODCLAS-

SIFIER

Chang and Dwyer,

(35)

Venkateswarlu,

(13)

and Oza and Sharma

(36)

ob-

served that elimination of the term ln j

P

k

j from the conventional ML dis-

criminant function gives better results than the original ML algorithm. This

classi�cation rule is:
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X� !

k

if

d

k

(X) = minfd

i

(X)g; i = 1; : : : ; m (35)

Here,

d

k

(X) = Q

k

(X)

In this classi�cation rule also, calculation of the term Q (X) is very

demanding. Methods discussed above can be used with this classi�cation

rule to reduce its CPU time requirements.

Similarly, we identi�ed that the proposed logics can also be used with

the Mahalanobis distance classi�cation rule

(37)

to reduce classi�cation time.

5 EXPERIMENTS & DISCUSSION

Experimental work has been carried out on two PC systems, namely PC/XT

and PC/AT working under the DOS operating system. Both systems have

a Math Co-processor. Separate modules are written for each of the methods

to observe the CPU time for classi�cation of any data set, I/O operations

are eliminated and the time observed is strictly for the classi�cation of the

data. In the tables, CPU time is given in seconds. Data used in this study

can be summarised as :

a. Six channel TM data of sample set size 700 with 7 ground cover classes.

Group parameters such as mean vector and covariance matrices are

given in Table. 1.

b. A Randomly generated 12 dimensional data set of size 5000.

By combining two or more of the above proposals a number of fast ML

algorithms are proposed which we expect to be better than the original ML

algorithm. Methods studied in this work are:

Method 1 Conventional ML algorithm in which a direct matrix multiplication

approach is used for the calculation of the quadratic term in the dis-

criminant function. This is the most commonly implemented form of

the ML decision rule for which approximately d(d+1) multiplications

and additions are needed to classify a random pixel vector.

(31)

Method 2 Old TSML classi�er.

(1)

Method 3 Expanded discriminant function approach aided by the UCF approach

to calculate the X

T

P

�1

k

X term.

Method 4 Expanded discriminant function approach aided by UCF and Wino-

grad's approach in calculating the X

T

P

�1

k

X term.

Method 5 Expanded discriminant function approach aided by LTCF approach

to calculate X

T

P

�1

k

X term.

16



Method 6 Expanded discriminant function approach aided by LTCF and Wino-

grad's approaches in calculating the X

T

P

�1

k

X term.

Method 7 Modi�ed TSML classi�er (see the algorithm) in which Winograd's

method is used in calculating ranges of the discriminant function and

Method 4 at stage III in calculating the actual discriminant function.

Method 8 Modi�ed TSML classi�er (similar to Method 7) with Method 6 to

calculate the actual discriminant function at stage III.

Method 9 Method 7 with partial sum approach at stage III.

Method 10 Method 8 with partial sum approach at stage III.

Method 11 Modi�ed TSML classi�er with the third stage as same as the old TSML

classi�er. That is, at stage III the (X�M

i

)

P

�1

i

(X�M

i

) term will be

used instead of the expanded discriminant function. Here, the LTCF

approach aided by the partial sum approach is used.

Method 12 Method 11 with UCF approach and partial sum logic in calculating

the (X �M

i

)

P

�1

i

(X �M

i

) term at stage III.

Method 13 Method 11 aided by threshold logic of Feiveson.

(3)

Here, an unclassi-

�ed pixel vector will �rst be assumed most probably to the previous

classi�ed pixel's group and the minimum range of the discriminant

function will be calculated for that group. Groups will be eliminated

using this minimum range value and thresholds. Later, a modi�ed

TSML classi�er (method 11) will be applied to the rest of the groups

(See Figure 2 for STAGE I of this algorithm and STAGE II & III are

same as method 11).

Method 14 The old TSML classi�er with thresholds (similar to Method 13).

Method 15 The modi�ed TSML classi�er which uses the ranges of the expanded

discriminant function (see section 3.8 for description).

Method 16 In the case of image classi�cation, a small modi�cation in the old

TSML classi�er will further reduce the time requirements. This mod-

i�cation is at stage I. Instead of calculating minimum ranges of all the

groups, we can �rst calculate the minimum range of the most likely

group (the group of the previous classi�ed pixel) and while calculating

the ranges of the other groups a partial sum approach

(29; 32; 33)

can

be used. This reduces the computations spent in the ranges calculation

and minimum group calculation in the TSML classi�er. See Figure 3

for modi�ed algorithm with this modi�cation.

