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Abstract. For an arbitrary similarity type of Boolean Algebras with Operators we 
define a class of Sahlqvist identities. Sahlqvist identities have two important properties. 
First, a Sahlqvist identity is valid in a complex algebra if and only if the underlying 
relational atom structure satisfies a first-order condition which can be effectively read off 
from the syntactic form of the identity. Second, and as a consequence of the first property, 
Sahlqvist identities are canonical, that is, their validity is preserved under taking canonical 
embedding algebras. Taken together, these properties imply that results about a Sahlqvist 
variety V van be obtained by reasoning in the elementary class of canonical structures of 
algebras in V. 

We give an example of this strategy in the variety of Cylindric Algebras: we show 

that an important identity called Henkin's equation is equivalent to a simpler identity that 

uses only one variable. We give a conceptually simple proof by showing that the first­

order correspondents of these two equations are equivalent over the class of cylindric atom 

structures. 

1. Introduction 

The aim of this note is to explain how a well-known result from Modal Logic, 
Sahlqvist's Theorem, can be applied in the theory of Boolean Algebras with 
Operators to obtain a large class of identities, called Sahlqvist identities, that 
are preserved under canonical embedding algebras. These identities can be 
specified as follows. Let (J = { fi : i E I} be a set of (normal) additive 
operations. Let an untied term over <1 be a term that is either 

(i) negative (i.e., in which every variable occurs in the scope of an odd 
number of complementation signs - only), or 

(ii) of the form 91(92 ... (gn(x)) .. . ), where the 9iS are'duals of unary el­
ements of (J (i.e., 9i is defined by 9i( x) = - fi( -x) for some unary 
operator in (J ), or 
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(iii) closed (i.e., without occurrences of variables; note that this case is 
covered by (i)), or 

(iv) obtained from terms of type (i), (ii) or (iii) by applying +, · and ele­
ments of <J only. 

Then, an equality is called a Sahlqvist equality if it is of the form s = 1, 
where s is obtained from complemented untied terms -u by applying duals 
of elements of a to terms that have no variables in common, and · only. 

Before proceeding, let us give some examples and non-examples of Sahlqvist 
identities in algebraic logic. First of all, the axioms governing normal, ad­
ditive Boolean Algebras with Operators { f; : i E I} (J;( x + y) = fix + fiY 
and fiO = 0) are Sahlqvist identities. This should be obvious for the later 
axiom, while the former is equivalent to 

fi(x + y) ·-(fix+ fiY) ~ 0 and (fix+ fiY) · -fi(x + y) ~ 0, 

or 

-[fi(x + y) · -(f;x + fiy)] = 1 and - [(f;x + fiy) · - f;(x + y)] = l. 

Now, finally, both fi(x + y) ·-(fix+ fiY) and (fix+ f;y) · - f;(x + y) are 
untied terms, as required. 

Next, recall that closure algebras are normal, additive Boolean algebras 
with a single operator ( · )c satisfying 

These inequalities are equivalent to -[x · -xc] = 1 and -[xcc . -xc] = 1, 
respectively; and clearly, both of these are Sahlqvist identities. 

As a further example, all axioms for both relation and cylindrir algebras 
can be brought in a Sahlqvist form. 

RA CA 
(x+y);z=x;z+y;z c;O = 0 
(x+yt=xv+yv X ~ CiX 
(x;y);z= x;(y;z) c;(x · c;y) = CiX · c;y 
x;l' = x CiCjX = CjCiX 
(xvr = x dii = 1 
(x; Yt = yv; Xv d;j = Ck( dik · dkj) 
xv; -(x; y) ~ -y ci(dij · x) · ci(dij · -x) = 0 
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Let's consider the RA axioms first. Using the tricks demonstrated above, 
it should be obvious by now that the first six RA axioms are equivalent to 
(pairs of) Sahlqvist identities. As for the last RA axiom, Johan van Benthem 
observed that it has a Sahlqvist equivalent 

-[(x¥;-(x;y))·y)] = 1. 

Now, what about the CA axioms? The first five CA axioms are clearly 
(equivalent to) Sahlqvist identities, while the sixth one is equivalent to the 
conjunction of dij · -ck(dik · dkj) = 0 and -dij · ck(dik · dkj) = 0, or, equiv­
alently, to the conjunction of -[dij · -ck(dik · dkj)] = 1 and -[-dij · q(dik · 
dkj )] = 1. And the latter two are Sahlqvist identities. The last CA axiom 
is equivalent to -[ci(dij · x) · ci(dij · -x)] = 1, which, again, is a Sahlqvist 
identity. 

