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Abstract

Many applications running on large parallel computers are designed to solve various
challenging problems, such as weather forecasting and drug discovery. To solve these
challenging problems more e�ciently, modern large parallel systems (supercomputers)
rely on hundreds of thousands of compute nodes to provide powerful computational
capabilities. Applications running on parallel computers usually require the collabora-
tive work of a large number of compute nodes to complete the computational task; the
collaboration between compute nodes involves a great deal of mutual communication.
Collective communication, a mode of communication involving multiple processes or
compute nodes, is widely used in applications running on parallel computers.

For many parallel applications, the collective communication operations dominate
the execution time. Improving the performance of collective communication operations
is a crucial way to shorten the execution time of the applications. The performance of
collective communication operations is a�ected by both hardware and software. At the
hardware level, a crucial factor is the interconnection network, especially network
topology. Network topology dictates the connectivity among compute nodes within
parallel computers. A low latency network topology reduces the communication
overhead between compute nodes and thus improves the performance of collective
communication operations. At the software level, the implementation of algorithms for
collective communication operations and the mapping strategy of jobs and processes
can a�ect the performance of collective communication operations.

In this dissertation, we present e�cient collective communication in parallel
computers with shortcut network topologies. The shortcut network topology consists
of a baseline topology with shortcut links, which shorten the diameter and average
shortest path length (ASPL). We propose the implementation of e�cient collective
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communication operations on two types of network topologies: the random shortcut
topology and the non-random shortcut topology.

The �rst approach proposes implementing e�cient collective communication
using random shortcut network topologies. The random network topologies can be
used to achieve low hop counts between nodes and, thus, low latency on average. We
describe three process mapping strategies on random shortcut topologies: random
mapping, hierarchical-tree mapping, and ring-based consecutive mapping. Then,
we apply the two-opt algorithm to the mapped compute nodes to optimize the rank
placement for building e�cient collective communication operations on random
shortcut network topologies. The two-opt approach minimizes the total path hops or
possible communication contention of point-to-point communications that form the
target collective communication by implementing the process rank re-placement for
e�cient collective communication. Our proposed two-opt approach can signi�cantly
reduce the number of hops for collective communication operations such as Broadcast,
Allreduce, and Alltoall. SimGrid discrete-event simulation results show that the two-opt
approach can dramatically improve the performance of collective communication and,
in parallel applications where collective communication operations dominate, the
two-opt approach can improve the overall performance of the application.

The second approach proposes using circulant network topologies. Unlike random
shortcut topologies, a circulant topology is obtained by adding non-random links to a
ring topology. The circulant network topologies provide algorithmic features that
reduce the total hop counts of some typical collective communication algorithms; these
features make them ideal for collective communication operations. We propose two
process mapping strategies for circulant network topologies: ring-based consecutive
mapping and circulant mapping. These two mapping strategies result in very low
path hops of collective communication operations, and it is even possible to achieve
the optimal hops. SimGrid discrete-event simulation results show that ring-based
consecutive mapping and circulant mapping signi�cantly improve the performance
of collective communication operations. We also evaluate the parallel applications
on circulant network topologies; the application evaluation results also show that
when communication operations dominate the performance, the low hops mapping
strategies on circulant network topologies achieve better performance.

Finally, we compare these two shortcut network topologies. Circulant network



v

topologies have a higher diameter and average shortest path length(ASPL) than
random shortcut network topologies in the case of having the same degree. However,
the collective communication operations(e.g., Broadcast, Allreduce, and Alltoall) on
circulant network topologies have far fewer hops than random shortcut network
topologies, which results in better performance for collective communication operations
on a circulant network topology. Moreover, we compare the cable length of random
shortcut topologies and circulant topologies with the same degree; the circulant
network topologies have much less cable length than random topologies, which
makes the circulant network topologies less costly than the random shortcut network
topologies in constructing network interconnection for parallel computers.
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1
Introduction

1.1 Network Topology

Current parallel computers consist of hundreds of thousands of compute nodes. For
example, the world’s most powerful supercomputer, Frontier, has 9,472 compute nodes
as of Nov. 2022 [4]. As the demand for computing power increases, the number of
compute nodes of supercomputers will increase.

Large-scale parallel computers su�er from communication latency between compute
nodes. The design of low-latency network interconnections is a crucial component in
developing high-performance parallel computers. In large parallel computers, the
latency between compute nodes generally falls within tens to hundreds of nanoseconds.
The 36-port non-blocking 200Gb/s EDR In�niBand switch in supercomputers Summit
and Sierra has a latency of 90 nanoseconds [5].

When it comes to interconnecting large-scale parallel computers, it is crucial
to consider not only the cutting-edge high throughput and low latency hardware
components, such as low-latency switches [6], but also the network topology design. A
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network topology refers to the arrangement or structure of its node connections and
can signi�cantly impact the system’s e�ciency and scalability [7]. A broad spectrum
of network topologies has been employed in high-performance parallel computers,
while many topologies have been proposed as potential candidates.

In the context of high-performance parallel computing, it is common for applications
to be executed on multiple compute nodes, necessitating message exchanges between
them. A message originating from a source node can traverse several intermediate
nodes before reaching its destination node. The distance between the source and
destination node is called the hop count and refers to the number of channels and nodes
that a message must traverse to reach its destination [7]. The communication latency
between two nodes is directly proportional to the number of intermediary nodes, or
hops, along the transmission path. The objective of minimizing communication latency
between two nodes can be achieved by ensuring that the distance between the nodes is
as tiny as possible. The most e�cient way to accomplish this is by having a fully
connected network topology, in which each node is directly connected to every other
node in the network. In this network topology, the hop count between any two nodes
is always one, which minimizes communication latency. Utilizing fully connected
network topology is a strategy speci�c small-scale networks employ to achieve their
low latency objectives[8].

However, due to scalability, cost, and complexity limitations, fully connected
network topology is not typically used in large-scale networks. Upon evaluating the
trade-o�s associated with scalability, cost, and complexity, a diverse range of non-fully
connected network topologies have been suggested as viable candidates for high-
performance computer systems to attain the objective of minimizing latency. Diameter
and average shortest path length (ASPL) are crucial factors typically considered for
interconnection network topology. Diameter refers to the maximum distance between
any two nodes in a network. ASPL, on the other hand, is the average distance between
any two nodes in the network. In a network topology with a small diameter and low
ASPL, the distance between any two nodes is short, meaning messages can travel
between nodes with fewer hops and less latency.

The small world e�ect can lead to the formation of networks with a low diameter
and low ASPL [9]. Adding random shortcuts to regular network topologies, such as
torus and ring, can signi�cantly decrease the network’s diameter and ASPL. Random
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shortcut network topologies have been proposed to construct interconnection networks
with low latency [2].

Another approach is to borrow a �nding of graph theory. The order/degree problem
is computationally demanding to identify the graph with the minor diameter and ASPL
for a given number of nodes and degrees [10]. The graph golf competition imposes
constraints on the number of nodes and degrees, requiring participants to identify the
graph with the most minor diameter and ASPL that satis�es these constraints [11]. We
can use the graphs from the database of the graph golf competition. Fixed low-diameter
topologies, such as Dragon�y [12] and Slim Fly [13], have been recognized as e�ective
alternatives for achieving low-latency interconnects, and have been implemented
in supercomputers, including Frontier, which is currently the fastest computer [14].
Frontier employs the Dragon�y network topology for its high-speed interconnects [15].
Dragon�y and Slim�y are characterized by diameters of 3 and 2, signifying that
messages can traverse between nodes within a maximum of 3 and 2 hops, respectively.

1.2 Collective Communication

The low-latency hardware components and the low-latency network topology described
above are crucial for parallel computers. Other aspects, such as routing and collective
communication, also signi�cantly impact the performance of applications running in
parallel computers. Collective communication is a critical aspect of parallel computing,
and it plays a signi�cant role in determining the performance of parallel applications.
In numerous supercomputer applications, a substantial portion of the total program
runtime is attributed to collective communication [16]. The optimization of collective
communication yields a reduction in communication overhead and time, resulting in
enhanced application performance [17, 18].

Collective communication involves multiple processes or nodes in a parallel
computer communicating with each other simultaneously [19]. In contrast to point-to-
point communication, where two processes exchange messages directly, collective
communication involves a group of processes performing a coordinated communication
operation, and the outcome depends on the collective behavior of all processes or
nodes. Collective communication comprises a range of distinct operations contingent
on the behavior of nodes or processes during the communication. These operations
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encompass various types, such as broadcast, reduce, gather, scatter, all-to-all, all-reduce,
all-gather, and barrier, among others.

Collective communication operations can be implemented in both software and
hardware. In software implementations, collective communication operations can be
realized by means of high-level APIs. MPI(Message Passing Interface) is a widely used
standard for implementing collective communication operations.

MPI provides a set of functions, including MPI_Bcast, MPI_Reduce, MPI_Gather,
MPI_Scatter, MPI_Alltoall, and MPI_ Barrier, that facilitate communication among
processes [20]. These functions are typically built using lower-level communication
primitives, such as peer-to-peer communication. MPI implementations are typically
provided by software libraries that o�er a range of functions for conducting message-
passing operations among processes. Some MPI libraries implementations include
Open MPI, MPICH, MVAPICH2, and Intel MPI [21, 22, 23, 24]. Each library has features
and performance characteristics, and users can choose the one that best �ts their needs
and requirements.

Hardware-based implementations of collective communication can be achieved
through specialized communication hardware such as network interface cards (NICs),
routers, switches, and FPGAs [25, 26, 27, 28]. These hardware devices can provide
e�cient communication among processes by o�oading some communication tasks
from the CPU to the specialized hardware. One instance of hardware-based collective
communication is exempli�ed by the NVIDIA In�niBand switch [6, 28] that employs
the Scalable Hierarchical Aggregation Protocol (SHArP) to facilitate the implemen-
tation of a computation segment via the switch without requiring compute nodes,
thereby signi�cantly decreasing the latency of reduction operations in collective
communication [29]. Another example of hardware-based collective communication is
the Cray Gemini interconnect used in Cray supercomputers [30]. The Aries collective
engine provides hardware support for reduction and barrier operations [31]. In
general, hardware-based collective communication can provide faster and more
e�cient communication among processes than software-based solutions, as it o�oads
communication tasks to specialized hardware devices, reducing the burden on the
CPU and communication latency. However, hardware-based solutions can be more
expensive and complex than software-based ones, requiring technical hardware
devices.
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1.3 Process Mapping

In parallel computers, the execution of an application involves a set of compute nodes,
but it is not necessary that all nodes actively participate in the application. Instead,
typically, only a subset of nodes cooperatively perform a speci�c task, which is required
for the e�cient and timely completion of the application. This selective participation of
nodes is essential in large-scale parallel computers, where communication overheads
may increase with the number of nodes involved. The allocation of compute nodes,
processors, cores, and other resources can signi�cantly a�ect the performance of an
application. As a result, mapping techniques that determine the allocation of resources
are critical for parallel computers [32, 33, 34]. The growth of high-performance
computing systems in size and complexity has increased the importance of mapping
techniques that assign compute nodes and resources to applications.

In a parallel computer, the placement of processes on compute nodes can a�ect
collective communication performance because the latency of communication can be
a�ected by the distance between processes. Process mapping, which is the assignment
of processes to compute nodes, can signi�cantly impact communication performance.
When processes that require communication are assigned to distant compute nodes, the
communication latency increases due to the increased number of communication hops,
leading to performance degradation. Many studies focus on developing process mapping
techniques to improve communication performance in parallel computers. These
techniques aim to reduce communication latency by minimizing the distance between
communicating processes and reducing communication contention [35, 36, 37]. The
task mapping processes onto a speci�c network topology, considering the underlying
network topology and the application’s communication patterns, referred to as
topology-aware task/process mapping. Many studies have been conducted on process
mapping techniques for speci�c network topologies commonly found in parallel
computers, such as torus [38, 39, 40, 41], fat-tree [42, 43, 44], and Dragon�y[45, 46, 47].
Topology-aware process mapping techniques consider the underlying network topology
and exploit its geometric characteristics to assign tasks or processes in a way that
reduces communication latency.
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1.4 Motivation and Objects

The research problem is centered on designing e�cient collective communication in
parallel applications to enhance their overall performance. Collective communication
is paramount for the e�ective execution of parallel algorithms, as it necessitates
the simultaneous exchange of data among multiple processes. A wide array of
factors, including both hardware and software components, exert in�uence on the
performance of collective communication. As explicated in Chapters 1.1 and 1.3, the
interconnection network topology utilized in parallel computing architectures, and the
employed process mapping strategies substantially a�ect the e�ectiveness of collective
communication. Suboptimal communication can result in bottlenecks and considerably
impede the performance of parallel applications.

This research aims to pursue e�cient collective communication by examining
network topology and process mapping strategies within parallel computers. As
elaborated in Chapter 1.1, communication latency between compute nodes becomes an
increasingly critical factor in�uencing application performance as parallel computers
scale up. In this dissertation, we tackle this challenge by selecting a random shortcut
network topology [2] as a high-speed interconnection and formulating a process’s
rank placement strategy tailored to the random shortcut network topology. This
approach aims to promote e�cient collective communication, ultimately enhancing
the performance of parallel applications.

Moreover, we investigate a class of non-random shortcut network topologies as
high-speed interconnects, which fall into distinct circulant network topologies [48].
Although their diameters and average shortest path lengths (ASPL) exceed those of
random shortcut network topologies with an identical degree, we leverage the inherent
geometric characteristics of these topologies to devise process mapping strategies that
facilitate remarkably e�cient collective communication.