Method 17 While calculating ranges of a discriminant function the Euclidean dis-

tance (X �M

k

)

T

(X �M

k

) is used. In reality M

k

will consist of real

valued elements. IfM

k

is assumed to have integer valued elements ( by

taking nearest integer value ) we �nd that the elements of (X �M

k

)
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will have values between -255 and 255, because elements of X and

rounded M

k

will have elements between 0 and 255 for 8 bit images.

So, once squares of all values between -255 and 255 are calculated and

stored in a look-up table, the distance (X �M

k

)

T

(X �M

k

) can be

approximated with the help of pre-calculated squares from the array.

This approach is denoted as pre-calculated squares approach in the

following pages.

This approach is used with the Old Three Stage ML classi�er ( see

APPENDIX ). Further, we feel that Euclidean distances can also be

calculated from the method suggested by Cannon

(38)

which also uses

a type of look-up table.

Method 18 Method 11 with pre-calculated squares in the calculation of ranges

instead of Winograd's approach.

Method 19 Pre-calculated squares approach is used with Method 16. Here the

partial sum approach is also used.

Method 20 At Stage I of the modi�ed three stage classi�er (Method 11) a pixel

is assumed to belong to the previous classi�ed pixel's group. Here it

is not advantageous to use the partial sum approach while calculating

the Euclidean distance with Winograd's method.

Method 21 MML classi�er

Method 22 Method 11 with MML classi�er

Method 23 Method 2 with MML classi�er

Method 24 Method 17 with MML classi�er

Method 25 Method 16 with MML classi�er

Method 26 Method 18 with MML classi�er

Method 27 Mahalanobis distance classi�er

Method 28 Method 11 with Mahalanobis distance classi�er

The �rst data set is classi�ed with all methods and the CPU time is

observed (Table. 2). Further, each method's (up to Method 20) classi�ca-

tion accuracy is the same, and is shown in Table (3). It is observed that

Winograd's method does not give a considerable reduction in CPU time with

methods 4 and 6. Moreover, it is identi�ed that only careful implementation

of equations based on Winograd's method give good results. However, the

reduction in CPU time is not signi�cant. From the derivations we �nd that

Winograd's method only reduces the number of multiplications while calcu-

lating the quadratic function in equation (26), and the number of additions

is not reduced. If care is not taken in converting the equations into code,

the number of additions will increase and the algorithm will show undesir-

able results. We believe that the performance of methods 4 and 6 which
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uses Winograd's method will also depend on the computer hardware. If a

system's ALU has larger execution times for multiplication than addition,

these algorithms are expected to give a perceptible speed-up. However, as

these algorithms use fewer computations (assuming additions cost the same

as respective old algorithms) they will de�nitely show a reduction in CPU

time on any computer system. Even in those processors that can execute

multiplications and additions in comparable time, these algorithms will work

equally well.

It is observed that Method 11 performs better than Method 2 and also

than any other Methods 6-12. It is observed that the expanded discriminant

function approach with partial sum logic does not give better results. The

expanded discriminant function is does not show any improvement with

partial sum logic. That is, the full discriminant function is needed with this

approach as there is no early termination of the quadratic function observed

with the partial sum approach.

Further, it is observed that the threshold logic with Method 2 and

Method 11 gives good results. See Table (4) for details of thresholds of the

�rst data set. These thresholds are calculated from the algorithm given in

Feiveson.

(3)

With the both the methods threshold logic gave better results.

The New TSML classi�er (Method 15) which uses ranges of the expanded

discriminant function does not give good results. It is identi�ed that no

group is eliminated at both the �rst and second stages by the use of these

ranges. For a random pixel, ranges used in this old TSML classi�er and

ranges of the expanded discriminant function (Section 3.8) are shown in

Table (5). We �nd that the ranges based on the expanded discriminant

function are too overlapped; no group can be eliminated by the use of the

corresponding minimum value shown in the same table, whereas ranges in

the old three stage classi�er are found to be useful in eliminating some groups

(for the example shown in the table all the groups will be eliminated by the

ranges only ) with the help of the minimum value shown. Thus. Method 15

does not show encouraging results.

