

# Ambient Water Usage Sensor for the Identification of Daily Activities

Dipl.-Ing. Alexander Gerka

OFFIS – Institute for Information Technology, Oldenburg, Germany



## 2 Agenda

- Introduction
- Detection of Activitities of Daily Living
- State of the Art of Water Usage Detection
- Ambient Water Usage Sensor
  - Test Setup
  - Feature Generation
  - Feature Analysis
- Test & Results
- Discussion

gefördert durch:











# 3 Project QuoVadis

What are we doing?

- Foundation by the Central Federal Association of the Health Insurance Funds of Germany
- Project Goal: Interconnected living in a quarter for persons with dementia
  - Start: 01.02.2015
  - Keep dementia patients at home as long as possiple
  - Combination of caregiving an technology
  - Since March, 2017: Field evaluation with 8 users

gefördert durch:





Aus Liebe zum Leben







# 4 Project QuoVadis

Who are we?

- ► Johanniter Unfall-Hilfe e.V.
  - Nursing service provider
  - Staff: 12.000 (+30.000 Volunteers)
  - Research departement for assistive technologies
- GSG Oldenburg
  - Housing provider in Oldenburg
  - Over 8.000 apartments
- OFFIS: Insitute for Information Technology
  - 3 Division: Health, energy and transportation
  - Associated Institute of the Carl von Ossietzky University Oldenburg
  - ► 250 employees

gefördert durch:











### 5 QuoVadis Concept





# 6 Individual Caretaking

**Dementia – longterm and critical changes** 

- Dementia Symptoms[DGP 2009]
  - Depression, fear
  - Hyperactivity
  - Apathy
  - Sleep disturbances
  - Eating and drinking disorders
  - ▶ ...
- Longtermn Changes in behavior[DGP 2009]
  - Hygiene
  - Usage of household appliances
  - Disorientation
- We need a system that detects changes in activities of daily living



## 7 Activity Detection





#### 8 Detection of activities of Daily Living State of the Art

- Many systems already implemented using different sensor setups
  - Motion detectors
  - Smart meters (NILM)
  - Door contacts
  - Body-worn sensors...
  - RFID tags
  - ▶ ...
- No water usage detection sensor are used
  - Precision in typical measurement units in apartements is low and unaccesable
  - Expensive and intrusive installation of more complex sensors is necessary



#### 9 Measurement of water usage State of the Art

#### Industrial applications

- Speed probes [Bleckmann 2014]
- Ultrasonic : Doppler-shift and transit time flow meter [Morriss 1991, looss 2002, Simurda 2016]
- Identification of water consumers by their sound
  - Detection of leaks in water pipelines [Khulief 2011] [Hunaidi 2004]
- Sound of water in a pipe is Influenced by
  - Size of the leak
  - Bends of the pipe
  - Distance between sensor and leak



#### 10 Water Usage Sensor Test Setup





# 11 Feature Generation

Living Lab "IdeAAL"





#### ► 12 Feature Generation Pretest





## 13 Feature Generation

Signal Energy and Zero-Crossing Rate





# 14 Feature Generation

**Frequency Domain** 

Signal energy in 33 frequency bands between 12.5 Hz and 20 kHz





## 15 Feature Analysis

- Usage of machine learning tool "Weka" [Hall 2009]
- Tested machine learning alghorithms
  - OneR [Holte 1993]
  - Naive Bayes [Murphy 2006, Rennie 2003]
  - C4.5 decision tree [Quinlan 2014]
  - One vs. One classifier based one logistic regression [Witten 2014]
- Test Methods
  - Measurement of 4 consumers in model apartment
  - Evaluation by cross validation and supplied test set



#### 16 Test and Evaluation of the Prototype Questions

- How does our system perform under stable and optimal conditions?
- How does the flow rate impact the detection rate?
- ► How does the water temperature impact the detection rate?
- How does simultaneous usage of different consumers affect the detection rate?
- What is the performance of the system if all environmental conditions vary at the same time?
- Which is the most suitable machine learning algorithm for our problem?



#### 17 Test and Evaluation of the Prototype Results

# TABLE ISTABLE ENVIRONMENTAL CONDITIONS ( $N_{Test} = 120$ )

| Classifier | Detection Rate | <b>Correct Detections</b> |
|------------|----------------|---------------------------|
| OneR       | 96.67 %        | 116                       |
| NB         | 96.67 %        | 116                       |
| C4.5       | 94.17 %        | 113                       |
| One-vs-one | 100.00 %       | 120                       |



#### 18 Test and Evaluation of the Prototype Results

TABLE II FLOW RATE TEST ( $N_{Test} = 90$ )

| Classifier | Detection Rate | <b>Correct Detections</b> |
|------------|----------------|---------------------------|
| OneR       | 30.00 %        | 27                        |
| NB         | 36.67 %        | 33                        |
| C4.5       | 28,89 %        | 26                        |
| One-vs-one | 30.00 %        | 27                        |

TABLE III CROSS VALIDATION OF WATER FLOW TEST ( $N_{Test} = 90$ )

| Classifier | Detection Rate | <b>Correct Detections</b> |
|------------|----------------|---------------------------|
| OneR       | 80.00 %        | 72                        |
| NB         | 77.78 %        | 70                        |
| C4.5       | 82.22 %        | 74                        |
| One-vs-one | 94.44 %        | 85                        |

TABLE IV WATER TEMPERATURE TEST ( $N_{Test} = 60$ )