The objectives of this research are:

1. Develop a process’s rank placement strategy for random shortcut network
topology to reduce the number of hops required for collective communication,
ultimately resulting in e�cient collective communication.

2. Develop a process mapping strategy for particular circulant network topologies.
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Each point-to-point communication that makes up a collective communication
achieves the theoretical minimum number of hops, i.e., exactly one hop. This
approach minimizes the number of hops for collective communication and
promotes e�cient collective communication.

3. Compare the performance of collective communication, point-to-point com-
munication, and parallel applications on random shortcut network topology
and circulant topology. And compare the cost of constructing interconnection
networks using these two topologies. Draw a conclusion against the question,
”which network topology is better?”.

By achieving these objectives, this research contributes to the advancement of
knowledge in the �eld of parallel computing, especially collective communication
through the synergistic combination of network topology and process mapping
strategies.

1.5 Contributions

1.5.1 Process’s Rank Placement Strategy for Random Shortcut
Network Topology

Random network topologies have been proposed as a low-latency network for parallel
computers. Although collective communication operations are frequently used in a
parallel application, collective communication operations are not well-optimized for
random network topologies. In this dissertation, We applied the two-opt approach to
replace processes’ rank for building e�cient collective communication on random
shortcut network topologies.

The two-opt approach replaces the processes’s rank, changing the point-to-point
communication that makes up the collective communication, which a�ects the overall
performance of the collective communication.

The discrete-event simulation results signi�cantly enhance collective communi-
cation performance using the two-opt approach. This improvement is achieved by
reducing the hops of collective communication operations and boosting the over-
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all performance of parallel applications, particularly in scenarios where collective
communication plays a dominant role in application performance.

1.5.2 Process Mapping for Circulant Network Topologiy

Circulant network topology is widely used in various network designs. They are used
as a ring extension to design and implement local area networks. The networks are also
called distributed loop computer networks [49, 50]. Circulant network topology has a
higher ASPL than that of random network topology. Nevertheless, we are interested
in circulant network topology regarding hop counts of collective communication.
Circulant network topology can �t with some typical collective communication
algorithms.

We present a process mapping strategy for a circulant network topology, which
enables a theoretical minimum hop count on some collective communication operations
such as Broadcast, Allreduce, and Alltoall.

The discrete-event simulation results in SimGrid show that our proposed mapping
strategy, which aims to minimize the number of hops in collective communication,
signi�cantly improves the collective communication performance compared to other
mapping strategies.

1.5.3 Comparison of Shortcut Network Topologies

The random shortcut network topology and the circulant topology can be obtained by
adding links to a basic ring topology, with the di�erence that the random shortcut
network topology is obtained by adding links randomly. In contrast, the torus is
obtained by adding links non-randomly.

The random shortcut network topology has a lower diameter and average shortest
path length(ASPL). This intuitively suggests that communication within this topology
involves fewer hops. Our comparison includes collective communication and point-to-
point communication in these two shortcut network topologies.

Despite the circulant network topology’s higher diameter and average shortest path
length, adopting an appropriate mapping strategy can signi�cantly reduce the hops of
collective communication, leading to its e�ciency. Furthermore, our proposed mapping
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strategy enables even more lower hops point-to-point communication, especially when
dealing with fewer nodes in communication scenarios.

We also compare the cost of building interconnection networks for parallel
computers using random shortcut network topology and circulant topology. The
circulant network topology allows for a relatively low cost.

1.6 Dissertation Organization

The rest of this dissertation is organized as follows.
In Chapter 3, we describe implementing e�cient collective communication in

random shortcut network topology.
In Chapter 4, we describe the e�cient collective communication in circulant

network topology.
In Chapter 5, we mainly compare the two shortcut network topologies quantitatively.
In Chapter 6, we illustrate the conclusion of this dissertation and future direction.
Figure 1.1 shows the relationship of chapters.
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Circulant Topology Process Mapping

Chapter 4: Collective Comm. using Circulant Topology

Co-design

Chapter 1: Introduction

Network Topology

Chapter 2: Background

Collective Communication Process Mapping

Process Mapping
Rank Placement

Chapter 3: Collective Comm. using Random Topology 

Co-design

Chapter 5: Comparison of Random Shortcut and Circulant Topologies

Chapter 6: Conclusions

Random Topology

Figure 1.1: Dissertation organization.
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2
Background

In this chapter, we provide an introduction to the background of the factors that a�ect
the communication performance of parallel applications on parallel computers. We
introduce the basic concept of network topology in parallel computers and explore
the various network topologies with low diameter and ASPL(Average Shortest Path
Length). Moving forward, we delve into collective communication, which plays a
crucial role in parallel computing. We discuss the common operations involved in
collective communication, such as Broadcast, Allreduce, and Alltoall, and introduce
some common algorithms used to implement these operations. Finally, we introduce the
concept of process mapping and its signi�cance in parallel computing, highlighting how
mapping tasks to the underlying hardware can impact communication performance.
Their relationship is illustrated in Figure 2.1.
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Figure 2.1: Four performance factors in collective communication.

2.1 Interconnection Network

2.1.1 Concept of Network Topology

An interconnection network serves as a communication infrastructure connecting
various components within a computing system, including processing elements (PEs)
such as processors, cores within multi-core processors, and specialized hardware
accelerators like Graphics Processing Units (GPUs) and Field-Programmable Gate Arrays
(FPGAs), as well as routers, switches, memory modules and peripheral devices [51].
Interconnection networks are pivotal in determining a system’s overall performance,
communication latency, fault tolerance, and scalability. They facilitate the e�cient
exchange of data and messages between components, ensuring the e�ective execution
of computational tasks. In parallel computers, interconnection networks are crucial in
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establishing connections between various components, such as PEs and switches.
These networks facilitate communication and cooperation among PEs, allowing them
to work together to solve complex computational problems by dividing tasks into
smaller subtasks and processing them simultaneously.

The topology of an interconnection network in parallel computers refers to the
arrangement of nodes and communication links in a network, speci�cally focusing
on how these elements are interconnected [51]. The chosen network topology in a
parallel computer de�nes the potential routes for transmitting packets throughout the
interconnected network. As a result, the selection of network topology considerably
impacts system performance, communication latency, fault tolerance, and scalability [52,
2, 53, 54, 55, 56].

A network topology can be described as a graph G = (V, E), where V represents
the set of vertices (or nodes) and E represents the set of edges (or links) connecting
the nodes. In parallel computing, each vertex in V corresponds to either a PE or a
switch, depending on the speci�c network architecture. Meanwhile, each edge in E
represents a link between two nodes, facilitating data �ow and cooperation among PEs
or between PEs and switches.

The properties of a network topology can be quanti�ed using various metrics, such
as:

• Degree (d): The degree of a node in a network topology is de�ned as the number
of direct connections to other nodes in a node. A higher degree usually implies
excellent connectivity and lower communication latency within the parallel
computer.

• Diameter (D): The diameter of a network topology is the longest path between
any two nodes in the network. This metric is essential for assessing the worst-case
communication latency in a parallel computer and understanding the maximum
delay between any two nodes.

• Average Shortest Path Length (ASPL): The ASPL is the mean of the shortest
paths between all pairs of nodes in the network. It measures the average number
of hops or communication links that must be traversed to reach any destination
node from a given source node, considering the shortest possible path between
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them. A lower ASPL suggests more e�cient communication within the network,
resulting in reduced communication latency and improved overall performance
for the parallel computer.

In parallel computing, network topologies are primarily classi�ed into direct and
indirect networks [51].

• Direct networks: Direct networks consist of direct connections between PEs
without intermediate devices, facilitating low-latency communication. Notable
examples of direct networks include mesh, torus, and hypercube topologies.

• Indirect networks: Indirect networks, commonly known as switched networks,
entail communication through intermediate devices such as switches or routers.
Topologies such as Clos [57, 58], fat-tree [59], and butter�y [60, 51, 61] fall under
this category.

Direct and indirect networks have unique advantages and disadvantages when
employed in parallel computers. Direct networks are characterized by the absence
of intermediate devices between PEs, leading to lower latency communication and
dedicated bandwidth for each pair of PEs. This setup enables faster data exchange
between PEs and reduces communication overhead. However, intermediate devices
in indirect networks increase routing complexity and potentially add latency to
communication between PEs.

intermediate devices, such as switches or routers. While this con�guration may
introduce higher latency communication and shared bandwidth managed by the
intermediate devices, it o�ers superior scalability, fault tolerance, and resource
utilization compared to direct networks. Indirect networks can accommodate many
PEs more e�ciently, making them more suitable for extensive parallel computers.
However, intermediate devices in indirect networks increase routing complexity and
can potentially add latency to communication between PEs. Ultimately, choosing a
network topology for a parallel computer depends on several factors: the number of
PEs, the characteristics of the computational tasks, communication patterns, and the
balance between performance, fault tolerance, and scalability.
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2.1.2 Traditional Network Topologies Used in Supercomputers

A few network topologies are traditionally used to interconnect PEs in most HPC
systems and these network topologies can be used to interconnect high-radix switches.
Interconnection networks are surveyed for top30 supercomputers in top500 ranking [62],
as of Nov. 2019 [1], as shown in Figure 2.2. Torus, Fat Tree, and Dragon�y are frequently
employed in the top 30 supercomputers.
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Figure 2.2: Network topologies of top 30 supercomputers (picked up from [1]).

Mesh and Torus

Mesh and torus topologies are direct network topologies frequently employed in parallel
computers. Both topologies exhibit grid-like structures, with PEs interconnected to
their nearest neighbors. Nevertheless, their edge connections di�er, which results
in unique characteristics and advantages for each. In a mesh topology, PEs are
arranged in a multi-dimensional grid, typically 2D or 3D, and each PE is connected
to its closest neighbors along each dimension. However, wraparound connections
at the edges are absent. Consequently, PEs at the edges and corners possess fewer
connections than those in the center. Mesh topologies o�er various bene�ts, including
straightforward routing algorithms and ease of implementation. Nonetheless, the
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absence of wraparound connections can lead to increased communication delays for
PEs at the grid edges.

On the other hand, a torus topology resembles a mesh topology but incorporates
wraparound connections at the grid edges. These connections create closed loops in
each dimension, rendering the network a toroidal shape. The wraparound connections
furnish multiple paths between PEs, enhancing fault tolerance and yielding more
uniform communication latency throughout the network. Consequently, torus
topologies can exhibit greater scalability and outperform mesh topologies, particularly
in systems with extensive communication between PEs.

Both mesh and torus topologies can be considered as :-ary =-cube topologies, with
the primary distinction being the presence or absence of wraparound connections at
the edges [51]. A :-ary =-cube topology is characterized by a multi-dimensional grid
with = dimensions and : nodes in each dimension. Here, both : and = are positive
integers. The k-ary n-cube topology has the following properties:

• Number of Nodes: There are := nodes in the network, where the total number of
nodes is the product of the size of each dimension.

• Degree: Each node has 2= connections in the case of a torus topology, connected
to its nearest neighbors in each dimension (one in the positive direction and one
in the negative direction). For mesh topologies, the degree of a node depends on
its position within the grid. Nodes in the interior have 2= connections, while
nodes on the edges and corners have fewer connections.

• Diameter: For a torus network topology, the diameter is given by = ·
⌈
:
2
⌉
. For a

mesh network topology, the diameter is given by = · (: − 1).

• Average shortest path length(ASPL): For a torus network topology, the ASPL is
given by =

4 (: − 1). For a mesh network topology, the ASPL is given by =
3 (: − 1)

for k > 2 and =
2 (: − 1) for k = 2.

• Coordinate Representation: Every node in the n-dimensional k-ary n-cube
topology can be denoted by an n-tuple of coordinates (G1, G2, . . . , G=), where
0 ≤ G8 < : for each 8 . Nodes with coordinates (G1, G2, . . . , G=) and (~1, ~2, . . . , ~=)
are connected if and only if they di�er in exactly one dimension by 1 in the mesh.
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Nodes with coordinates (G1, G2, . . . , G=) and (~1, ~2, . . . , ~=) are connected if and
only if they di�er in exactly one dimension by one or : − 1 in the torus.

(a) 2-D Mesh (4-ary 2-cube
mesh).

(b) 2-D Torus (4-ary 2-cube torus).

Figure 2.3: Mesh and torus topologies.

Figures 2.3(a) and 2.3(b) are 4-ary 2-cube mesh and 4-ary 2-cube torus, respectively.
Over the past few decades, supercomputers have utilized various interconnection

network topologies, including mesh and torus. Mesh topologies have been employed in
systems like the Intel Paragon [63] with a 2D mesh, the MIT J-Machine [64], and
ASCI Red [65] with 3D mesh. Torus topologies have also been widely used, with
examples such as iWarp [66] using a 2D torus, Cray T3D, Cray T3E, BlueGene/L
and BlueGene/P using 3D tori[67, 68, 69, 70]. Cray supercomputers based Cray
Gemini System Interconnect using 3D torus network topology such as Cray XE6 and
CrayXK6 [71, 72, 30]. BlueGene/Q [73] uses a 5D torus network topology, while the K
supercomputer and Fugaku supercomputer use Tofu and TofuD [74, 75, 76], which are
6D torus. Some of the latest domain-speci�c architecture supercomputers also employ
torus as the network topology for high-performance computing, such as Google’s TPU
v4 [77] and Anton 3 [78].

Hypercube

A hypercube, also known as an n-cube or binary n-cube, is a direct network topology
used in parallel computers. It is a multi-dimensional, recursive, hierarchical structure
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with each dimension corresponding to a binary power. In a hypercube network
topology, the number of nodes doubles with each additional dimension [79].