Method 16, which assumes an unclassi�ed pixel belongs to the previous

pixels group in stage I is found to give an appreciable reduction in computer

time. In reality autocorrelation between pixels in most of the remotely

sensed images will be high, so we believe that for images this method will

give still better results. Further, it is possible to use the partial sum approach

while calculating the Euclidean distances (see Figure 3).

Method 17 uses pre-calculated values to calculate Euclidean distances in

the old TSML algorithm. This is found to be give encouraging results, and

has shown encouraging results with the modi�ed TSML algorithm too, but

the reduction in time is not appreciable. There is no change in the classi�-

cation accuracy by rounding the mean values and using this pre-calculated

squares in this method.

Method 19, which uses the autocorrelation assumption is also found to

give good results with this data. O� all the methods, Method 11 gives the

best results with the selected data set. However, the methods 16, 17, 18,

and 19 also gave similar results.
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Methods 1, 2 , 11, 16, 17 and 18 are taken to study their performance

under varying dimensionality and sample set size. For this purpose a ran-

domly generated 12 dimensional data set mentioned above is used. The

number of dimensions is varied from 4 to 12 with steps of 2 and CPU time

requirements are observed on both XT and AT systems for a �xed sample

set size of 2600. In the case of experiments on PC/XT, we did not observe

the CPU time for method 1 for all the dimensions as it is so time consum-

ing. It is observed that the modi�ed TSML classi�er give better results than

the old three stage classi�er (see Figure 4). However, improvement is not

considerable and we believe this may be due to the nature of the groups

which we have selected in generating the data. The pre-calculated squares

with the old TSML algorithm show better results for any dimension (Figure

5), but the same pre-calculated squares approach with Method 11 shows

similar results to that of Method 11 (see Figure 6). Further, the number of

samples are varied from 1000 to 5000 for all 4, 6, and 12 dimensions and

the CPU time is observed for all the algorithms on the PC/AT (see Figures

7-10). It is observed that the proposed modi�cation for the TSML algorithm

shows good results. In Figures 7-10 we have shown the performance of some

methods only. In order to observe clearly the relative advantage of each of

the methods, the same analysis is carried out on PC/XT. See Tables. 6-8

for CPU time observations for both varying dimensionality and sample set

size on PC/XT. From these tables one can �nd the relative advantage of

each method very clearly. Figure 7 shows how the pre-calculated squares

approach is useful with old TSML algorithm under varying sample set size.

In order to identify the e�ectiveness of the proposed methods compared to

the old TSML algorithm, we have prepared Table (9). Here, the derivation

of a table element follows: Consider 1'st row 3'rd column element, i.e 1.62.

This is calculated either from the Table (6) or (7). From Table (6), one

can observe that for a sample set of size 2600, the old TSML classi�er takes

520 seconds of CPU time. For the same operation, Method 16 (best of all

the proposed methods) takes 318 seconds of CPU time. The ratio of 520

and 318 is 1.62, given in Table (9). This value explains the e�ectiveness of

this proposed logic with the old TSML algorithm. From the same table one

can observe the actual speed-up of the TSML algorithm with the proposed

modi�cation for di�erent dimensions and sample set sizes. In this table,

speed-up is calculated based on the best algorithm for a given dimension

and sample set size. We �nd that in most cases the autocorrelation assump-

tion shows better results and the pre-calculated squares approach with the

modi�ed three stage ML algorithm (Method 18) shows some improvement

Methods 21-26 are also studied under varying dimensionality and sam-

ple set size. Figure 11 shows performance of these algorithms under varying

dimensionality. Similarly, Figures 12-14 show how these algorithms behave

under varying sample set size. One can also observe here the modi�ed ap-

proach showing better results, and identify the autocorrelation assumption

as useful with this MML classi�er also. It is further observed that the use

of thresholds shows a Speed-up of 4 to 8 for di�erent dimensions with both

the ML and MML algorithms. Method 11 with the Mahalanobis distance
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classi�er show good result (See Table. 2)

We believe that the look-up table approaches

(20; 21)

can be directly

used with this modi�ed TSML classi�er. For example, if one �nds that

the modi�ed TSML classi�er and look-up table approaches give CPU time

reductions of 3 and 4 respectively compared to the ML algorithm, then a

combination of these two methods will be expected to give a reduction of 12

compared to the literal ML algorithm. As future research, we feel one can

work in this direction. In this study we have considered the performance

of the modi�ed TSML classi�er up to 12 dimensions only. One could study

the performance of this algorithm with 192 channel HIRIS data and 224

channel AVIRIS data with the number of groups in the order of hundreds.