Let's move on now to an example of an identity that is not (equivalent to) 
Sahlqvist equations. There are several reasons why an identity -t = 1 need 
not be a Sahlqvist identity, one of which is that t is a non-negative term that 
fails to be an untied one because some additive operator fin t is in the scope 
of a dual operator g. As an example demonstrating that such violations of 
the Sahlqvist requirements may quickly lead to failure of preservation of 
canonical embedding algebras, consider the so-called McKinsey axiom from 
modal logic: 

O(>p--+ (>Op or OOx ·<>Ox = O<>x, 

(Note that the latter is an identity between positive terms.) This ax­
iom/identity is not a Sahlqvist identity as the subterm O<)x is not an untied 
one, precisely because of the above reason. Due to a recent result of Gold­
blatt's, the McKinsey axiom is not preserved under canonical embedding 
algebras (cf. [Goldblatt 1991a, Cor. 5]). 

In fact, Sahlqvist proved two results concerning Sahlqvist identities. Refor­
mulated in algebraic terms, the correspondence theorem states the existence 
of an algorithm that, given a Sahlqvist identity T/, produces a first-order 
formula TJ 8 such that for any relational structure J, TJ 8 holds in Jiff TJ 8 holds 
in the complex algebra <tm J of J. In the canonicity part it is proved that 
Sahlqvist identities are canonical, i.e. they are preserved under taking canon­
ical embedding algebras. The main ideas behind these. results can already 
be found in Jonsson-Tarski [1952]. In particular, with some additional effort 
the canonicity theorem can be derived as a consequence of Theorem 3.10 of 
that paper. (For a more detailed and up to date exposition of this matter 
we refer to Jonsson [1994], which also contains new material.) 
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Nevertheless, we feel that algebraic logicians might find some new and 
potentially interesting ideas in the modal side of the field. Here we are think­
ing mainly of the correspondence part of the theory. Basically, its effect is 
that in the setting of Sahlqvist identities, there are useful results concerning 
relational structures that one may transfer to the corresponding variety of 
BAO's. For instance, the equivalence of two equations may be proved or 
disproved by reasoning on modal frames (or atom structures) rather then by 
manipulating these equations themselves. Note that this strategy of reduc­
ing algebraic issues to questions about atom structures has appeared before 
in the literature on algebraic logic, cf. [Andreka, Thompson 1988], [Henkin 
et al. 1971, 1985], [Maddux 1982]. The intended contribution of this paper 
is to show how Sahlqvist's theorem offers a more general, systematic and 
unified perspective on this strategy. 

As this note is aimed primarily at algebraists, we assume that the reader 
is familiar with basic algebraic notions and facts; for algebraic details not 
explained in this note we refer the reader to [Goldblatt 1989]. We will be 
somewhat more explicit concerning the modal logical results and definitions 
we will need; most of them will be presented in §2. After that, in §3, we 
describe the modal counterparts of the above Sahlqvist equalities, and par­
tially prove a Sahlqvist Theorem, which says that Sahlqvist formulas are 
both canonical and first-order. From this the preservation of Sahlqvist 
equalities under canonical embedding algebras is easily derived. Finally, §4, 
which is essentially a part of the second author's dissertation [Venema 1991], 
contains a detailed demonstration of the usefulness of the Sahlqvist Theo­
rem. By reasoning on the modal frames, we can give a very simple proof 
that Henkin's equation in cylindric algebras is equivalent to an identity in a 
simpler form. Up till now, no purely algebraic proof for this simplification 
is known to us. 

The reader is advised to skip §2 upon a first reading, and only to return 
to it later on to look up a definition. 

We would like to thank Johan van Benthem for stressing the importance 
of Sahlqvist 's Theorem, Hajnal Andreka, Istvan N emeti and Ildik6 Sain for 
encouraging us to write this note, and Prof. B. Jonsson for helpful sug­
gestions concerning the earlier report version of this paper [Rijke, Venema 
1991]. 

2. Preliminaries 

A Boolean algebra with operators (BAO) is an algebra~ of type { +, ., -, O, 1} 
U { Ji : i E I} such that ( B, +, ·, - , 0, 1) is a Boolean algebra, and the oper­
ators { fi : i E I} are (finitely) additive (join preserving) in every argument; 
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a BAO is called normal if for every fi, fi(x) = 0 whenever one of the terms 
Xj = 0. 

Let us quickly move on to the Stone Representations of BAO's, the so-called 
general frames. First, a modal similarity type is a pair S = ( 0, p ), where 
0 = { \/ i : i E I } is a set of modal operators, and p is a rank function for 
0. As variables ranging over modal operators we use 'iJ, \/ 1, •.• ; for monadic 
modal operators we use <>, <>1, .... For 'i1 i E S its dual operator <Ii is defined 
as <li(</>1 1 •• • ,</>p(i)) = -i'i/i(-.</>1, ... ,-.ef>p(i)); the dual of a monadic operator 
<>i is denoted Di. A modal language is a pair M = (S, Q), where S is a 
modal similarity type, and Q is a set whose elements are called proposition 
letters. From the modal and Boolean constants, and the proposition letters, 
the modal formulas are built up in the obvious way, using ...,, /\, and the 
operators in S. When no confusion arises we write M ( S) or even M rather 
than M(S, Q). 