Here are some key properties of hypercube topologies:

• Number of Nodes: There are 2= nodes in an n-dimensional hypercube, where n is
a non-negative integer. The total number of nodes is the product of 2 raised to
the power of =.

• Dimensions: The hypercube has n dimensions, where = is a non-negative integer.
A 0-dimensional hypercube consists of a single node, a 1-dimensional hypercube
is a line with two nodes, a 2-dimensional hypercube is a square with four nodes,
a 3-dimensional hypercube is a cube with eight nodes, and so on.

• Degree: Each node in a hypercube has n connections connected to its nearest
neighbors along each dimension.

• Diameter: The diameter of a hypercube network topology is the longest path
between any pair of nodes in the network. For an n-dimensional hypercube, the
ASPL is given by =

2 , as the average number of dimensions that must be traversed
to reach another node is half the total.

• ASPL: The ASPL of a hypercube network topology is the average of the shortest
path lengths between all pairs of nodes in the network. For an n-dimensional
hypercube, the ASPL is given by =

2 , as the average number of dimensions that
must be traversed to reach another node is half the total dimensions.

• Coordinate Representation: Every node in the n-dimensional hypercube can be
denoted by an n-tuple of binary coordinates (11, 12, ..., 1=), where 18 ∈ 0, 1 for
each 8 . Nodes with coordinates (G1, G2, ..., G=) and (~1, ~2, ..., ~=) are connected if
and only if they di�er in exactly one dimension, and that di�erence is exactly 1,
which can also be expressed as:

=∑
8=1
|G8 − ~8 | = 1 (2.1)

Figure 2.4 is an example of 4-dimensional hypercube.
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Figure 2.4: Four-dimensional Hypercube.

Hypercube topologies are well-suited for parallel computers due to their high
bisection width and support for e�cient routing algorithms [80, 81]. However, they
may su�er scalability issues as the number of nodes grows exponentially with each
additional dimension. Many early parallel computers used hypercube as their network
topology, such as iPSC/860 and Ncube 6400 [82]

Fat Tree

Fat trees are hierarchical topologies designed for parallel computers [59]. Fat tree
topologies feature a tree-like structure with multiple levels of nodes, and the bandwidth
increases as one moves up the hierarchy toward the root. The primary objective of fat
tree topologies is to provide high bisection bandwidth, enabling e�cient support for
high-bandwidth communication between nodes. Fat trees serve as indirect networks
in parallel computers. Within fat-tree topologies, all PEs, such as compute nodes,
are located at the leaf level of the hierarchical structure. Instead of being directly
connected, these PEs are linked to switches.

The :-ary =-trees [83] are a particular class of fat-tree topologies often employed in
supercomputers. Here, we will brie�y describe :-ary =-tree topologies. In :-ary =-tree
topologies, : represents the internal node’s branching factor or degree. Each internal
node has : children, which can be other internal or leaf nodes. The higher the value of
: , the more children each internal node has, resulting in a more comprehensive tree. In
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a switch-based :-ary =-tree parallel computers, the number of the PEs connected to
a switch is : . The = in :-ary =-tree topologies represents the depth or the number
of levels in the tree structure, excluding the root level. A more signi�cant value of
n implies a deeper tree with more hierarchical levels. The depth of the tree a�ects
communication latency and routing complexity within the network. Figure 2.5 is an
example of a 4-ary 2-tree.

Figure 2.5: 4-ary 2-tree

Fat tree topologies are currently the most dominant interconnect architecture in
parallel computers. In the Top500 list of supercomputers published in November
2022 [14], �ve of the top ten fastest systems employ the fat-tree interconnection
network topology. These include Summit, Sierra, Sunway TaihuLight, Selene, and
Tianhe-2A [5, 5, 84, 85, 86].

2.1.3 Low Diameter/ASPL Network Topology

Dragon�y

The dragon�y network topology [87] is a high-performance interconnection network
topology designed explicitly for large-scale parallel computers, such as supercomputers
and data centers. High-radix routers in interconnection networks can reduce diameter
and latency; however, they may require longer cables, increasing costs. The dragon�y
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network topology was proposed to minimize the number of global channels and reduce
costs while maintaining low diameter and latency in the network. This approach
provides an e�cient and cost-e�ective solution for large-scale parallel computers.

The dragon�y network topology consists of a hierarchical structure with local
groups at the lowest level, each containing a �xed number of routers and PEs. Within a
local group, routers are fully connected, providing low-latency communication. At a
higher level, local groups are interconnected through global links, where each router in
a local group connects to routers in other local groups. A formal description of the
dragon�y network topology can be presented as follows:

• Network Terminals (PEs): Let # be the total number of network terminals or PEs
in the Dragon�y network. We can calculate # using the formula # = 0 × ?

2 ,
where 0 is the number of routers in each group, and ? is the number of terminals
connected to each router.

• Router radix: Let : be the radix of the routers, which is the total number of ports
or links connected to each router. In the Dragon�y network topology, we can
calculate the radix as : = ? + 0, since each router connects to ? terminals and 0
routers in other local groups.

• Local groups: The Dragon�y network topology consists of multiple local groups,
with each local group containing 0 routers. These routers are interconnected in a
fully connected network topology within the group. Let� be the total number of
local groups in the network.

• Global links: The e�ective radix of the group, represented by :′, is the number of
global links in the network connecting di�erent local groups. We can calculate
the e�ective radix as :′ = 0 × ?

2 , as each router has ?

2 global links connecting to
other local groups, and there are 0 routers in each group.

• System-level properties:

– Total number of routers in the network: ' = 0 ×�

– Total number of PEs in the network: % = # ×�



22 Chapter 2. Background

– Total number of global links in the network: !6 = 0×?×�
4 (each global link

connects two routers)

Figure 2.6: Dragon�y (?=4, ℎ=1).

Figure 2.6 is an example of dragon�y (?=4,ℎ=1). In the Top500 list of supercomputers
published in November 2022 [14], four of the top ten fastest systems employ the
dragon�y network topology or its variant dragon�y+ network topology [88]. These
include Leonardo, Frontier, LUMI, and Perlmutter [89, 90, 91, 92].

Random Network Topology

Random shortcut network topologies are a type of network topology where nodes are
primarily connected in a regular structure, such as a lattice or a ring, with additional
random connections (shortcuts) between nodes. These shortcuts decrease the average
path length between nodes, making the network more e�cient in communication and
information exchange.

Random network topologies are generated either as fully random graphs [93] or by
adding random links to a baseline network topology [2] so that each node has the same
degree. The random network topologies achieve low-diameter. and low ASPL [2]. The
graph can correspond to the network topology. Given a (regular) graph with degree 3
and diameter : , the number of vertices in the graph is at most 1 + 3∑:−1

8=0 (3 − 1)8 and∑:
8=0 3

8 for graphs, respectively, which is termed the Moore bound.
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Only a few graphs achieve this bound [11]. While a random graph provides a low
diameter and ASPL close to the lower bound.

In this dissertation, our one target is random network topology. In particular, we
consider the random network topology generated as follows: consider a procedure to
add links randomly by picking two nodes among the possible nodes that have lower
links than the network degree. We enforce that all the vertices have the same degree as
possible, as shown in Figure 2.7.

Random shortcut network topology is suitable for applications where e�cient
communication and robustness are essential, such as peer-to-peer networks, social
networks, and distributed systems. It can also be used to model the structure of complex
systems in areas like biology, physics, and sociology. However, the potential drawbacks
of suboptimal shortcuts and increased routing complexity should be considered when
implementing a random shortcut network topology.

Figure 2.7: Random shortcut network topology.

Circulant Network Topology

Circulant network topology is widely used in various network designs. Its example is
shown in Figure 2.8. They are used as a ring extension to design and implement local
area networks. The networks are also called distributed loop computer-networks[49, 50].
A variant of circulant network topology called Multi-Ring network topology is used to
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Figure 2.8: Circulant Network topology.

achieve high-performance group communication in peer-to-peer networks[94]. The
paper [95] proposed recursive circulant network topology for multicomputer systems.
The recursive circulant network topology is also circulant network topology. [96]
proposed generalized recursive circulant graphs, which are the extension of recursive
circulant graphs. Recently, [53] proposed the optimal circulant network topologies as
low latency network topologies.

Figure 2.9 plots diameter and ASPL for di�erent degrees for two 215-vertex
topologies. Our �nding is that random shortcuts achieve lower diameter and ASPL
than non-random shortcuts (circulant network topology). In this context, we have little
motivation to use circulant network topology. Nevertheless, it �ts with some collective
algorithms. We thus explore the two network topologies for collective communication.

2.2 Collective-Communication Operation

In this dissertation, we described a typical collective communication operation, our
target.

2.2.1 Broadcast

A Broadcast operation is a communication pattern used in parallel computers where a
single process or node sends the same data or message to all other processes or nodes
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Figure 2.9: Diameter and average shortest path length vs. degree for a 215-node random
shortcut and circulant (non-random shortcut) network topologies (picked up from [2]).

in a speci�ed group. The primary purpose of Broadcast operations is to ensure that all
processes receive the same information, which is often necessary for synchronization,
distributing con�guration data, initializing values, or distributing parts of a problem or
dataset. Figure 2.10 is an example of Broadcast operation for four processes. Process #0
sends data 1 to processes #1,2,3.

In the Message Passing Interface (MPI) library context, the Broadcast operation is
implemented as the MPI_Bcast function. This function is a collective communication
operation involving all processes in a speci�ed group or communicator. A communicator
object in MPI de�nes the group of processes, with MPI_COMM_WORLD being the
most common communicator that includes all processes in a parallel program.

Broadcast operations are essential in parallel computing, as they allow for e�cient
and organized communication between processes, ensuring that all processes have the
necessary information to perform their tasks.
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Figure 2.11: Allreduce operation.

2.2.2 Allreduce

The Allreduce operation is a collective communication operation in the Message
Passing Interface (MPI) library used in parallel computing. It combines the functionality
of the Reduce and Broadcast operations. The primary purpose of Allreduce is to
perform a speci�ed reduction operation (e.g., sum, product, maximum, or minimum)
on data from all processes in a group or communicator and then distribute the result
back to all processes in the group.

The Allreduce operation is functional when all processes need the aggregated
result of some operation, such as computing a global sum, maximum or minimum
value, or other collective statistics. Some common use cases include:

1. Calculating a global sum or mean in distributed data analysis.
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2. Finding the global maximum or minimum value in optimization problems.

3. Computing a global norm in numerical linear algebra operations.

4. Synchronizing model parameters in distributed machine learning applications.

2.2.3 Alltoall
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Figure 2.12: Alltoall operation.

The Alltoall operation is a collective communication operation in the Message
Passing Interface (MPI) library used in parallel computing. Its primary purpose is to
enable each process in a group or communicator to send distinct data segments to
every other process in the group. This operation is bene�cial when processes must
exchange di�erent data with all other processes, such as matrix transpositions, data
redistribution, or complex communication patterns. Figure 2.12 illustrates the alltoall
operation for four processes. Each process sends di�erent data to di�erent processes.

2.3 Collective-Communication Algorithm

2.3.1 Hardware-, path- and unicast-based Broadcast Techniques

Hardware-, path-, and unicast-based Broadcast techniques are typical methods for
collective communications in interconnection networks [97, 98]. Hardware Broadcasts
duplicate packets at an intermediate switch.
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Since it reduces the total hop counts of packets in Broadcast, it e�ciently sends
data to multiple destinations. A path-based Broadcast sends data along a path that
includes all destinations, and thus requires an e�cient broadcast-path search, e.g., the
Hamiltonian cycle for Broadcast.

However, current conventional network products, such as In�niBand and Ethernet
does not always support hardware- and path-based broadcast techniques. We target
unicast-based collective communication in this dissertation.

2.3.2 Typical Collective-Communication Algorithms

We explain the typical collective communication algorithms, which is mainly discussed
in this dissertation.

Binomial Tree Algorithm

Broadcast is a one-to-all communication pattern that a source process Broadcasts
message to all processes in the same group. The binomial tree algorithm was widely
used to implement the Broadcast operation due to its low steps, such as in MPICH2
and Open MPI [22] [21]. Assume that there are # compute nodes, and each computer
node runs only a process. The binomial tree-based Broadcast will be completed by
dlog2 # e steps.

Figure 2.13: Broadcast using binomial tree algorithm.

Figure 2.13 shows an example of a binomial tree Broadcast with eight compute
nodes. Assume that each node runs one process and E0 is the root node; completing the
Broadcast will take three steps. Mark E8 → E 9 as that node E8 sends messages to node
E 9 . In the �rst step, only one unicast E0 → E4 exists. In the second step, the E0 and
E4 will send messages as the source nodes, and there are two unicasts E0 → E2 and
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E4 → E6. In the third step, nodes E0, E2, E4, E6 will be the source node to send messages
to the remaining nodes that have not yet received the message, there are four unicasts
E0 → E1, E2 → E3, E4 → E5 and E5 → E6.

Recursive Doubling Algorithm

The recursive doubling algorithm is often used to implement the Allreduce operation,
and it is easy to execute when the number of process # is a power of two. Here,
we explain the case where the number of processes # is to the power of two. The
recursive doubling algorithm takes log2 # steps to complete the Allreduce operation.