Further, one can also study the order in which terms in the LTCF approach

are calculated to use the partial sum approach e�ectively.

(2)

This may be

more helpful in the case of future satellite data such as HIRIS and AVIRIS.

Further, we believe that with high dimensional images such as AVIRIS,

HIRIS, this modi�ed TSML algorithms may give some additional implemen-

tation problems such as:

a. Di�culties in calculating eigenvalues and

b. Di�culties while calculating thresholds between pairs of groups using

the method of Feiveson.

(3)

At present, we are trying to see the e�ectiveness and di�culties of all

these methods with 224 channel AVIRIS and other multi channel satellite

images.

6 CONCLUSIONS

Some modi�cations are proposed to improve further the TSML algorithm.

Winograd's method is proposed for use with range calculations, and the

same method is used with LTCF and UCF approaches

(2)

in calculating the

quadratic form. New types of ranges are derived from the expanded discrim-

inant function and used with TSML algorithm to identify their usefulness in

reducing CPU time. Pre-calculated values are proposed for use while calcu-

lating the Euclidean distance in ranges calculation and the e�ectiveness of

this logic is studied. It is observed that by assuming the rounded values of

group means in the pre-calculated squares approach, the classi�cation e�-

ciency of the algorithms does not change. Further, threshold logic

(3)

is used

with old and modi�ed TSML classi�ers and its e�ectiveness is observed.

Performance of old and modi�ed TSML algorithms is studied in detail by

varying the dimensionality and number of samples. For the purpose of exper-

imentation, a 6 channel thematic mapper (TM) and a randomly generated

12 dimensional data sets are used. Proposed fast algorithms are also used

with MML and Mahalanobis distance classi�ers.
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Table 1: Mean vector and Covariance Matrices of TM data

Group
Mean Covariance Matrix

Vector

1
65.13 7.9703 3.4829 6.5158 15.4918 5.4058 2.6761

28.11 3.2083 4.7205 11.2476 4.2226 1.5072

24.53 10.4674 17.3653 10.1343 3.8382

82.11 100.6353 14.3713 1.5719

58.05 32.8482 11.2350

18.17 7.4796

2
73.51 7.5305 4.1215 5.2481 3.6783 10.8313 5.8669

35.73 4.2828 4.6073 4.0132 11.4198 5.7362

34.39 7.0796 1.7717 12.8133 7.6058

82.93 39.3770 20.7186 9.2679

94.34 91.8638 37.4228

35.38 21.8762

3
66.30 4.3378 -0.2788 0.1368 -0.5809 1.9365 1.8311

31.54 3.0153 0.7368 4.1987 1.2867 -0.4440

22.48 4.2405 -8.1517 1.4787 0.9722

131.03 104.6501 7.4427 -4.7778

73.55 9.1121 2.4913

19.22 8.5003

4
66.36 3.1820 -0.2275 0.3140 0.0950 0.0502 0.3846

35.13 1.1730 0.8996 -1.8379 0.0334 0.1971

25.05 2.6536 -6.2290 -0.0692 -0.0318

116.44 77.1313 6.4668 -3.7385

71.50 6.8893 1.6561

19.00 2.9950

5
70.65 5.7881 1.7422 2.1404 -4.6257 0.2185 2.7876

32.60 2.4045 1.0251 -1.0262 1.4398 0.9375

27.77 3.5357 -2.7430 2.1431 2.6628

84.77 47.3721 10.3990 -7.9306

74.37 14.7411 4.0040

25.77 9.1151

6
71.25 5.5429 0.4363 0.0104 2.2993 -0.6800 -1.1679

30.48 2.6170 1.3100 -6.5523 4.4931 3.1821

25.40 3.6932 -12.5703 7.9940 5.9032

107.40 65.7621 -34.9278 -28.7912

64.21 37.9286 24.9381

17.68 20.3340

7
63.44 12.8483 8.1494 9.7692 14.5699 7.7148 4.8247

27.56 8.0880 9.7044 8.9883 10.4924 5.8384

23.45 15.4034 5.1695 17.0818 10.1263

78.63 107.1971 -7.3615 -19.3642

71.84 37.8487 19.0122

23.50 17.2225
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Table 2: Observations with TM data

Method
CPU time

PC/AT PC/XT

(Seconds) (Minutes)