A general frame J of similarity type S is a tuple (W, { Ri : i E I}, W) 
where W =j:. 0, Ri s;;; WP(i)+i, and W s;;; Sb(W) contains 0, and is closed under 
., -, and the operators { fR; : i E I}, where fR; : Sb(W)P(i) --+ Sb(W) is 
defined by 

fR,(Y1, ... ,Yp(i)) = 
(1) { Xo: 3x1 ... Xp(i) (R;(xo, Xi, ... 'Xp(i))/\ /\ (xi E Y;))}.1 

l~j~p(i) 

For future use we also define gR; : Sb(W)P(i)--+ Sb(W), by putting gR;(Y1, 
•.. ,Yp(i)) = -fR;(-Y1, ... ,-Yp(i))· A Kripke frame or atom structure of 
similarity type S is a tuple (W, { Ri : i E I}), with W and { R; : i E I} 
as before. A general frame J defines a Kripke frame J# via the forgetful 
functor(·)#: (W, { Ri: i EI}, W) I-+ (W, { R;: i EI}). A Kripke frame J 
defines the general frame J# via ( · )# : (W, { Ri : i E I}) 1-+ (W, { Ri : i E 
I}, Sb(W)). 

Given a general frame J = (W, { R; : i E I}, W) its complex algebra is 
the BAO J+ = (W, U, n, 0, W, -, { fR; : i E I}), where fR; : Sb(W)P(i) --+ 

Sb(W) is defined as in (1 ). 
Given a BAO ~ with operators {Ji : i E I}, the general frame~+ is 

the tuple (X'l3, {Rf; : i EI}, W), where X'l3 is the set of ultra:filters on 2j", 

1 Algebraists may be accustomed to seeing the argument places reversed in the def­
inition of the function fR,(Y1, ... ,Yp(i)) as {xo : 3x1 ... Xp(i)(R;(xo,x1,. .. ,xP(i)) I\ 
f\ 1 ~j~p(i)(x; E Yi))} in (1). Being modal logicians we like to think that the modal 
notation is the more elegant one. 
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Rf; ~ x~(i)+I is defined by 

R1Jao, ai, ... , ap(i)) i:ff 
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'Vj (1 ~ j ~ p( i) -r Xj E aj) implies Ji( x1, ... , x p(i)) E ao, 

and W ~ Sb(X!B) is { x: x E B} for x = {a EX~ : x E a}. The canonical 

structure ct.s !,B of !,B is the structure ('B+ )#:· By definition the complex 

algebra of the canonical structure of !.B is called the canonical embedding 

algebra of~: (£m ~ = (Its !,B)+. 2 By a canonical variety we mean one that 

is closed under canonical embedding algebras. 

A valuation on a general frame J is a function V taking proposition 

letters to elements of W; a valuation on a Kripke frame J is a valuation 

on J#:. In algebraic terms: a valuation is an assignment to the variables of 

elements of W, where W is the carrier of a subalgebra of J#:. Truth of a 

modal formula in a model (J, V) is then defined as follows: (J, V), wo I= p 

i:ff w0 E V(p); (J, V), w0 I= -irf> i:ff (J, V), w0 l;6 <P; (J, V), wo \= </>I\ 7/J iff both 

(J,V),wo \= <P and (J,V),wo I= 7/J; and (J,V),wo \= Vi(r/>i, ... ,</>p(i)) iff 

3w1, ... , wp(i) ( R;( wo, w1, ... , w p(i)) /\ /\ 1 ~j:r;;,p(i) (J, V), Wj \= r/>j) ). We write 

(J, V) I= r/> for: for all w E W, (J, V),w I= <P; J,w I= rf> is short for: for all 

valuations V on J, (J, V), w \= </>; and J \= </> is short for: for all w E W, 

J, w I= <f>. 
A modal formula</> in n proposition letters induces an n-ary polynomial 

h<t>( xi, ... , Xn) which may be defined as follows: 

hpj(x1, .•. , Xn) -
h-.<1>(x1, .•. ,xn) -

h<1>1v1/;(x1, .•• ,xn) 
hv;(<f>i, .. .,<f>p(i)l(x1, ... , Xn) 

x· J 

-h<1>(X1, ... ,xn) 
h<t>(Xi, ... , Xn) · h,µ(xi, ... , Xn) 
fR;(h<t>1 (x1, ... , Xn), ... , hq,p(_i)(x1, ... , Xn)). 

And conversely, each polynomial in a similarity type of BAO's is of the form 

h<f> for some modal formula </> in a modal language of the appropriate type. 