Figure 2.14 shows recursive doubling Allreduce with eight computer nodes. Mark
E8 ↔ E 9 as that node E8 and E 9 exchange data with each other. In the �rst step, nodes
that are a distance one apart exchange their data, so there are E0 ↔ E1, E2 ↔ E3,
E4 ↔ E5 and E6 ↔ E7. In the second step, nodes that are a distance two apart exchange
their data, so there are E0 ↔ E2, E1 ↔ E3, E4 ↔ E6 and E5 ↔ E7. In the third step, nodes
that are a distance three apart exchange their data; there are E0 ↔ E4, E1 ↔ E5, E2 ↔ E6

and E3 ↔ E7.

Figure 2.14: Allreduce the using recursive doubling algorithm.

Bruck’s Algorithm

Bruck’s algorithm is an e�cient algorithm for Alltoall operation [99]. The Bruck’s
algorithm consists of three phases. In the �rst and the third phases, each process
only needs to rearrange the data locally. The second phase performs inter-process
communication. Here, we only brie�y describe the second phase involving inter-process
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communication. Assuming that there are # compute nodes and each compute node is
running one process, Bruck’s algorithm takes dlog2 # e steps to complete the Alltoall
operation. In :th step(0 ≤ : < dlog2 # e), compute node E8 sends to E (8+2: mod # ) and
receives from E (8−2:+# mod # )[17].

Figure 2.15 shows Bruck’s algorithm Alltoall with eight computer nodes. Assume
that each compute node is running one process for ease of understanding. Mark
E8 → E 9 as that node E8 sends messages to node E 9 . In the �rst step, the set of unicast
is {E0 → E7, E1 → E0 , E2 → E1, E3 → E2, E4 → E3, E5 → E4, E6 → E5, E7 → E6}. In the
second step, the set of unicast is {E0 → E6, E1 → E7 , E2 → E0, E3 → E1, E4 → E2, E5 → E3,
E6 → E4, E7 → E5}. In the third step, the set of unicast is {E0 → E4, E1 → E5 , E2 → E6,
E3 → E7, E4 → E0, E5 → E1, E6 → E2, E7 → E3}.

Figure 2.15: Alltoall using Bruck’s algorithm.

-

2.4 Process Mapping

2.4.1 Topology-Aware Process Mapping

Process mapping, i.e., the process of placing the message-passing interface (MPI) ranks
of a parallel program onto the compute nodes designated by the system software
can e�ectively improve the access locality [44], thus obtaining high communication
performance. Our survey is consistent with our prior works on high-radix parallel
computers [44]. Application runtime reduction by selecting an appropriate process
mapping can result in higher resource utilization.
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Some prior process mapping works focused on the 3-D Torus BlueGene/L sys-
tem [100] [101]. They assumed that nodes allocated for a job must be rectangular and
contiguous.

However, systems implementing such approaches may lead to the fragmentation
of free compute nodes. This could be low system utilization. The works [102, 103,
104]extended the traditional rectangular mapping approach to use node ordering to
make contiguous allocations. These linear approaches have the advantage of fast
allocations from their ordered list of free nodes.

Other approaches [105, 101, 106, 107] consider the communication pattern when
using topology-embedding techniques [44]

The works [108] [109] studied the impact of simple linear node mapping on the
performance of mini-applications on di�erent Fat-tree con�guration systems. Similar
to that in Torus, node ordering [110] is applied to the fat-tree network topology for job
allocation. The works [111] [112] implemented a topology-aware node allocation
policy that allocates isolated partitions to jobs to eliminate inter-job interference on a
Fat-tree network.

The HyperX network topology was proposed and compared with the fat-tree
network topology, where a simple random node mapping is used. This is because
topology-aware mapping is impractical in production environments due to the limited
availability of idle resources.

Process mapping is also considered for Dragon�y network topology [87]. The
work [113] analyzed Cartesian multi-dimensional nearest neighbor exchanges and
showed that random process mapping with direct routing is consistently outperformed
by Cartesian process mapping with indirect routing. The work [114] showed that the
impact of process mapping is minimal by using small-scale experiments (up to 256
nodes) on a Cray XC30 system.

The work [115] compared Torus, Fat-tree, and Dragon�y using linear and random
process mapping schemes. It showed that di�erent mapping schemes lead to similar
performance for a single job executions on all networks. For multi-job workloads with
a few large jobs, the Torus network consistently achieves the best performance, with
the Fat-tree network performance slightly worse.
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2.4.2 Topology-Agnostic Process Mapping

The study in [97] showed that it is impossible to avoid packet contentions on arbitrary
network topologies, and it proposed a multicast algorithm called chain concatenation
order (CCO) to reduce the number of packet contentions. The CCO algorithm �rst
constructs a breadth-�rst search (BFS) tree with a source node as root, and it visits a
destination node with an order based on the BFS tree. The CCO is our competitor in
multicast on random network topologies. The concept of CCO can be generalized to
process mapping to minimize the number of packet contentions between processes.

There are also many optimization methods of collective-communication operations
for heterogeneous HPC platforms. The study in [116, 117] proposed a topology-aware
algorithm to improve the performance of collective communication operations for
large-scale In�niBand clusters. An optimization of collective-communication operation
was proposed by considering message length or number of nodes in widespread MPI
implementation MPICH2 [22], or by feeling message length [116]. However, their
existing optimization is not well optimized for random network topologies regarding
process mapping total path hops of unicasts that form a collective communication
operation.
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3
E�cient Collective Communication

using Random Network Topology

3.1 Introduction

As described in Chapter 2, collective communication operations signi�cantly impact
the performance of applications running on parallel computers. Implementing
e�cient collective communication operations has high implications for improving the
performance of applications.

As shown in Figure 2.1 of Chapter 2, the performance of collective communication
is a�ected by several factors, such as the network topology of parallel computers, the
job/process mapping strategy for allocating computational resources like compute
nodes, and the algorithm for implementing collective communication operations.
This chapter will consider job/process mapping and collective algorithms to achieve
e�cient collective communication on random shortcut network topology.

This chapter uses random shortcut topologies to build an interconnected network
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for parallel computers. A low-diameter network topology is critical to the performance
of a parallel computer. Figure 2.9 shows that adding random shortcuts to a regular
network topology can cause the diameter and ASPL of the network topology to
drop rapidly and that a random shortcut network topology with a low diameter
and ASPL allows messages to pass through fewer hops from the source node to the
destination node, thus satisfying the low latency requirement. In this chapter, we use
the ring-based shortcut network topology, where the ring serves as the base network
topology. Then, we keep adding shortcuts to the ring to build a low diameter and ASPL
network topology [2].

Job/Process mapping allocates the compute nodes and processors to parallel
applications. The mapping strategies also a�ect the performance of parallel applications.
The choice of mapping strategy is often related to the topology and application
characteristics [105, 106, 118, 119, 120]. We picked up three di�erent process mapping
strategies based on the characteristics of ring-based random shortcut network topology:
random mapping, hierarchical tree mapping, and ring-based consecutive mapping. In
the following section 3.2, we will introduce these three process mapping strategies as
the baseline.

In this chapter, we primarily focus on three collective communication operations:
Broadcast, Allreduce, and Alltoall. These operations are the most commonly used
collective communication patterns [16], extensively employed in various parallel
computing scenarios. The Binomial tree algorithm, recursive doubling algorithm, and
Bruck’s algorithm [99] are the classic implementations for Broadcast, Allreduce, and
Alltoall operations. Many MPI libraries adopt these three algorithms to realize the
corresponding collective communication operations [22, 21, 23].

To achieve e�cient Broadcast, Allreduce, and Alltoall operations in the context of
given network topology, process mapping strategy, and collective operation algorithms,
we propose the use of the two-opt method [121] to reduce the overall hop count
of collective communications [3]. By minimizing the communication overhead in
collective communication operations. We aim to enhance the performance of parallel
applications.

In the subsequent sections of this chapter, Section 3.2 introduces the three process
mapping strategies in random shortcut network topology, including random mapping,
hierarchical tree mapping, and ring-based consecutive mapping. Section 3.3 elucidates
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the approach of employing the two-opt method to minimize the overall hop count in
collective communication operations and examines the extent to which the two-opt
method can reduce the number of hops in the rank placement. Section 3.4 shows the
evaluation of the performance of collective communication operations and parallel
applications with the two-opt rank placement onto the random shortcut network
topology. Section 3.5 discusses the results of quality and scalability of the two-opt rank
replacement method. Section 3.6 summarizes the contents of this chapter.

3.2 Process Mapping in Random Network Topology

The selection of an appropriate process mapping strategy frequently plays a pivotal role
in determining the performance of parallel-computing applications. The selection of a
process mapping policy is usually related to many factors, such as the network topology
and type of applications. Many process mapping studies are for speci�c network
topologies such as torus, fat-tree, and dragon�y [39, 122, 45, 120]. In the context
of random shortcut network topology, we take random mapping, hierarchical-tree
mapping, and ring-based consecutive mapping as our base process mapping strategies,
considering the unique attributes of the random shortcut network topology. In the
subsequent section, we describe these three mapping methodologies.

3.2.1 Random Mapping

In contrast to regular topologies like the torus, mapping a regular embedded topology
onto a random topology poses a signi�cant challenge, primarily due to the stochastic
nature of the connections. The small-world e�ect [9] characterizes random shortcut
topologies, leading to a low diameter and ASPL (Average Shortest Path Length), signify-
ing that any two points within the network are relatively close. Consequently, a natural
approach for random shortcut topologies involves random mapping, indiscriminately
assigning tasks to a designated number of computational nodes without accounting for
geometric characteristics.

Figure 3.1 illustrates a schematic of random mapping where a task is arbitrarily
assigned to 8 compute nodes in a 32-node random shortcut network topology. The
random mapping approach does not guarantee the continuity of the physical locations
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of the assigned compute nodes. Although random shortcuts interconnect these
nodes, their physical locations may be far apart. The low diameter and ASPL features
allow these compute nodes to communicate with very few hops, even when they
are physically far apart [2]. In addition, the random mapping strategy dramatically
improves the scheduling performance of tasks [123].

Figure 3.1: An 8-node random process mapping on a 32-node random shortcut network
topology.
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3.2.2 Hierarchical-Tree Mapping

(a) Hierarchical tree mapping (b) Spanning tree.

Figure 3.2: An 8-node hierarchical tree mapping on a 32-node random shortcut network
topology.

Due to the small-world e�ect, random shortcut network topologies exhibit a reduced
diameter and ASPL. Intuitively, one might expect an embedded topology employing
random mapping to demonstrate a lower diameter and ASPL similarly. Nevertheless,
the inherent randomness of the random mapping approach precludes any guarantee of
consistently achieving the lowest possible diameter and ASPL in the resulting embedded
topology. To produce embedded topologies that exhibit low diameter and ASPL,
hierarchical-tree mapping approaches were proposed for random topologies [124].

Figure 3.2(a) illustrates a schematic of hierarchical-tree mapping where a task is
assigned to 8 compute nodes in a 32-node random shortcut network topology. In the
case of �gure 3.2(a), �rst, select an available compute node as the tree’s root. Then, a
breadth-�rst search is initiated from the root, during which all available neighboring
nodes of the root are appended as its leaf nodes. This process is repeated for each leaf
node until the tree reaches the requisite number of compute nodes for the task. Finally,
as �gure 3.2(b) shows, a spanning tree was generated. Obviously, the diameter of the
embedded tree topology is the depth of the spanning tree.

Generally speaking, when considering collective communication, tree structure is
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e�cient. Indeed, the BlueGene/L supercomputer provides a tree network for Broadcast
and a torus network for stencil communication [125]. In this context, we pick up
hierarchical tree process mapping embedded in a random network topology. In contrast
to random mapping in Section 3.2.1, hierarchical tree mapping guarantees an upper
bound on the distance between any two nodes in the task-assigned compute nodes.

3.2.3 Ring-Based Consecutive Mapping

Figure 3.3: An 8-node ring-based consecutive mapping on a 32-node random shortcut
network topology.

In some regular topologies, such as mesh and torus, continuous mapping strategies
are employed to map tasks into regular topological structures. For instance, in mesh
and torus topologies, tasks are organized into sub-meshes and sub-torus [126, 127, 128].
In an entirely random network topology, it is challenging to map tasks to a regular
topology due to the uncertainty of node connections. In this study, the random
topology we use is generated by randomly adding shortcuts to a ring. Based on this
feature, we proposed using a ring-based continuous mapping strategy that arranges
the mapped nodes along the ring, and nodes form a line along the ring. Figure 3.3
illustrates a schematic of ring-based consecutive mapping where a task is assigned to 8
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compute nodes in a 32-node random shortcut network topology. This mapping is
particularly suitable for applications where nodes are neighbors. In addition, shortcuts
ensure that even mapped nodes far apart along a line on the ring, such as the head and
tail nodes of the line, can communicate quickly via shortcuts. For example, in �gure
3.3, the shortest distance between node 0 and node 7 is 2.

3.2.4 Hop Count Analysis of Process Mapping Strategies

(a) Hops of Broadcast. (b) Hops of Allreduce. (c) Hops of Alltoall.

Figure 3.4: Collective communication hops of three mapping strategies on random
network topology.

We evaluated and compared the hop counts of di�erent collective communication
operations under three mapping strategies: random, hierarchical-tree, and ring-based
mapping, which will help us understand the hop counts of varying mapping strategies
without any optimization.

Figures 3.4(a), 3.4(b) and 3.4(c) represent the hop counts of random, hierarchical-
tree and ring-based mapping strategies under Broadcast, Allreduce and Alltoall
operations, respectively. The X-axis represents the number of mapped nodes, and the
Y-axis represents the number of hops. In this evaluation, the total number of nodes in
the interconnection network is 1,024. As shown in the �gures, the ring-based mapping
has the most minor hops. Hierarchical tree mapping is the next.