Method 1
380 7.95

Method 2
200 5.65

Method 3
375 8.15

Method 4
365 8.05

Method 5
220 6.45

Method 6
204 6.25

Method 7
194 5.95

Method 8
145 4.85

Method 9
193 5.80

Method 10
142 4.65

Method 11
135 3.75

Method 12
190 5.75

Method 13
51 1.20

Method 14
60 2.65

Method 15
400 8.55

Method 16
132 2.95

Method 17
133 3.75

Method 18
132 3.70

Method 19
130 3.70

Method 20
133 3.70

Method 21
378 7.70

Method 22
190 5.50

Method 23
134 3.60

Method 24
133 3.50

Method 25
132 3.50

Method 26
134 3.55

Method 27
370 7.73

Method 28
125 3.55
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Table 3: Confusion Matrix for Literal Maximum Likelihood classi�er for TM

data

Percent Number of Classi�ed

Group
correct samples as group

classi�cation used 1 2 3 4 5 6 7

1
96.5 226 218 0 0 0 1 1 6

2
100.0 81 0 81 0 0 0 0 0

3
92.2 128 0 1 118 7 1 1 0

4
97.2 36 0 0 0 35 1 0 0

5
88.5 35 0 0 0 2 31 2 0

6
93.6 47 0 0 0 0 3 44 0

7
93.9 147 1 0 0 0 2 6 138

Percent
Mis-classi�cation = 5.0
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Table 4: Thresholds for TM data

Group
1 2 3 4 5 6 7

1
-14.20 -14.82 -15.71 -12.38 -11.03 -12.45

2
-14.20 -15.79 -16.47 -11.37 -11.22 -12.82

3
-14.82 -15.79 -8.21 -11.98 -11.77 -13.42

4
-15.71 -16.47 -8.21 -12.91 -13.93 -17.30

5
-12.38 -11.37 -11.98 -12.91 -9.91 -12.03

6
-11.03 -11.22 -11.77 -13.93 -9.91 -12.95

7
-12.45 -12.82 -13.42 -17.30 -12.03 -12.95
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Table 5: Details of Ranges for a sample vector

Group
Ranges of discriminant function in

equation (18) and equation (34)

Min Max Min Max

1
5.79 85.6 -.054 1.226

2
24.58 3382.19 -0.039 1.419

3
26.99 1659.6 -0.076 0.42

4
35.91 3577.42 -0.194 1.52

5
10.37 383.02 -0.071 0.50

6
9.39 1090.91 -0.13 0.89

7
7.9 319.91 -0.029 0.97

Actual discriminant

function value of
7.46 0.00434

minimum group

(Most Probable Group)
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Table 6: Observations with varying dimensions for a constant sample set

size of 2600 on PC/XT

Dimension
Method

2 11 17 18 16 1

4
520 370 363 348 318 730

6
760 580 534 550 478 1235

8
1020 835 740 815 702 {

10
1325 112 975 1095 940 {

12
1655 1485 1260 1445 1240 {
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Table 7: Observations with varying sample set size for 4 channel MSS data

on PC/XT

Number of
Method

Samples
2 11 17 18 16

1000
200 142 140 135 123

1500
301 214 214 207 183

2600
520 370 363 348 318

3500
700 478 487 473 428

4500
901 635 628 606 559

5000
1001 700 700 670 687
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Table 8: Observations with varying sample set size for 6 channel TM data

on PC/XT

Number of
Method

Samples
2 11 17 18 16

1000
293 223 205 214 185

1500
440 335 308 321 280

2600
1000 580 536 550 478

3500
1022 782 718 750 700

4500
1360 1055 | | |

5000
1455 1190 | | |

32



Table 9: Speed-Up vs Dimension

Dimension
PC/AT with PC/AT with PC/XT

Sample set Size Sample Set Size Sample Set Size

2600 5000 2600

4
1.56 1.60 1.62

6
1.54 1.59 1.62

12
1.50 1.40 |
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STAGE I

Assume the pixel to be classi�ed most probably belongs to the previous

classi�ed pixel's group ( say group is Iclass and remove Iclass from A ).