This identification of formulas and terms is made explicit in the following 

proposition. 

PROPOSJTION 2.1. Let S be a modal similarity type, J a general frame of 

type S, and rf> a formula in M(S). Then JI= <P iff (J)+ \= h,p = 1. 

A (normal) modal logic in a language M(S) is a subset A of the set of 

formulas in M(S) that contains as axioms all propositional tautologies (PL), 
as well as 

2 ln [Henkin 1970] the canonical embedding algebra of~ is called the Stone extension 

of ~; in (Jonsson, Tarski 1952] and [Henkin et al. 1971, 1985] it is called the perfect 
extension of !,B. 
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('V' i(P1, · · · ,Pi-i.P,Pi+i. · · ·, Pp(i})V 
(DB) 'Vi(Pi, ... ,pj-i,p',Pi+i, ... ,Pp(ij)) +-+ 

'Vi(Pii · · .,Pi-IiP V p',Pi+I• · · .,pp(i)), 

and that is closed under the following derivation rules: 

(MP) if</>,</>-+ 'ljJ E A then 'ljJ E A 
(UG) if</> EA then -.'Vi(</>1 , •.• ,</>i-i...,</>,</>i+i•···,</>p(i)) EA 
(SUB) if</> E A then all substitution instances of</> are in A. 

For a logic A a canonical general frame for A is defined by JA ( o:) = 
(Ql.A(a))+, where Ql.A(o:) is the free algebra (on o: generators) of the variety 
VA, where Qt E VA iff Qt I= hefJ = 1, for all </> E A. For a class of general or 
Kripke frames K, let Th(K) = { </>: for all J E K, J I= </> }. We call a logic 
A sound with respect to a class of general or Kripke frames Kif A~ Th(K), 
and complete with respect to Kif Th(K) ~A. A logic A is called canonical 
if ( i A ( o:) )# I= A, for every canonical general frame JA ( o:). 

Lo( S) is the first order language of type S; it has relation symbols Ri ( i E J) 
of arity p( i) + 1. L1 ( S) is Lo( S) extended with unary predicate symbols Pj 
corresponding to the proposition letters of our modal language. L2(S) is the 
language of monadic second order logic with relation symbols Ri ( i E J) of 
arity p( i) + 1, and variables Pjs ranging over sets. A modal formula</> locally 
corresponds to a formula a(x) if for all Kripke frames J of the appropriate 
type, J, w I= </> iff J I= o:[w]. A modal formula</> corresponds to a sentence 
a if for all Kripke frames J of the appropriate type, J I= <p iff J I= a. 
When interpreted on frames modal formulas correspond to L2(S)-formulas 
( cf. [Ben them 1983]). 

3. A Sahlqvist theorem 

To describe the modal counterparts of the earlier Sahlqvist equalities we 
need the following definition. 

DEFINITION 3.1. Let S be a modal similarity type. Positive and negative 
occurrences of a proposition letter p are defined as usual by: (i) p occurs 
positively in p, (ii) a positive (negative) occurrence of pin </> is a negative 
(positive) occurrence of pin -.<f> and in </>-+ ,,P, and a positive (negative) one 
in </>V ,,P, </>A 1/J, 'ili(</>1, ... ,</>, ... ,</>p(i)), <Ji(</>1, ... ,rj>, ••. ,</>p(i)) ('Vi ES). A 
formula 4> in M(S) is positive (negative) if every proposition letter occurs 
only positively (negatively) in </>. </>is monotone in the proposition letter p if 
for every model (i, V) and every valuation V' on J with V(p) ~ V'(p) and 
otherwise the same as V, (J, V), w I= <p implies (J, V'), w I= 'P· 
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Nate that in a positive formula negations of modal or Boolean constants 
are allowed. Also, if </> is positive then </> is monotone in all proposition 
letters. 

DEFINITION 3.2. Fix a modal similarity type S. A formula</> in M(S) 
is a Sahlqvist antecedent if it is built up from formulas that are either nega­
tive, closed (i.e., without occurrences of proposition letters), or of the form 
Di1 ••• Di,.P, using only V, /\ and 'Vi, where <)ip ... , <>in' 'il i E S. 

Define the set of Sahlqvistformulas in M(S) as being the smallest set X 
such that if</> is a Sahlqvist antecedent, and 'ljJ is a positive formula, then 
</> -+ ,,P E X; if O'i, 0'2 E X then 0'1 /\ 0'2 E X; and if ai, ... , a p(i) E X have 
no proposition letters in common, then <li(a1 , ... ,o°p(i)) EX. 

For a modal similarity type S that contains only unary operators several 
definitions exist of what it is for a formula in M(S) to be a Sahlqvist formula; 
however, all are equivalent to (or are covered by) the restriction of 3 .2 to 
such similarity types. 