The number of hops for the Broadcast operation is small compared to that for
Allreduce and Alltoall operations.
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3.3 Rank Placement

3.3.1 Ascending-Order Rank Placement

Once a process mapping is completed, each process is mapped onto a compute node.
There is room to improve the performance of the collective communication operations
by further updating the mapping between the process and compute node. In MPI, each
process is identi�ed by rank. We call process rank later. The most straightforward
manner is ascending-order rank placement, in which a lower-rank process is mapped
onto the lowest ID compute node among free compute nodes of the task.

(a) Ring-based consecutive mapping. (b) Binomial tree Broadcast.

Figure 3.5: Ascending-order rank placement in Broadcast operation.

We let (0, 1) to denote a pair of a computer node’s ID and the process rank running
on it, 0 denotes the ID of the compute node, and 1 denotes the process rank. Figure 3.5(a)
represents an example of the ascending-order rank placement of ring-based consecutive
process mapping of broadcast operation on a 32-node random shortcut topology.
Compute nodes with IDs 0 to 7 participate in the Broadcast operation. In this example,
the rank of the process on each compute node is the same as the ID of that compute
node.

Figure 3.5(b) shows a binomial tree of Broadcast operations containing the eight
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Step Communication Hops per commun. Hops per step Total hops
1 (0,0)→ (4,4) 3 3

11

2 (0,0)→ (2,2) 2 4(4,4)→ (6,6) 2

3
(2,2)→ (3,3) 1

4(4,4)→ (5,5) 1
(5,5)→ (6,6) 1
(6,6)→ (7,7) 1

Table 3.1: Communication steps and hop counts of ascending-order rank placement in
Broadcast.

processes. The binomial tree of Broadcast is generated based on the order of process
rank. There is an ordered list of process’s rank < 0, 1, 2, 3, 4, 5, 6, 7 >; this ordered list
generates the binomial tree. Process 0 sends a message to process 4 in step 1. Processes
0 and 4 send a message to processes 2 and 6 in step 2, respectively. Finally, processes 0,
2, 4, and 6 send a message to processes 1, 3, 5, and 7, respectively.

Table 3.1 shows the hops of each communication, the step and total hops of the
Broadcast operation of the above case.

3.3.2 Two-opt Rank Placement

We attempt to improve the rank placement regarding hop counts or several contentions.
The two-opt algorithm was �rst proposed in 1958 to solve the traveling salesman
problem [121]. We apply the two-opt algorithm for rank placement of collective
communication on random network topologies.

Step Communication Hops per commun. Hops per step Total hops
1 (0,0)→ (7,4) 2 2

9

2 (0,0)→ (2,2) 2 3(7,4)→ (6,6) 1

3

(0,0)→ (1,1) 1

4(2,2)→ (3,3) 1
(7,4)→ (5,5) 1
(6,6)→ (4,7) 1

Table 3.2: Communication steps and hop counts of the two-opt rank placement in
Broadcast.
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(a) Swap operation: swap two nodes’s ranks.
(b) Binomial tree Broadcast.

Figure 3.6: The two-opt Broadcast.

We previously introduced the ascending-order rank placement to assign the
process’s rank. We optimize the ascending-order rank placement by the two-opt
method to reduce the total hops of the collective communication operations. We expect
that minimizing the total hop counts leads to the goal of improving the performance of
collective communication operations. Figure 3.6 shows how the two-opt method
reduces the total number of broadcast operations. Like Figure 3.5, the random shortcut
network topology has 32 compute nodes. Compute nodes with IDs 0 to 7 participate in
the Broadcast operation.

The application of the two-opt method to the Broadcast is as follows. First, assign
ranks to all processes using the ascending-order rank-placement strategy. In the
initialization, each process has the same rank number as the compute node ID, then
calculates the total hops for the Broadcast. The total hops are 11, as illustrated in
Table 3.1. Next, perform the two-opt optimization process. Figure 3.6 shows how the
two-opt method reduces the total number of Broadcast operations; (1) randomly select
two compute nodes among all compute nodes involved in the broadcast operation,
then (2) swap the process ranks running in these two compute nodes. In Figure 3.6, the
compute nodes with ID 4 and 7 were selected. After this swap operation, the process
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rank of compute node 4 becomes 7 and the process rank of compute node 7 becomes 4.
Figure 3.6(b) shows the binomial tree after the swap of process ranks. Then, the total
hops of Broadcast were re-calculated.

Table 3.2 shows the hops of each communication, the step, and total hops of the
Broadcast operation of the new binomial tree broadcast. After the process-rank swap
operation, the total hops decrease. That means the two-opt swap reduces the average
shortest path length (ASPL) of the Broadcast operation. Then, repeat the swap of
process ranks of two randomly selected compute nodes. If the total hops are reduced,
accept the swap operation. Otherwise, cancel the swap operation. Repeat the procedure
until the total path hops for the Broadcast operation cannot be smaller in the moderate
number of attempts.

There is a variation of the two-opt Broadcast. Although it is designed to reduce the
total path hops of point-to-point communications, the two-opt rank placement can
be updated to reduce the number of possible contentions rather than reducing the
total path hops. That is, instead of minimizing the total path hops, an alternative
objective function to optimize the Broadcast can be to reduce the total number of
possible contentions of the corresponding point-to-point communications on a link.

The two-opt algorithm can be applied for the other collective communication
operations, i.e., Allreduce and Allgather. The ordered list of visiting nodes can express
the other collective communication operations based on the recursive doubling
algorithm. Since the two-opt method creates an ordered list of visiting nodes for its
optimization, we can generate the two-opt collective communication operations with a
similar procedure to that described above.

3.3.3 Hop Count Analysis of Two-Opt Rank Placement

We evaluated and compared the hop counts of collective communication operations
using the two-opt rank replacement with di�erent process mapping strategies, such
as ring, random, and hierarchical mapping on the random network topology. In
this evaluation, the degree of random shortcut network is 19; the network has 1024
compute nodes, 512 compute nodes were involved in the collective communication.
Each compute node runs one process. The collective-communication algorithms for
Broadcast, Allreduce, and Alltoall operations are binomial tree, recursive doubling, and
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Figure 3.7: Hops of the two-opt rank placement for Broadcast in random network
topology.

Figure 3.8: Hops of the two-opt rank placement for Allreduce in random network
topology.

Bruck’s ones, respectively.

Figures 3.7, 3.8, and 3.9 represent the variation of the total hops for the Broadcast,
Allreduce, and Alltoall operations with the number of iterations of the two-opt method,
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Figure 3.9: Hops of the two-opt rank placement for Alltoall in random network
topology.

respectively. The X-axis represents the number of iterations of the two-opt optimization.
The Y-axis represents the total hops of the collective communication operations. The
results show a signi�cant decrease in the total hops of the collective communication
operations as the number of iterations of the two-opt operation increases. The total
hop counts of the collective communication operations tend to stabilize gradually
when the number of iterations increases.

After a su�ciently large number of iterations, up to 1,000,000 in this evaluation,
Figure 3.7 shows that the two-opt rank placement reduced up to 32%, 44%, and 14%
hops for random, hierarchical tree, and ring process mapping strategies, respectively.
For the Allreduce operation, as illustrated in Figure 3.8, the two-opt rank placement
can reduce 21%, 16%, and 11% hops for random, hierarchical tree, and ring process
mapping strategies, respectively. For Alltoall operation, as illustrated in Figure 3.9,
the two-opt rank placement can reduce about 16%, 11%, and 9% hops for random,
hierarchical tree, and ring process mapping strategies, respectively.

The initial hops of di�erent process mapping strategies a�ect the optimization
space of two-opt replacements.
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3.4 Evaluation

3.4.1 Methodology

We employ the SimGrid simulation framework (v3.28) [129] to analyze the performance
of collective communication operations and parallel applications on large-scale parallel
computers.

When generating a ring-based random shortcut network topology, it is essential to
ensure all nodes have the same degree when adding shortcuts. In this study, we try to
make all nodes have the same degree whenever possible. In our evaluation, the number
of total compute nodes is 1024, and the degree of each compute node is 19.

Table 3.3 shows the interconnection network parameters in SimGrid. Switches are
interconnected to form an interconnected network, with one compute node per switch.
In this study, we leverage the built-in routing algorithm in the SimGrid simulation
framework, which employs the Floyd algorithm to determine the shortest path between
nodes in terms of hops.

Table 3.3: Parameters of the interconnection network.
Power of compute node 100GFLOPS

Switch latency 100ns
Link bandwidth 100Gbps
Switch capacity 3.6Tbps

Routing algorithm Floyd (Minimal Paths)

The ultimate evaluation is to attempt the combination of job mapping and rank
placement for better performance of collective communications on random network
topology. We picked up the random, hierarchical tree, and ring task mappings while we
selected ascending order (default), CCO(chain concatenation ordering) [97], two-opt
for hop counts (two-opt-hops), and two opt for contentions (two-opt-contention). The
ascending order and CCO are our competitors.

3.4.2 Execution Time of Collective Communication Operations

We preliminarily illustrated the hop counts of di�erent mapping strategies with rank
placement optimizations. Collective communication operations are engaged across 512
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processes, corresponding to an equivalent number of compute nodes. The iteration
times for the two-opt optimization are set to 200,000. Execution time is the time it
takes to repeat the collective operation ten times.

Table 3.4 illustrates their hop counts of Broadcast operation. The Broadcast hop
counts can be reduced to 42%, 29%, and 13% for the random, hierarchical tree, and ring
mapping strategies by the two-opt rank placement.

Table 3.4: Hop counts of di�erent rank placements on di�erent process mapping
strategies for Broadcast (1,024 nodes, 512 processes).

Ascending Order Two-opt
Random 1,373 794

Hierarchical Tree 1,080 769
Ring 850 741

(a) Execution time of Broadcast with small message size.

Figures 3.10(a) and 3.10(b) present the execution time for the Broadcast operation
in two di�erent scenarios: small message sizes ranging from 256B to 16KB and large
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(b) Execution time of Broadcast with large message size.

Figure 3.10: Execution time of Broadcast operation in random network topology (1,024
nodes, 512 processes).

message sizes ranging from 64KB to 1MB, respectively. These results enable us to
analyze the performance of the Broadcast operation under varying message size
conditions. The lower values are better on the Y-axis (the unit is second). Our main
�nding is that the two-opt method for minimizing the hop count with random process
mapping is usually best. This is because the total hop counts highly a�ect the execution
time, especially for short messages. Since random network topologies have many
shortcuts, the impact of process mapping on the execution time is not signi�cant.

The CCO algorithm is expected to have a better performance due to the small
possibility of the massage contentions. However, the two-opt methods usually
outperform them. We can say that the optimization only to the messages generated in
the collective operation, the two-opt method, works e�ciently.

Analytical results of Allreduce operations are illustrated in Table 3.5. The hop
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counts of the Allreduce can be reduced to 20%, 14%, and 12% for the random, hierarchical
tree, and ring mapping strategies by the two-opt rank placement.

Table 3.5: Hop counts of di�erent rank placements on di�erent process mapping
strategies for Allreduce (1,024 nodes, 512 processes).

Ascending-Order Two-opt
Random 12,308 9,904

Hierarchical Tree 11,362 9,816
Ring 11,152 9,816

(a) Execution time of Allreduce with small message size.

Figures 3.11(a) and 3.11(b) present the execution time for the Allreduce operation
in two di�erent scenarios: small message sizes ranging from 256B to 16KB and large
message sizes ranging from 64KB to 1MB, respectively. These results enable us to
analyze the performance of the Allreduce operation under varying message size
conditions.
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(b) Execution time of Allreduce with large message size.

Figure 3.11: Execution time of an Allreduce operation in random network topology
(1,024 nodes, 512 processes).

Figures 3.11(a) and 3.11(b) illustrate that the same performance trend to the
Broadcast is obtained; the two-opt method for minimizing hop counts is better with
random process mapping. The reason why the two-opt method works well is tuning
only for the messages generated in the collective operation.

Table 3.6: Hop counts of di�erent rank placements on di�erent process mapping
strategies for Alltoall (1,024 nodes, 512 processes).

Ascending-Order Two-opt
Random 12347 10459

Hierarchical Tree 11373 10326
Ring 11135 10389

Table 3.6 illustrates their hop counts of Alltoall operation. The hop counts of the
Alltoall can be reduced to 15%, 9%, and 7% for the random, hierarchical tree, and ring
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(a) Execution time of Alltoall with small message size.

mapping strategies by the two-opt rank placement.
Figures 3.12(a) and 3.12(b) present the execution time for the Alltoall operation in

two di�erent scenarios: small message sizes ranging from 256B to 16KB and large
message sizes ranging from 64KB to 1MB, respectively. The performance tendency is
similar to those in Allreduce and Broadcast; the two-opt method for minimizing hop
counts in random process mapping is usually better in various message sizes.

3.4.3 Performance Evaluation of Parallel Applications

In Section 3.4.2, we evaluate the performance of collective communication operations,
and the evaluation results show that the two-opt rank placement optimization
dramatically reduces the hop counts and improves the performance of collective
communication operations.

In this section, we would like to evaluate the performance gain of two-opt rank
placement optimization for parallel applications. We evaluated some of the applications
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(b) Execution time of Alltoall with large message size.