TABLE V

Cross correlation of temperature test ( $N_{Test} = 60$ )

| Classifier | Detection Rate | <b>Correct Detections</b> | - | Classifier | Detection Rate | <b>Correct Detections</b> |
|------------|----------------|---------------------------|---|------------|----------------|---------------------------|
| OneR       | 70.00 %        | 12                        | - | OneR       | 100.00 %       | 60                        |
| NB         | 15.00 %        | 9                         |   | NB         | 98.33 %        | 59                        |
| C4.5       | 13.33 %        | 8                         |   | C4.5       | 98.33 %        | 59                        |
| One-vs-one | 46.67 %        | 28                        |   | One-vs-one | 100.00 %       | 60                        |





## TABLE VI

#### Multiple simultaneous consumers ( $N_{Test} = 300$ )

| Classifier | Detection Rate | <b>Correct Detections</b> |
|------------|----------------|---------------------------|
| OneR       | 82.00 %        | 246                       |
| NB         | 94.33 %        | 283                       |
| C4.5       | 93.33 %        | 280                       |
| One-vs-one | 98.33 %        | 295                       |



#### 20 Test and Evaluation of the Prototype Results

# TABLE VII

CROSS CORRELATION AGGREGATIVE TEST ( $N_{Test} = 600$ )

| Classifier | Detection Rate | <b>Correct Detections</b> |
|------------|----------------|---------------------------|
| OneR       | 35.33 %        | 212                       |
| NB         | 50.50 %        | 303                       |
| C4.5       | 75.83 %        | 455                       |
| One-vs-one | 85.83 %        | 515                       |



#### -21 Discussion Results

- Water consumers can be detected by their sounds
- The implemented features are useful
- The one-vs-one classifier achieved the best results
- External impacts have to be included in training data set
- Overall detection rate of 86 % is too low for AAL applications
  - Attachment of the sensor, building a sensor box
  - Digitization closer to the sensing element
  - Measurement of the water pipes temperature
  - Comparison with other sensing elements (vibration sensor)
  - Novelty/outlier detection for external sounds



#### -22 Discussion Outlook

- ► Field Study in the project QuoVadis 03/2017 12/2017
- ► 3 apartments equipped with
  - Smart meter (4.8 kHz sampling rate)
  - Motion detectors
  - Door contacts
- Monthly interviews with inhabitants by caregivers
- Goal: integration of water usage sensor in this field Study to obtain a very interesting database





# Thank You!

# www.quovadis-projekt.de





# **24 Literature**

| [DGP 2009]       | S3-Leitlinie "Demenzen" (Kurzversion), Deutsche Gesellschaft für Psychiatrie, Psychotherapie und                    |
|------------------|---------------------------------------------------------------------------------------------------------------------|
|                  | Nervenheilkunde (DGPPN), Deutsche Gesellschaft für Neurologie (DGN), November 2009                                  |
| [Bleckmann 2014] | Bleckmann, H. et al.: Flow Sensing in Air and Water, Springer, ISBN 978-3-642-414459, 2014.                         |
| [Morriss1991]    | Morriss, S. L. and Hill, A. D.: Measurement of velocity profiles in upwards oil/water flow using ultrasonic         |
|                  | Doppler velocimetry. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers,                |
|                  | 1991.                                                                                                               |
| [looss2002]      | looss, B et al.: Numerical simulation of transit-time ultrasonic flowme-ters: uncertainties due to flow profile and |
|                  | fluid turbulence. Ultrasonics,40(9), 2002, pp. 1009-1015.                                                           |
| [Simurda2016]    | Simurda, M. et al.: Modelling of transit-time ultrasonic flow meters under multi-phase flow conditions. In          |
|                  | Ultrasonics Symposium (IUS), 2016, pp. 1-6.                                                                         |
| [Khulief2011]    | Khulief, Y. A. et al.: Acoustic detection of leaks in water pipelines using measurements inside pipe. Journal of    |
|                  | Pipeline Systems Engineering and Practice, 3(2), 2011, pp. 47-54.                                                   |
| [Hunaidi2004]    | Hunaidi, O. et al.: Acoustic methods for locating leaks in municipal water pipe networks. International             |
|                  | Conference on Water Demand Management, 2004, pp. 1-14                                                               |



# **25** Literature

| [Hall2009]       | Hall, M. et al.: The WEKA data mining software: an update ACM SIGKDD explorations newsletter, ACM, 2009,      |
|------------------|---------------------------------------------------------------------------------------------------------------|
|                  | 11, pp. 10-18.                                                                                                |
| [Holte1993]      | Holte, R. C.: Very simple classification rules perform well on most commonly used datasets, Machine learning, |
|                  | Springer, 1993, pp. 63-90.                                                                                    |
| [Murphy2006]     | Murphy, K. P.: Naive bayes classifiers. University of British Columbia, 2006                                  |
| [Rennie2003]     | Rennie, J. D. et al.: Tackling the poor assumptions of naive bayes text classifiers ICML, 2003, pp. 616-623.  |
| [Quinlan2014]    | Quinlan, J. R. C4. 5: programs for machine learning Elsevier, 2014.                                           |
| [Witten2005]     | Witten, I. H., Frank, E. Data Mining: Practical machine learning tools and techniques Morgan Kaufmann, 2005   |
|                  | pp. 188f, 198f, 320, 397.                                                                                     |
| [Greenwood 1999] | Greenwood, M. and Kinghorn, A.: SUVing: automatic silence/unvoiced/voiced classication of speech. In:         |
|                  | Undergraduate Coursework, Department of Computer Science, The University of Sheeld, UK, 1999.                 |
| [Chen 1988]      | Chen, C. H., Signal processing handbook, Dekker, New York, 1988, pp.531                                       |
|                  |                                                                                                               |