We believe that the generalization to arbitrary similarity types is in fact 
ours. One ma.y wonder whether this is the obvious generalization from the 
'unary case', e.g., why are boxes (i.e., duals of unary normal, additive op­
erations) allowed in Sahlqvist antecedents, while for n ;;;:: 2 duals of n-ary 
operations in S are not? The reason why we are interested in Sahlqvist 
formulas is that they may be shown to be complete and to define certain 
first order properties of the underlying relations in (generalized) frames. A 
look at the kind of formulas forbidden in Sahlqvist antecedents in the unary 
case in order to guarantee these properties, shows that they typically include 
combinations of the form 0( ... V ... ), or, in first-order terms, 'r/( ... V ••. ). 
But these are precisely the combinations that pop up when we have n-ary 
boxes ( n ;;;:: 2) around! (In fact, if 'il is a binary modal operator, and <1 is its 
dual, then (p<ip)<lp-+ (p'Vp)'ilp may already be shown to be non-elementary.) 

Before proving an important property of Sahlqvist formulas we recall that 
for a binary relation R, R = { (y, x) : Rxy}. To each modal formula </> we 
associate a set operator F<li as follows. Let P1 , ... , Pk be sets and let P ab­
breviate Pi, ... , Pk. FPi = Pj (1 ~ j ~ k), while p--.<fi(P) = (F<l>(P))c, and 
F"'"""(P) = F"'(P)nF""(P). pv;(<li11····"'p(i))(P) = fR·(F<lii(P), .. . , p<lip(il(P)), 
while p<1;(</ii, .. .,</ip{_i))(P) = 9R;(F<P1 (P), ... , F<l>p(il(f)). We assume that the 
set operator corresponding to Boolean or modal constants is provided by the 
context in which these constants occur. 

THEOREM 3.3. Let S be a modal similarity type. Let x be a Sahlqvist 
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formula in M(S). Then X corresponds to an L0 (S)-sentence Ox effectively 
obtainable from X· 

PROOF. This is more or less similar to the proof of [Sahlqvist 1975, 
Theorem 8) (cf. also [Benthem 1983, Theorem 9.10]). Assume that x has the 
form 4> -r 1./J. 

Let Pi, ... , Pk be the proposition letters occurring in x. Having ;J = 
(W,{Ri: i EI}) I= X means having~ I= VP'Vx(x E FX(P)). By assump­
tion the latter formula has the form 

(2) 

where 4> is a Sahlqvist antecedent, and 1./J is a positive formula. Next, using 
such equivalences as 

(3) 

(4) 

and 

v . . . ( (<I> J\ x E pf>i v <1>2 ( P)) _, w) ,__, 
/\ v ... ( ( <P J\ x E F"'1 ( P)) -+ w)' 

j=l,2 

'rf··· ((<l>/\xEFv;(r/>i, ... ,</>,,<_;J)(f))-+W) ,__, 

V · · · 'Vy1 · ·. Yp(i) (( <l> /\ RiXY1 ... Yp(i) /\ f\(Yj E F<P1 (P)))-+ \[I), 
j 

( 5) V · · · ( (<I> /\ x E Fv ( P)) -+ w) ,__, V · · · (<I> -+ ( w v x E F""'v ( P))) , 

(2) can be rewritten as a conjunction of formulas of the form 

k m; h 

(6) VP'Vx'Vyz((<I>/\ /\ /\(YtjE9Rn 11 ••• gR111 (Pj)))-+ V(zjEF.P;(P))), 
j=1 l=I j=l 

where <I> is a quantifier free L0-formula ordering its variables in a certain way, 
and where all the 1./;js are monotone. If a predicate variable P occurs only in 
the consequent VJ=1 ( Zj E F.P1 ( P)) in ( 6), then, by the monotonicity of the 
1./Jjs, it can be replaced by 1-, and the quantifier binding P may be deleted. 
Thus we may assume that every predicate letter occurs in the consequent 
of (6) only if it occurs in the antecedent of (6). 
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By an easy argument we have that /\";!1(Y1j E YRn ... ·9R1 (Pj)) if and 
- IJ IJ 

only if we have U~1 f tt11; ••• f ltn,3 ( { Ylj } ) ~ Pj. Thus by universal instanti-

ation ( 6) implies the first order formula 

(7) 

But, conversely, by the monotonicity of the functions p'l/JJ (7) implies (6), 
and we are done. 

To prove the general case one may argue inductively. If the Sahlqvist 
formulas Xi, x2 have been shown to correspond to 0.1, 0.2, respectively, then 
x1 /\ x2 corresponds to 0.1 /\ 0.2; and if x 1 , ••. , Xp(i) are Sahlqvist formu­
las that have no proposition letters in common, and that have been shown 
to correspond to 'ilx a1, ... , 'ilx ap(i)' then <li(X1, ... , Xp(i)) corresponds to 
Vxy(RiXY1 .. ·Yp(i)-+ o.1(Y1) V · .. V <lp(i)(Yp(i))). • 

Two remarks are in order. First, in the above result we may in fact re­
place 'corresponds' by 'locally corresponds'. But given the algebraic appli­
cation we have in mind the global version is more natural. Second, although 
the algorithm in the above general proof may seem somewhat intractable or 
even obscure, in particular examples it is quite manageable, as is witnessed 
in §4. 