Figure 3.12: Execution time of Alltoall operation in random network topology (1,024
nodes, 512 processes).

in the NAS parallel benchmark [130]: FT, IS, MG, and LU. We set the problem size of
these applications as Class A and execute applications with 128 processes, i.e., 128
compute nodes. We choose a speci�c collective communication operation for rank
placement two-opt optimization based on the communication characteristics of the
applications. Each application’s most used collective communication operation is
chosen, based on the demonstrated in [131]. Since the Broadcast operation has less
running time than Allreduce and Alltoall, we optimize two-opt rank placement by
considering only Allreduce and Alltoall operations. The iteration times of two-opt are
20,0000, and the algorithms for Allreduce and Alltoall are recursive doubling and
Bruck’s [99], respectively. The elemental mapping strategies are random, hierarchical
tree, and ring-based consecutive mapping.

Figures 3.13 to 3.16 display box plots of parallel applications FT, IS, MG, and
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Table 3.7: Applications Description and Collective Communication Operations for
two-opt optimization

Application Description Collective Operation
FT discrete 3D fast Fourier Transform Alltoall
IS Integer Sort Alltoall, Alltoallv

MG Multigrid Allreduce
LU Lower-Upper Gauss-Seidel solver Allreduce

Random Two-opt-hop-random Tree Two-opt-hop-tree Ring Two-opt-hop-ring
Mapping Strategy

260000

280000

300000

320000

340000

360000

380000

M
op

/s

Figure 3.13: Performance evaluation of application FT in random shortcut network
topology.

LU performance. The x-axis shows Mop/s, with higher values indicating better
performance, and the y-axis shows di�erent mapping strategies. Each �gure consists
of six data sets for random, hierarchical tree, and ring-based consecutive mapping,
each in versions with and without two-opt optimization, and each set includes 100
data points. In these box plots, the median appears as a horizontal line inside each
box, while the lower and upper quartiles form the bottom and top of the box. The
"whiskers" extend from each box to illustrate the data’s range, marking the minimum
and maximum values. Points outside the whiskers represent outliers.

Figure 3.13 illustrates the performance evaluation of FT, and the �gure shows that
for any mapping strategy, the two-opt rank placement optimization for collective com-
munication operation improves overall performance. The performance improvement
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Random Two-opt-hop-random Tree Two-opt-hop-tree Ring Two-opt-hop-ring
Mapping Strategy
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Figure 3.14: Performance evaluation of application IS in random shortcut network
topology.

is especially noticeable for hierarchical tree and ring-based consecutive mapping
strategies.

Figure 3.14 illustrates the performance evaluation of IS, and the �gure shows that
for any mapping strategy, the two-opt rank placement optimization for collective com-
munication operation improves overall performance. The performance improvement is
especially noticeable for random and hierarchical tree mapping strategies.

Figure 3.15 presents a performance evaluation for the MG application. The hierar-
chical tree mapping strategy bene�ts from the two-opt rank placement optimization
for the Allreduce operation, showing a marked enhancement in overall performance.
In contrast, the performance gains are more modest for the random and ring-based
consecutive mapping strategies. This variation in performance improvement can
be attributed to the communication characteristics of MG, where the bytes of mes-
sages sent by collective communication represent only a tiny fraction of the total
communication volume [131]. Consequently, enhancing the e�ciency of collective
communication operations has a somewhat limited impact on the overall performance.
The evaluation results of collective communication in Section 3.4.2 show that Allreduce
operations under original hierarchical tree mapping perform poorly and that applying
a two-opt optimization can dramatically improve Allreduce performance. Therefore,
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Random Two-opt-hop-random Tree Two-opt-hop-tree Ring Two-opt-hop-ring
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Figure 3.15: Performance evaluation of application MG in random shortcut network
topology.

two-optimization can enhance the performance of MG with hierarchical tree mapping.

Random Two-opt-hop-random Tree Two-opt-hop-tree Ring Two-opt-hop-ring
Mapping Strategy
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Figure 3.16: Performance evaluation of application LU in random shortcut network
topology.

Figure 3.16 displays the performance evaluation results for the LU application.
Similar to the communication characteristics of MG, the volume of bytes sent through
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collective communication in LU constitutes a minimal portion of the overall commu-
nication volume [131]. Consequently, enhancements in collective communication
performance only minimally impact the overall performance improvement. Inter-
estingly, in ring-based consecutive mapping, the two-opt optimization degrades
the performance of LU. This result may be because nodes in LU applications often
communicate with their neighbors. Original ring-based consecutive mapping is
conducive to this communication pattern, and two-opt rank placement increases the
ASPL.

3.5 Discussions

3.5.1 Quality of Results
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Figure 3.17: Total path hops of the two-opt, SA and MPICH2 Broadcast [3].

The quality of results of the two-opt algorithm would a�ect the performance of
collective communication operations on the random network topologies. In this study,
we select a two-opt algorithm to instantly compute the ordered list of visiting nodes in
collective communication operations. However, the two-opt algorithm is simple and
thus may result in a local minimum value in the optimization. Here, we compare the
two-opt Broadcast that swaps the ordered list of visiting nodes 5,000 times to the other
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sophisticated heuristics, i.e., simulated annealing (SA).
Generally speaking, the implementation of SA should execute many attempts, i.e.,

the node swap in the ordered list, to obtain a better solution. In Broadcast, 1,000 or
larger iterations obtain a better solution.

Figure 3.17 illustrates the total path hops of the two-opt and the competitor’s
Broadcast for various network sizes. The lower value is better in the �gure. The
“two-opt” and “Conv” plots the total path hops of the two-opt Broadcast and that
in MPICH2, respectively. The optimization is done to reduce the total path hops
of point-to-point communications. The “SA 1,000” represents the SA with 1,000
iterations. SA provides shorter total path hops in Broadcast, and the two-opt Broadcast
is marginally inferior to the SA with 1,000 and 10,000 iterations. However, both SAs
can not provide the solution, i.e., the ordered list of visiting nodes, as the network size
becomes large, e.g., 2,048 for SA with 10,000 iterations, due to its high computation
cost. By contrast, the two-opt Broadcast, SA with 72 iterations and that in MPICH2
provide the solution even if the network size becomes large, e.g., the 8,192-node
random network topology.

The SA Broadcast with 72 iterations has almost the same or slightly longer
computation time than the two-opt Broadcast in Figure 3.18. The SA Broadcast with 72
iterations is thus a competitor to the two-opt Broadcast. The critical �nding is that the
two-opt Broadcast provides comparable and often slightly better total path hops (up to
3%) than the SA Broadcast with 72 iterations.

We thus conclude that the two-opt Broadcast has a good trade-o� between the
scalability and quality of results.

3.5.2 Scalability

A potential scalability issue could be the calculation time for Broadcast on a random
network topology. We detail the scalability. Figure 3.18 shows the computation time
vs. network size for 8-degree random network topologies when the two-opt and
SA Broadcast executes as a single-threaded program on a 3.20 GHz Intel Xeon CPU
E5-2667 v4 with 528 GiB of RAM. The two-opt and SA Broadcasts are optimized in
terms of total path hops of point-to-point communications that form a Broadcast. The
two-opt algorithm swaps 5,000 times to attempt to update Broadcast’s ordered list
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Figure 3.18: Computation time vs. network size for two-opt Broadcast [3].

of nodes. As expected, the results show that it is feasible to instantly compute the
two-opt Broadcast and the SA Broadcast with 72 iterations by up to 2,048-node random
network topologies, e.g., 4.32 seconds for 256 nodes. By contrast, the computation
time of SAs is saturated at 1,024 nodes and 4,096 nodes for 1,000 iterations and 10,000
iterations, respectively.

3.6 Summary

In this chapter, we applied the two-opt approach to replace processes’ rank for building
e�cient collective communication in random shortcut network topologies.

The two-opt approach replaces the processes’s rank, changing the point-to-point
communication that makes up the collective communication, which a�ects the overall
performance of the collective communication.

The discrete-event simulation results signi�cantly enhance collective communi-
cation performance using the two-opt approach. This improvement is achieved by
reducing the hops of collective communication operations and boosting the over-
all performance of parallel applications, particularly in scenarios where collective
communication plays a dominant role in application performance.

We further explore the performance factors. For a given random network topology,
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the collective communication operations should be instantly computed for each
source-destination pair before executing the target parallel programs.

Regarding total path hops, the two-opt approach is comparable to the competitor’s
simulated annealing (SA) and has a lower overhead.
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4
E�cient Collective Communication
using Circulant Network Topology

4.1 Introduction

Chapter 2 describes that collective communication operations signi�cantly impact
the performance of parallel applications. Chapter 3 investigates using the two-opt
approach in random shortcut network topology to reduce the number of hops in
collective communication and thus improve communication e�ciency and shows
that in applications where collective communication operations are predominant
(such as FT in NAS parallel benchmark [130, 131]), reducing the total hop count
through the two-opt method can signi�cantly improve overall application performance.
Although the two-opt approach in Chapter 3 can dramatically reduce the hop count of
collective communication, as shown in Figures 3.7, 3.8 and 3.9, the hops of collective
communication stabilizes with increasing number of iterations.

This chapter focuses on the collective communication on a particular circulant
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network topology. Cooperative communication has a minimal number of hops on
this network topology, even down to the theoretical minimum - i.e., the number of
hops between any two nodes communicating in collective communication is one.
Typically, it is costly to implement a network topology with a hop count of one between
nodes. For instance, a fully connected network topology ensures that any two nodes
are adjacent. Fully connected topology could be applied to a small interconnection
network for e�cient collective communication [8]. However, as the size of fully
connected topology increases, the explosion in the number of links is unacceptable.
Many low-diameter network topologies, such as Dragon�y [12] and Slim Fly [13], try
to achieve low communication hops and cost-e�ectiveness.

The circulant network topology used in this chapter has a similar construction
process to the random shortcut topology in Chapter 3, i.e., augmenting shortcut links
to a basic ring topology. The circulant network topology takes a higher diameter
and ASPL than the counterpart random shortcut network topology with the same
degree [2]. However, the circulant network topology interestingly enables collective
communication operations with lower aggregate path hops than the random shortcut
network topology. More precisely, for Broadcast, Allreduce, and Alltoall operations with
a speci�c algorithm, such as binomial tree Broadcast, recursive-doubling Allreduce,
Bruck’s Alltoall[99], the aggregate path hops can reach a theoretical minimum.
Theoretically minimum hop counts mean that all the point-to-point communications
that form a collective-communication operation take only one hop.

Section 4.2 introduces circulant topology and the generation of the target circulant
topology discussed in this chapter. Section 4.3 introduces the behavior patterns of
three collective communication operations: Broadcast, Allreduce, and Alltoall in
Circulant Topology. Section 4.4 presents a circulant mapping strategy to achieve
the minimum collective communication hops count. Section 4.5 evaluates collective
communication operations and parallel applications on circulant network topology.
Section 4.6 summarizes the contents of this chapter.
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4.2 Target Circulant Network Topology

4.2.1 Circulant Topology

A circulant graph � (=; 21, 22, ..., 2:) has = vertices E0, E1, ....E=−1, in which 21 = 1 and
28 < 28+1, E0 is connected to E1 if and only if 0 ≡ 1 ± 28 ( mod =). The sequence
< 21, 22, ..., 2: > is called jump sequence, 21, 22, ..., 2: are called jumps, the maximum
jump 2: ≤ b=/2c [96, 132]. Figure 4.1 illustrates the examples of circulant graphs with
16 vertices.

(a) � (16; 1) (b) � (16; 1, 2)

(c) � (16; 1, 2, 4) (d) � (16; 1, 2, 4, 8)

Figure 4.1: Circulant graphs with 16 vertices.

Circulant network topology is widely used in various network designs. They
are used as a ring extension to design and implement local area networks. The
networks are also called distributed loop computer-networks[49, 50]. A variant of
circulant network topology called Multi-Ring network topology is used to achieve
high-performance group communication in peer-to-peer networks[94]. The paper
[95] proposed recursive circulant network topology for multicomputer systems. The
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recursive circulant network topology is also circulant network topology. The paper
[96] proposed generalized recursive circulant graphs, which are the extension of
recursive circulant graphs. Recently, the research[53] presented the optimal circulant
network topologies as low latency network topologies.

4.2.2 High-Radix Circulant Network Topology

In this work, we focus on the circulant graphs � (=; 21, 22, ..., 2:) with the following
properties:

• The number of vertices = is powers of two.

• The jump 28 = 28−1, 28 is in jump sequence < 21, 22, ..., 2: >, 1 ≤ 8 ≤ : = log2 =.

We �nd that circulant topology that satis�es the above conditions is well suited for
collective communication, the binomial tree Broadcast, recursive doubling Allreduce
and Bruck’s Alltoall on this type of circulant network topology can achieve the
minimum number of total hop counts. In Section 4.3, the communication behavior
of these collective communication operations is analyzed in this circulant network
topology. We can use � (=, :) to represent this class of circulant topology. = is the
number of vertices, : is the number of elements of sequence < 21, 22, ..., 2: >, = = 2: and
the degree of each vertex is 2: − 1. The circulant graph � (16; 1, 2, 4, 8) in �gure 4.1(d)
can also be represented as � (16, 4).

We apply the circulant graph� (#, log2 # ) to the network topology of parallel
computers; N is a power of two. Each vertex in the graph represents a switch, and
multiple compute nodes are attached to each switch. The degree of a vertex in circulant
graph � (#, log2 # ) is 2 log2 # − 1, and the switch has 2 log2 # − 1 cables linked to
other switches. In this dissertation, we focus on collective communication operations
on network topology, assuming only one compute node on each switch.

4.3 CollectiveCommunication inTargetCirculantNet-

work Topology

We apply the circulant graphs� (=, log2 =) to the network topology of parallel computers,
assuming that each vertex represents a compute node. Then, we detail the behavior of
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Broadcast, Allreduce, and Alltoall on the circulant network topology� (16, 4). The
binomial tree Broadcast, recursive doubling Allreduce and Bruck’s Alltoall in circulant
� (=, log2 =)can achieve the minimum number of total hops.