Calculate the Euclidean distance between mean vector of Iclass and X which

is

dis

Iclass

(X) = (X �M

Iclass

)

T

(X �M

Iclass

)

a. Remove each group j from A if

E

Iclass;d

� dis

Iclass

(X) > �

Iclass;j

b. Remove each group j from A if

dis

j

(X) > g

Iclass;j

� dis

Iclass

(X)

c. Remove each group j from A if

dis

j

(X)

j;Iclass

< dis

Iclass

(X)

and if group j is removed then modify

dis

Iclass

(X) = d

j

(X)andIclass = j

Here

dis

j

(X) = (X �M

j

)

T

(X �M

j

)



i;k

=

E

i;1

E

k;d

�

Iclass;j

= threshold between groups Iclass and j.

(3)

These ; � matrices will be calculated before the classi�cation. More-

over, one can use the partial sum approach of Venkateswarlu and Raju,

(29)

Bryant

(32)

and Hodgson

(33)

with groups elimination with the above men-

tioned Euclidean distances.

Figure. 2. Old TSML classi�er with threshold logic aided by Autocor-

relation Assumption
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Stage I

Assume the pixel to be classi�ed most probably belongs to the previous

classi�ed pixels group ( say group is Iclass and remove Iclass from A ).

Calculate the Euclidean distance between mean vector of Iclass and X which

is

dis

Iclass

(X) = (X �M

Iclass

)

T

(X �M

Iclass

)

a. Remove each group j from A if

dis

j

(X) > 

Iclass;j

� dis

Iclass

(X)

b. Remove each group j from A if

dis

j

(X) � 

Iclass;j

< dis

Iclass

(X)

and modify

dis

Iclass

(X) = dis

j

(X) and Iclass = j

Here

dis

j

(X) = (X �M

j

)

T

(X �M

j

)



i;k

=

E

i;1

E

k;d

This  matrix can be calculated before the classi�cation. Moreover, one

can use the partial sum approach of Venkateswarlu and Raju,

(29)

Bryant

(32)

and Hodgson

(33)

with groups elimination with the above mentioned Eu-

clidean distances.

Figure. 3. Old TSML classi�er with Autocorrelation Assumption
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Figure.4 Time vs Dimensionality observations on PC/AT for a sample set size of 2600.
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Figure.5 Time vs Dimensionality observations on PC/AT for a sample set size of 2600.
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Figure.6 Time vs Dimensionality observations on PC/AT for a sample set size of 2600.
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Figure.7 Time vs Sample set size observations on PC/AT for 12 band data.
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Figure.8 Time vs Sample set size observations on PC/AT for 4 band data.
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Figure.9 Time vs Sample set size observations on PC/AT for 6 band data.
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Figure.10 Time vs Sample set size observations on PC/AT for 12 band data.
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Figure.11 Time vs Dimensionality observations on PC/AT for MML classi�er.
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Figure.12 Time vs Sample set size observations on PC/AT for 4 band data.
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Figure.13 Time vs Sample set size observations on PC/AT for 6 band data.
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Figure.14 Time vs Sample set size observations on PC/AT for 12 band data.
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APPENDIX

THREE STAGE ML CLASSIFIER (Venkateswarlu and Raju

(1)

)

1. CalculateM

k

;

P

k

;

P

�1

k

; j

P

k

j; E

k;d

; E

k;1

; k = 1; : : : ; m using the train-

ing data.

2. Read new random pattern vector X.

Stage I

3. Calculate ranges of discriminant function using equation (18) for each

group. Say, d

k;min

(X); d

k;max

(X) are minimum and maximum of the

discriminant function of k

th

group.

4. Find minimum of d

k;max

(X); k = 1; : : : ; m, and label the corresponding

group number as Iclass. Iclass is the most probable class.

5. Let A = fj=j = 1; : : : ; m; and j 6= Iclassg. (That is, set A contains

the numbers of groups other than Iclass).

6. For each j�A, remove j fromA if d

j;min

(X) > d

Iclass;max

(X). If A is

empty, then classify X as group Iclass and go to Step 2.

Stage II

7. Otherwise calculate actual discriminant function value for group Iclass,

say it is d

Iclass

(X), using the LTCF approach.

8. For each j�A, remove j from A if d

j;min

(X) > d

Iclass

(X). If A is an

empty, then classify X as belonging to Iclass and go to Step 2.

Stage III

9. For each j�A, calculate the actual discriminant function d

j

(X) using

the LTCF approach. If this d

j

(X) > d

Iclass

(X), then remove j from

A. Otherwise Iclass =j, then remove j from A. Finally If A is empty

then X is classi�ed as group Iclass. Go to step 2.
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