THEOERM 3.4. Let S be a modal similarity type. For j E J, let Xi be 
Sahlqvist formulas in M(S). Let A be the modal logic axiomatized by { Xi : 
j E J }. Then A is canonical. Hence A is complete with respect to the class 
of K ripke frames defined by { o.XJ : j E J } . 

PROOF. There are various ways to prove this result. The case where 
S contains only unary modal operators is [Sahlqvist 1975, Theorem 19]. To 
prove the general case one may use the same arguments together with the 
canonical frame construction for modal logics of arbitrary similarity type 
as found in [Venema 1991, Appendix A]. An alternative proof of the unary 
case may be found in [Sambin, Vaccaro 1989). Finally, Goldblatt [1991b] 
proves that any variety of BAOs is canonical whenever it is generated by a 
frame class which is closed under ultraproducts; therefore, Theorem 3.4 is 
an immediate consequence of Theorem.:l ~ • 
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We leave it to the reader to check that every Sahlqvist formula induces 
a Sahlqvist identity, and conversely. 

THEO ERM 3.5. Let E be a set of Sahlqvist equalities. Let VE be the variety 
defined by E. Then VE is canonical. 

PROOF. Let f; be the set of modal translations of the elements of E. 
So f; is a set of Sahlqvist formulas. Now, to prove the theorem, let Q3 EVE. 
Let 2lE(IBI) be the free E-algebra on IBI generators. Then 2lE(IBI) - Q3, 

and hence <Em 2lE(IBI) - <Em Q3, by [Goldblatt 1989, Corollary 3.2.5(6)]. So 
we are done once we have shown that <Em 2lE(IBI) EVE. 

Q3 2lE(IBI) 

I I 
<Em Q3 <Em2lE(IBI) 

Figure 1. 

Since 2lE(IBI) I= E, 2lE(IBI)+ I= E. So by 3.4 Q:s 2lE(IBI) = (2lE(IBI)+)# I= 
f:. But then <Em2lE(IBI) = ((2lE(IBI)+)#)+ I= E, i.e. <Em2lE(IBI) EVE. • 

REMARK 3.6. For a description of the current state of the art concerning 
canonicity and the relation with notions like first-order definability, we refer 
the reader to [Goldblatt 1991a]. 

REMARK 3. 7. Although Theorem 3.5 describes a large part of the class 
of identities that are preserved under canonical embedding algebras, the 
Sahlqvist identities do not describe this class exhaustively. The conjunction 
of the McKinsey axiom (DOp--+ <>Op) and the transitivity axiom (<><>p--+ 
Op) from modal logic is a case in point: this formula is not a Sahlqvist 
formula, but it is preserved under canonical embedding algebras. 

As an application of Theorems 3.3 and 3.5, let us substantiate our earlier 
claim that when dealing with Sahlqvist equations we can move back and 
forth between modal frames and algebras, in the sense that to prove that 
two Sahlqvist equations are equivalent over a canonical variety V, it suffices 
to establish the equivalence (in At V) of their first-order translations. This 
means that reasoning can be done in the Kripke frames, which is usually 
much easier than manipulating algebraic equations. 
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THEOERM 3.8. Let V be a canonical variety, and 'f/1 and 'f/2 two Sahlqvist 
equations with first-order correspondents a1 and a2. Then 

PROOF. From left to right: let m be an algebra in v with m I= T/i· By 
the fact that 'T/i is a Sahlqvist equation, T/i holds in ~mm = (Its m)+. This 
gives 1t.sm I= ai, so by assumption ct.sm I= O-j. But then again ~mm I= 'f/j, 

so T/i holds in m ~ ISm m. 
From right to left: let~ be a frame in AtV with~ I= O:i. Then~+ I= 'f/i 

:::} ~+ I= 7]j ::} ~ I= Oj. • 

4. An example: simplifying Henkin 's equation 

We assume familiarity with the notion of a cylindric algebra ( cf. [N emeti 
1991], [Henkin et al. 1971, 1985]), but we modify some notation and def­
initions. Without loss of generality we rnay confine ourselves to the two­
dimensional case. The algebraic language £ 2 has a constant d01 and two 
unary operators co and ci, which we write as <>o and <>ti respectively, if we 
want to stress the modal aspects of the subject. A cylindric-type frame is 
a quadruple -3' = (W, "'o, "'1, D) with "'i a binary accessibility relation (for 
<>i) on W, and D the subset of W where d01 holds. In the following table 
we list the modal versions of the axioms governing the variety of cylindric 
algebras, together with their first-order equivalents ( i E {O, 1} ): 