4.3.1 Broadcast in Circulant Network Topology

Figure 4.2: Binomial tree Broadcast in circulant network topology.

Figure 4.2 illustrates a Broadcast operation using the binomial tree algorithm on
a � (16, 4) network topology. This operation is completed in four steps. In the �rst
step, we perform the point-to-point communication E0 → E8. Fortunately, there is
a direct link between E0 and E8. In the second step, we archive the point-to-point
communications from E0 → E4 and E8 → E12, there are also links between nodes E0, E4
and E8, E12. In the last two steps, each point-to-point communication only requires one
hop, similar to the preceding two steps. As Figure 4.2 illustrates, each point-to-point
communication in the Broadcast operation on the circulant network topology involves
only one hop. Therefore, the total hop count for the binomial tree Broadcast reaches
the ideal minimum number of hops.
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4.3.2 Allreduce in Circulant Network Topology

Figure 4.3: Recursive doubling Allreduce in circulant network topology.

Figure 4.4 shows an example Allreduce operation with a recursive doubling
algorithm on � (16, 4) circulant network topology. It takes four steps to �nish the
Allreduce operation. In the �rst step, eight pairs nodes exchange there messages
E0 ↔ E1, E2 ↔ E3, E4 ↔ E5, E6 ↔ E7, E8 ↔ E9, E10 ↔ E11, E12 ↔ E13, E14 ↔ E15, we can
clearly see that each pair of nodes are connected. In the last three steps, each step has
eight pairs of nodes exchanging their messages, and each pair is connected. The total
hops of the Allreduce operation can also reach the ideal minimum hops.

4.3.3 Alltoall in Circulant Network Topology

Figure 4.4 provides an example of Alltoall operation using Bruck’s algorithm on a
� (16, 4) network topology. It takes four steps to �nish the Alltoall operation. In this
Alltoall operation, all the network topology links are fully utilized. In Bruck’s Alltoall
operation, every point-to-point communication has both the source and destination
nodes directly connected, resulting in a single hop for each communication. Therefore,
the total hop count of the Alltoall operation also achieves the ideal minimum hop
count.
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Figure 4.4: Bruck’s algorithm Alltoall in circulant network topology.

4.3.4 Hop Count of Collective Communication Operations in
Circulant Network Topology

In the above, we explained the collective operations on � (16, 4) circulant network
topology. It can be generalized as follows.

For any node E0 in the � (=, log2 =) network topology, it has 2: − 1 neighboring
nodes {E1 |1 ≡ 0±28−1 mod =, 1 ≤ 8 ≤ :}. For the sake of convenience, in the Broadcast
operation, we select E0 as the root node. Due to the symmetry of the above circulant
network topology, choosing any node as the root node has the same e�ect. In the
�rst step, E0 as the source node, there is point-to-point communication E0 → E =

2
.

In the second step, nodes E0 and E =
2

are the source nodes, there are point-to-point
communications E0 → E =

4
and E =

2
→ E 3=

4
. More generally, in the 8th step, there are

28−1 source nodes {E 9=

28−1
|0 ≤ 9 ≤ 28−1 − 1}, the point-to-point communication from

source node E 9=

28−1
is E 9=

28−1
→ E (29+1)=

28
. Let 0 =

9=

28−1 , the point-to-point communication

E 9=

28−1
→ E (29+1)=

28
can be converted to E0 → E0+ =

28
. Since = = 2: , =28 can be represented as

2:−8 . The destination node of point-to-point communication E0+2:−8 is the neighboring
node of source node E0 . For any point-to-point communication of Broadcast operation,
the source node and destination node are connected, and the hop counts of the
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point-to-point communication are one, so the Broadcast operation on the� (=, log2 =)
circulant network topology can reach the ideal minimum hops.

In the Allreduce operation using recursive doubling algorithm, at the 8th step, the
two nodes have a distance 28−1 to exchange their data. Assume that nodes E0 and
E1(1 > 0) exchange their data at 8th step, the equation 1 = 0 + 28−1 holds. It’s obvious
that E0 and E1 are connected, the total hops of two point-to-point communication
E0 → E1 and E1 → E0 are two. Therefore, the Allreduce operation on � (=, log2 =)
network topology can reach the ideally minimum hops.

In the Alltoall operation using Bruck’s algorithm, at the 8th step, node E0 sends
message to node E1, 1 = 0 − 28 + = mod =, so the node E1 is the neighboring node of E0 ,
the hop count of point-to-point communication E0 → E1 is one. Thus, the Alltoall
operation on� (=, log2 =) circulant network topology can also reach the ideal minimum
hops.

Collective Communication Algorithm Hop count

Broadcast Binomial tree = − 1

Allreduce Recursive doubling = log2 =

Alltoall Bruck’s algotirhm = log2 =

Table 4.1: Hop count of collective communication operations in circulant network
topology

We can derive the number of hops performing a collective communication operation
in a circulant network topology � (=, log2 =). Assume that all nodes in � (=, log2 =) are
involved in collective communication and use the shortest path routing. Since any
point-to-point communication of collective communication operation has a hop count
of 1, the total hop count of collective communication equals the number of point-to-
point communications. Table 4.1 shows the hop count of collective communication
operations using a speci�c algorithm.
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4.4 CirculantMapping Strategy forCirculantNetwork

Topology

In Chapter 3, we introduced random, hierarchical-tree, and ring-based consecutive
mapping strategies for random shortcut network topology, and these mapping strategies
can be applied to circulant network topology as well.

In our previous assumption, we considered all nodes in � (=, log2 =) participating
in collective communication, enabling it to achieve the minimum number of hops.
However, applying the mapping strategies introduced in Chapter 3 to circulant network
topology, where a part of nodes participate in collective communication, may prevent
achieving the minimum hop count. We propose a mapping strategy for the circulant
network topology that enables collective communication to reach the minimum hop
count even when a part of the nodes participates in communication.

0
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3

4

5

6

7

(a) Mapping 8 nodes in circulant net-
work topology � (16, 4)

(b) The mapped topology is � (8, 3).

Figure 4.5: An 8-node mapping on a 16-node circulant network topology.

Figure 4.5(a) provides an example of mapping eight nodes in circulant network
topology � (16, 4). Figure 4.5(b) shows that the topology of the mapped nodes is still a
circular topology � (8, 3). Since the mapped topology remains a circulant topology, the
aggregate communication operations that the mapped nodes participate in still achieve
a minimum number of hops. This mapping strategy allows the topology consisting of
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mapped nodes to remain a circulant topology, which we call the circulant mapping
strategy.

We assume that< nodes are mapped in circulant network topology� (=, log2 =).
Since the mapped topology is circulant topology � (<, log2<),< should be satis�ed as
a power of 2, and< ≤ =. There are =

<
sub-circulant topologies � (<, log2<) in the

circulant network topology � (=, log2 =); the mapping strategy needs to map< nodes
into any sub-circulant topology � (<, log2<).

Algorithm 4.1 Mapping< nodes into circulant network topology � (=, log2 =)
Require: Host topology � (=, log2 =), nodes in � (=, log2 =) + = {E0, E1, ..., E=−1},

mapped nodes " = {}, number of mapped nodes<
Ensure: The topology of mapped nodes " is circulant topology � (<, log2<)
BCA834 ← =

<

8 ← rand() mod =
" ← " ∪ {E8}
while |" | < < do

8 ← 8 + BCA834 mod =
" ← " ∪ {E8}

end while

Algorithm 4.1 describes a method for mapping< nodes in a circulant topology
� (=, log2 =) to make a circulant � (<, log2<). Here, we are only concerned with how
to construct a sub-circulant topology � (<, log2<) in circulant topology � (=, log2 =),
not the e�ciency of topology mapping, assuming that all nodes are idle and all nodes
can be mapped immediately. With =

<
as the stride, starting from randomly selected

node E8 , the mapped nodes are continuously added according to stride. When the
mapping is completed, the mapped nodes form a circulant topology � (<, log2<).

4.5 Evaluation

4.5.1 Methodology

We use the discrete-event simulator SimGrid (v3.28) [133] to evaluate the perfor-
mance of collective operations. In this evaluation, we focus on the impact of latency
on performance, assuming that there is one compute node on each switch as Sec-
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tion 4.2.2 described, and only one processor per compute node. The parameters of the
interconnection network are illustrated in Table 4.2.

Table 4.2: Parameters of the interconnection network.
Power of compute node 100GFLOPS

Switch latency 100ns
Link bandwidth 100Gbps
Switch capacity 3.6Tbps

Routing algorithm Floyd (Minimal Paths)

The number of compute nodes or switches is 1024, and the degree of each switch
is 19 based on the properties of the target circulant network topology described in
Section 4.2.2.

4.5.2 Execution Time of Collective Communication Operations

We compare the performance of four di�erent mapping approaches, namely, circulant,
ring-based consecutive, hierarchical-tree, and random mapping. For hierarchical
tree and random mapping, we also apply the two-opt approach to optimize the rank
placement to reduce the hops and contention for collective communication operation;
the iteration times of the two-opt approach is 200000. We also applied the CCO
algorithm on random and hierarchical tree mapping for the Broadcast operation.

Figures 4.6(a) and 4.6(b) present the execution time of the Broadcast operation in
two di�erent scenarios: small message sizes ranging from 256B to 16KB and large
message sizes ranging from 64KB to 1MB, respectively. These results enable us to
analyze the performance of the Broadcast operation under varying message size
conditions. The lower values are better on the Y-axis (the unit is second). The results
show that when the message size is small, after the message size becomes large
(64KB-1MB), although circulant mapping and Ring-based consecutive mapping have
the least number of hops, the performance improvement is not signi�cant, and after the
message size becomes large (64KB-1MB), circulant and ring-Ring-based consecutive
mapping have the best performance.

Figures 4.7(a) and 4.7(b) present the execution time of the Allreduce operation.
Allreduce has a much larger hop count than broadcast, and performance gains from
reducing hops become apparent. Since circulant mapping for Allreduce has the same
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number of hops as ring-based consecutive mapping, their Allreduce runtimes are
almost identical. The results show that both circulant and ring-based consecutive
mapping achieve the best results and signi�cantly better performance when the
message size of the paper is small or large. In the case of large message sizes, such as
1MB, compared to unoptimized random and hierarchical tree mapping, performance is
improved by 51% and 80%, respectively. The performance is also improved by 29% and
42% compared to random and hierarchical tree mapping optimized with two-opt hop
reduction, respectively.

Figures 4.8(a) and 4.8(b) present the execution time of the Allreduce operation. The
evaluation results of the Alltoall operation follow a similar trend to the results of the
Allrduce operation. Compared to other mapping strategies, circulant and ring-based
consecutive mapping perform best. In the case of large message sizes, such as 1MB,
compared to unoptimized random and hierarchical tree mapping, performance is
improved by 60% and 72%, respectively. The performance is also improved by 21% and
34% compared to random and hierarchical tree mapping optimized with two-opt hop
reduction, respectively.

4.5.3 Performance Evaluation of Parallel Applications

In this section, we evaluate the performance of parallel applications. Same as the evalu-
ation in Section 3.4.3, we evaluate the applications in NAS parallel benchmark [130],
which are FT, IS, MG, and LU. The problem size is Class A, the number of processes is
128, and the iteration times of the two-opt approach are 20,0000. Broadcast, Allreduce,
and Alltoall algorithms are binomial trees, recursive doubling, and Bruck’s ones [99].
Table 4.5.3 shows the description of applications and the collective communication
operation to be optimized for each application.

Table 4.3: Applications description and its frequently used collective communication
operations.

Application Description Collective Operation
FT discrete 3D fast Fourier Transform Alltoall
IS Integer Sort Alltoall, Alltoallv

MG Multigrid Allreduce
LU Lower-Upper Gauss-Seidel solver Allreduce
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Figures 4.9 to 4.12 display box plots of parallel applications FT, IS, MG, and
LU performance. The x-axis shows Mop/s, with higher values indicating better
performance, and the y-axis shows di�erent mapping strategies. Each �gure consists
of six data sets for random, hierarchical tree, ring-based consecutive, and circulant
mapping, each in versions with and without two-opt optimization except for circulant
mapping, and each set includes 100 data points. In these box plots, the median appears
as a horizontal line inside each box, while the lower and upper quartiles form the
bottom and top of the box. The "whiskers" extend from each box to illustrate the
data’s range, marking the minimum and maximum values. Points outside the whiskers
represent outliers.

Figure 4.9 illustrates the performance evaluation of FT, and the �gure shows that
the performance circulant and ring-based consecutive mappings are better than the
others. In contrast, circulant mappings are slightly better than ring-based consecutive
mappings. Figure 4.10 illustrates the performance evaluation of IS, and the �gure
shows that the ring-based consecutive mapping has the best performance. Figure 4.11
presents a performance evaluation for the MG application. The evaluation results
show that the performance of the four mapping strategies does not have noticeable
di�erences.

Figure 4.12 displays the performance evaluation results for the LU application.
Circulant mapping and ring-based consecutive mapping are signi�cantly better than
random and hierarchical tree mapping. Circulant mapping has the best performance
and is considerably better than ring-based consecutive mapping.

4.6 Summary

In this chapter, we apply a particular circulant graph to build a network topology net-
work. This circulant network topology is highly suitable for collective communication
operations. We analyze the behavior of three collective communication operations:
Broadcast, All reduce, and Alltoall with the binomial tree, recursive doubling, and
Bruck’s algorithm, respectively. These three collective communication operations
can achieve ideal hop counts, which means each communication between two nodes
only has one hop. For the circulant network topology, we proposed using ring-base
consecutive and circulant mapping; these two mapping strategies can implement
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extremely low hops collective communication operations. In particular, circulant
mapping can achieve ideal hops collective communication.