(Gli) X ~ CjX (Nli) Vuu "'i u 
(G2i) X ~ -Ci - CjX (N2i) Vuv ( u "'i v --+ v "'i u) 
(G3i) CjX ~ CiCiX (N3i) Vuvw ( ( u "'i v /\ v "'i w) --+ 

u "'i w) 
(C4i) CjCjX ~ CjCjX (N4i) Vuvw((u "'iv/\ v "'j w)--+ 

3u' ( u "'i u' /\ u' ,.._,i w )) 
(C5i) Cido1 (N5i) Vu3v ( u ,.._,i v /\ Dv) 
(C6i) Ci(do1 · x) ~ -ci(do1 · -x) (N6i) Vuvw((u "'iv/\ u ""i w /\ 

Dv /\ Dw)--+ v = w). 

We define Cl = Clo /\ Cli, etc. A cylindric algebra is an algebra Ql = 
(A,+,-, co, ci, do1) such that (A,+,-) is a Boolean Algebra, c0 and c1 are 
normal and additive, and Cl, ... , C6 are valid in m. The variety of cylindric 
algebras is denoted by CA. 

A cylindric frame is a cylindric type frame ~ such that N 1 , .•• , N 6 are 
valid in .;y. So a frame .;y = (W, "'o, "'i, D) is cylindric iff ""a and ""l are 
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equivalence relations (Nl, N2 and N3 for respectively reflexivity, symmetry 
and transitivity), every "'i-equivalence class contains precisely one 'diagonal' 
element in D (N5 for existence, N6 for unicity), and ""o and "'l permute 
(N 4); below these facts may be used without notice. Cylindric frames are 
called 'cylindric atom structures' in parts of the literature on algebraic logic, 
cf. [Henkin et al. 1971, 1985]. 

The following proposition is immediate by the Sahlqvist form of Cl, ... , 
C6, and Theorems 3.3 and 3.4; the result is known from the literature on 
algebraic logic, cf. [Henkin et al. 1971, 1985, Section 2.7]. 

PROPOSITION 4.1. (i) J is a cylindric frame iJJJ+ is a cylindric algebra. 
(ii) CA is a canonical variety. 

Besides the axioms Cl, ... , C6 governing the variety of cylindric algebras, 
additional equations play an important role, especially Henkin's equation3 

( 77) 

For example, it can be shown that adding 77 (and the version of 77 where co 
and c1 are interchanged) to Cl, ... ,C6, one obtains a complete equational 
axiom system for the set of equations valid in the variety of representable 
cylindric algebras, cf. [Henkin et al. 1971,1985, Theorem 3.2.65]. (This is 
only true in the two-dimensional case; in the higher dimensional case the role 
of 77, though important, is not decisive; cf. Theorems 4 and 5.1 of [Nemeti 
1991].) One might wonder why the authors of [Henkin et al. 1971,1985] 
decided against giving 77 the status of a CA-axiom. One of the reasons may 
have been that 'f'/ is less transparent than the other seven. In the remainder 
of this section we will show that TJ has a simpler equivalent (over the variety 
CA), and that the equivalence is very easy to prove using the Sahlqvist form 
of the equations. 

So let us define the intended simplification of Henkin's equation: 

( 77') 

Clearly both T/ and 77' are Sahlqvist equations. Let us compute their first­
order equivalents. 

3The earliest reference to this equation seems to be in 1. Henkin, Cylindric algebras 
of dimension 2, Bull. Amer. Math. Soc. 63:26, 1957. A further reason to ascribe this 
equation to Henkin can be found [Tarski 1986, Vol. 4, p. 65, footnote 27]. 



74 M. de Rijke, Y. Venema 

DEFINITION 4.2. Let a, a' be the formulas 

(a) 
VuVvVw ((u ""O v ""1 w A v # w) __.. 

3x(-iDx A u "'I x A ( x "'O v v x "'O w))) 

(a') Vu'i/vVw ((Du/\ u "'O v "'l w /\ v -:f w) __.. 3x(-.Dx /\ u "'l x ""ow)). 

The following pictures explain the meaning of a and a' for cylindric 

frames: 

0 
0 x (ti D) w·~ 

1,# v·x (~ D) /i 
v• •u 0 

l,f 

0 
v• 

Figure 2: a Figure 3: c/ 

PROPOSITION 4.3. Let i be a frame of the appropriate similarity type. 
Then J I= a {=>- J+ I= 'T) and J \= a' {:::::::? i+ I= r/. 

PROOF. Forry, we will spell out the algorithm of Theorem 3.3 to find 
its first-order correspondent. First consider its modal variant 

(x) 

Let</> and 7/J be respectively the antecedent <>o(P A -iq /\ 0 1(p /\ q)) and the 
consequent <>1 ( -ido1 A <>op) of this formula. Clearly x is a Sahlqvist formula, 
as </> is a Sahlqvist antecedent and 1f; is positive. 

Now let J = (W, ""o, ""1, D) be a Kripke frame for the language, then 
JI= x iff 

(8) J \= 'efxVPVQ(x E FX(P, Q)). 

Now the formula x E FX(P, Q) is by definition equivalent to 

(9) x E p<I> ( P, Q) - x E pt/1 ( P, Q). 
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Step by step we will rewrite (9), abbreviating u E P by Pu. Starting with 
the antecedent of (9), we obtain 

or better 

yielding the effect of ( 4 ). Then we get 

Vyi ((x "'o Y1 /\ Py1 /\ -,QyI /\ yI E F 01 (pAq)(P,Q))---> x E F1"(P,Q)), 

and ( 5) gives 

'lfyi ( (x "'o Y1 /\ PyI /\Yi E pOi(pAq)(P, Q))---> (x E F"'(P, Q) V Qyi)). 

Using ( 4), we obtain 

(10) 
VyI Vy2 ( ( x "'o YI /\ Py1 /\ YI """I Y2 /\ Py2 /\ Qy2) -

(x E F"'(P,Q) V Qy1)). 

So we have J I= x iff the following formula holds in J: 

Vx"i/ PVQ"i/y1 Vy2 ( ( x "'O YI /\YI "'I Y2 /\ PyI /\ Py2 /\ Qy2) ---> 

( x E F"' ( P, Q) V Q YI)) . 

Comparing this formula with (6), we observe that for both Yi and y2 the 
sequence 9Rn ... 9Ri of (6) is empty, so the universal instantiation men-'i !J 

tioned just above (7) simply means replacing Pu by u E {yi, y2} (or better, 
by (u =YI Vu= Y2)), and Qu by (u = Y2). 

So (10) is equivalent to the following instance of (7), viz. 

which really means 

Vx"i/y1 'If y2 ( ( x '""o Yt /\ Yi '""1 Y2) -

( Yt = Y2 V 3zi ( x "'I ZI /\ .,D z1 /\ 3z2( zi '""O z2 /\ ( z2 = Y1 V z2 = Y2))))). 
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Transporting (y1 = y2 ) back to the antecedent, and after some straightfor­
ward formula manipulation, we finally obtain 

Vx'Vy1'VY2((x ""O Y1 /\ Y1 ""1 Y2 /\ Y1 f. Y2)--+ 

3z1(x "'1 z1 /\ 0 Dz1 /\ (z1 ""O Y1 V z1 "'O Y2)))' 

which is what we were after. • 
We now arrive at the main result of this section, which states that over 

the variety of cylindric algebras the equations T/ and T/' are equivalent. Nate 
that this result applies to cylindric algebras of arbitrary dimension. 

PROPOSITION 4.4. Let2l be a cylindric algebra. Then 2l 1= T/ ~ 2l I= r/. 

PROOF. By the previous two propositions it is sufficient to show that 
for a cylindric frame J, J I= a: {:::::} J I= a:'. 

( {:::) Assume that JI= a:'. To prove that JI= a:, let u, v and w be worlds in 
J with u "'o v ""1 w and v -:f. w. We have to find an x with x rt. D, u ""'1 x 
such that x is in the 0-equivalence class with v or with w. Distinguish the 
following cases: 

Case 1: u ED. 
Then JI= o.' immediately gives us the desired x, with x "'o w. 

Case 2: u tj. D. 
Then u itself is the desired x, as u "'o v and u "'I u. 

( =>) For the other direction, we assume that ;j' I= a:, we consider arbitrary 
u, v and win J with u E D, u "'o v ""I wand v f. w, and set ourselves the 
task to find an x with x ~ D and u ""l x "'Ow, viz. Figure 3. 

Since ;j' I= a:, there is a y tj. D with u "'I y and y "'o v or y ""O w. 
Distinguish 

Case 1: y "'ow. 
This means we are finished immediately: take x = y. 

Case 2: y ""O v. 

Since i I= N 4, there is a z in ;j' with y "'l z ""o w, as in Figure 4: 
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0 w• ------- • z 

1 0 

/"Yv 1,# 

0 

•y / 

1/ D 

v• •u 

/ 
v• ------- •u = z 

0 

/ 
Figure 4. Figure 5. 

Distinguish 

Case 2.1: z rf. D. 
Again we are finished: take x = z. 

Case 2.2: z ED. 
This implies z = u because J I= N6, so we have the situation depicted in 
Figure 5. We now have w ""'o z = u ""'o v ""'o y, so y "'o w after all, and we 
are back in case 1: take x = y. II 
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