We also propose a process mapping strategy for ring network topologies called
circulant mapping, which enables the partially mapped compute nodes involved in
collective communication to achieve the theoretically lowest number of hops still.

The discrete-event simulation results in SimGrid show that our proposed mapping
strategy, which aims to minimize the number of hops in collective communication,
signi�cantly improves the collective communication performance compared to other
mapping strategies, such as random and hierarchical-tree mapping.

The results of the evaluation of collective This e�cient collective communication
also re�ects the performance of parallel applications. The evaluation of the application
shows that the e�cient collective communication on circulant network topology leads
to the high performance of parallel applications.
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(a) Execution time of Broadcast with small message size.

(b) Execution time of Broadcast with large message size.

Figure 4.6: Execution time of Broadcast operation on circulant network topology (1,024
nodes, 512 processes).



76
Chapter 4. E�cient Collective Communication using Circulant Network

Topology

(a) Execution time of Allreduce with small message size.

(b) Execution time of Allreduce with large message size.

Figure 4.7: Execution time of Allreduce operation on circulant network topology (1,024
nodes, 512 processes).
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(a) Execution time of Alltoall with small message size.

(b) Execution time of Alltoall with large message size.

Figure 4.8: Execution time of Alltoall operation on circulant network topology (1,024
nodes, 512 processes).
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Figure 4.9: Performance evaluation of application FT in circulant network topology.
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Figure 4.10: Performance evaluation of application IS in circulant network topology.
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Figure 4.11: Performance evaluation of application MG in circulant network topology.
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Figure 4.12: Performance evaluation of application LU in circulant network topology.
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5
Comparison of Random and

Non-Random Network Topologies

We proposed e�cient collective communication using two di�erent network topologies:
random shortcut network topology and circulant network topology. These two types
of network topologies are constructed by augmenting shortcut links to a basic ring
topology. The di�erence is that random shortcut network topology is obtained by
randomly increasing shortcut links, while non-randomly adding shortcut links receives
circulant. Then, one might think, “Which is better?”. This chapter attempts to answer
by comparing these two types of topologies.

This chapter �rst compares the properties of network topologies such as diameter
and ASPL. It secondly illustrates the comparison of the hop counts and performance
of collective communication operations. Thirdly, it compares the hop counts and
performance of point-to-point communication on these two network topologies. It
also analyzes the total communication hop count by varying the point-to-point and
collective communications ratio. Then, the performance of parallel applications is
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compared. Finally, we compare the cost of these two network topologies.

5.1 Diameter and Average Shortest Path Length

Diameter and ASPL are essential properties to measure the performance of network
topology. We compared the diameter and ASPL of these shortcut network topologies
and the Dragon�y network topology. The Dragon�y is a low latency, low diameter,
and cost-e�ective network topology that has been deployed on real large-scale parallel
computers [89, 90, 91, 92], and we chose it as our baseline.
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Figure 5.1: Comparison of diameter of three network topologies.

Figures 5.1 and 5.2 illustrated the diameter and average shortest path length (ASPL)
of random shortcut, circulant, and Dragon�y network topologies, respectively. The
x-axis in both �gures represents the network size, i.e., the number of switches. Each
network topology has the same degree, the number of degree 3 satis�es the condition in
Chapter 4 : 3 = 2 log2 # − 1. The y-axis in Figure 5.1 is diameter, and that in Figure 5.2
represents their ASPL.

As shown in Figure 5.1, the diameter of the Dragon�y network topology is always
3, and the diameter of the random shortcut network topology is more signi�cant
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than that of the Dragon�y. Still, it is relatively stable, with a diameter of 4, when the
network size is 8194. The diameter of the circulant network topology increases as the
network size increases, and when the network size is 8192, the diameter reaches 7.
When the network is more signi�cant than 64, the circulant network topology has a
larger diameter than the random shortcut network topology.
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Figure 5.2: Comparison of average shortest path length of three network topologies.

Figure 5.2 illustrates the ASPL comparison of these three network topologies.
Although the Dragon�y network topology has a smaller diameter than the random
shortcut network topology, the random shortcut network topology has a smaller ASPL,
and the circulant network topology has the largest ASPL.

5.2 Collective Communication in Shortcut Network

Topologies

5.2.1 Hop Count of Collective Communication Operations

Figures 5.3, 5.4 and 5.5 illustrated the hop count of Broadcast, Allreduce and
Alltoall operations on circulant, random shortcut and Dragon�y network topologies,
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respectively. The X-axis represents the network size, and the Y-axis represents the hop
count.
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Figure 5.3: Hop counts of Broadcast operations for three network topologies.

Similar to the results in Section 5.1, all network topologies have the same degree,
and the degree 3 = 2 log2 # − 1. We assume that one compute node is connected to
each switch, and all compute nodes involve the collective communication operations.
We attempted ring-based consecutive mapping. There is also the case of two-opt rank
placement optimization for random shortcut network topology. The iteration time is
200,000i n two-opt rank placement optimization.

We previously illustrated that the binomial-tree Broadcast, recursive doubling
Allreduce, and Bruck’s Alltoall operations in the circulant network topologies can
achieve the minimum collective communication hop count. Figures 5.3, 5.4 and 5.5
show that the hop count of these three collective communication operations on
circulant network topology is the lowest. Although circulant network topology has a
larger diameter and ASPL than random shortcut and Dragon�y network topologies, as
illustrated in Section 4, the circulant network topology is highly suitable for collective
communication operations. The hop counts of collective communication on circulant
network topology are signi�cantly lower than random shortcut and Dragon�y network
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Figure 5.4: Hop counts of Allreduce operations for three network topologies.
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Figure 5.5: Hop counts of Alltoall operations for three network topologies.

topologies.
When the network size is 1,024, for the binomial-tree Broadcast operation, the hop
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counts on circulant are 9% and 40% less than Dragon�y and random network topology.
For the recursive doubling Allreduce operation, the hop count on circulant network
topology is 48% and 59% less than Dragon�y and random network topologies. For
Bruck’s Alltoall operation, the hop count on circulant network topologies is 52% and
59% less than Dragon�y and random network topologies.

5.2.2 Performance of Collective Communication Operations

We evaluate the execution time of Broadcast, Allreduce, and Alltoall with di�erent
message sizes on the random shortcut, circulant, and Dragon�y network topologies.
The parameters’ setting of the network is the same as Chapters 3 and 4. The network
size is set to 1,024, and 512 compute nodes are involved in the collective communication
operations. We divide the message size into small and large groups. The small size
includes 256B, 1KB, 4KB, and 16 KB. The large size has 64KB, 256KB, and 1MB.
Figures 5.6 to 5.11 illustrates the evaluation results of all collective communication
operations; the X-axis represents message size, and the Y-axis represents the execution
time of collective communication operation.

Figures 5.6 and 5.7 illustrate the execution time of Broadcast operation with small
and large message sizes. The results show that the Broadcast performance of ring-based
consecutive mapping in Dragon�y is the worst. The random mapping in Dragon�y
is better than the original random and ring-based consecutive mapping in random
shortcut network topology but worse than them with two-opt hop rank placement
optimization. When the message size becomes large, the Broadcast performance on
circulant network topology using ring-based consecutive and circulant mapping is the
best.

Figures 5.8 and 5.9 illustrate the execution time of the Allreduce operation with
small and large message sizes. Similar to the Broadcast performance evaluation results,
the Allreduce performance of ring-based consecutive mapping in Dragon�y is the
worst. The random mapping on Dragon�y is better than the ring-based consecutive
mapping on random shortcut network topology but worse than random mapping. With
two-opt rank optimization, the random and ring-based consecutive mapping Allreduce
operation on random shortcut network topology performs better than Dragon�y. The
ring-based mapping Allreduce in circulant network topology is also the best.
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Figure 5.6: Execution time of Broadcast operations for di�erent network topologies
and mappings with small message size.

Figures 5.10 and 5.11 illustrate the execution time of the Alltoall operation with
di�erent message sizes. Similar to the Allreduce performance evaluation results, the
Alltoall performance of ring-based consecutive mapping in Dragon�y is the worst. The
random mapping on Dragon�y is better than the ring-based consecutive mapping on
random shortcut network topology but worse than random mapping. With two-opt
rank optimization, the random and ring-based consecutive mapping Alltoall operation
on random shortcut network topology performs better than Dragon�y. The ring-based
mapping Alltoall in circulant network topology is also the best.

The performance evaluations of Broadcast, Allreduce, and Alltoall operations show
that the ring-based consecutive mapping in Dragon�y network topology is highly
worse—the congestion of the global links in Dragon�y topology may be one of the
reasons.

For a fair comparison, all topologies have the same degree. The degree 3 of random
shortcut, circulant, and Dragon�y satis�es the condition: 3 = 2 log2 # − 1. When
the network size is 1024, the degree 3 is 3 = 19. We generate the 1024 network size
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Figure 5.7: Execution time of Broadcast operations for di�erent network topologies
and mappings with large message size.

Dragon�y network topology this way, dividing the 1024 switches into 64 groups; each
group has 16 switches, with each switch having 4 global links to switches in other
groups; this case does not satisfy the load-balance [87] of Dragon�y network topology.
The low number of global links may be responsible for the performance degradation of
collective communication operations.

5.3 Point-to-Point Communication in Shortcut Net-

work Topologies

This section compares hop counts and communication time of point-to-point commu-
nication in shortcut topologies with uniform random tra�c patterns. Then, we analyze
the total communication hop count by varying the point-to-point and collective
communications ratio.
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Figure 5.8: Execution time of Allreduce operations for di�erent network topologies and
mappings with small message size.
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Figure 5.9: Execution time of Allreduce operations for di�erent network topologies and
mappings with large message size.
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Figure 5.10: Execution time of Alltoall operations for di�erent network topologies and
mappings with small message size.

64KB 256KB 1MB
Message Size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Ex
ec

ut
io

n 
Ti

m
e

Ring(Dragonfly Topology)
Random(Dragonfly Topology)
Random(Random Topology)
Two-opt-hop-random(Random Topology)
Ring(Random Topology)
Two-opt-hop-ring(Random Topology)
Random(Circulant Topology)
Two-opt-hop-random(Circulant Topology)
Ring(Circulant Topology)
Circulant(Circulant Topology)

Figure 5.11: Execution time of Alltoall operations for di�erent network topologies and
mappings with large message size.



5.3 Point-to-Point Communication in Shortcut Network Topologies 91

5.3.1 Hop count of Point-to-Point Communication

Figure 5.12 illustrates the average hops of point-to-point communication on random
shortcut and circulant network topologies with uniform random tra�c patterns. The
number of switches is 1024, and the number of compute nodes is also 1024, assuming
that one compute node is connected to each switch. The X-axis represents the number
of mapped compute nodes; mapping strategies are used, which are introduced in
Chapters 3 and 4. The Y-axis represents the average hop count. The average hop count
is the mean number of hops taken by 100000 individual point-to-point communications.
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Figure 5.12: Average hop count of point-to-point communication

Section 5.1 illustrates that the circulant network topology has a higher diameter
and ASPL than random shortcut network topology for the same degree. Intuitively, the
point-to-point communication in circulant network topology may have a higher hop
count. However, Figure 5.12 shows that even though circulant network topology has
higher diameter and ASPL, the point-to-point communication in circulant network
topology still archives lower hop count than random shortcut network topology in
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many cases. As shown in Figure 5.12, when the network size is 1024, the average hop
count of point-to-point communication in the circulant network topology is less than
that of the random shortcut network topology when the mapped compute nodes are
less than or equal to 128, using both circulant mapping and ring-based consecutive
mapping.

5.3.2 Performance of Point-to-Point Communication

Section 5.1 describes using the circulant and ring-based consecutive mappings in
circulant networks, where point-to-point communication has fewer hop counts than in
random shortcut network topology when the number of mapped computational nodes
is large, e.g., when the network size is 1024. The mapped nodes are less than 128.
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Figure 5.13: Bidirectional communication time of point-to-point communication.

In this section, we evaluate the bidirectional communication time of point-to-point
communication in circulant and random shortcut network topologies by using the
discrete-event simulator SimGrid (v3.28) [133]. The network is con�gured with the
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same parameters as in Sections 3.4.3 and 4.5. The number of switches and compute
nodes are 1024, the message size of point-to-point communication is 128 bytes, and the
tra�c pattern is random. The bidirectional time is the mean value of 10000 bidirectional
point-to-point communications.

Figure 5.13 shows the bidirectional point-to-point communication evaluation result.
The X-axis represents the bidirectional communication time; the Y-axis represents
the number of mapped compute nodes. As Figure 5.13 shows, when the number of
compute nodes is less than 128, point-to-point communication with circulant mapping
in a circulant network topology outperforms point-to-point communication in random
shortcut network topology. This result is consistent with the �nding in Section 5.3.1
that point-to-point communication requires fewer hops than a random network
topology in a circulant network topology that employs circulant mapping when
there are not many mapped compute nodes. In the circulant network, point-to-point
communication with random mapping experiences the lowest performance.

Figures 5.12 and 5.13 illustrate that, despite the circulant network topology’s larger
diameter and average shortest path length (ASPL) compared to the random shortcut
network topology, the utilization of e�ective mapping strategies like ring-based
consecutive mapping and circulant mapping can decrease the number of hops in
point-to-point communication, leading to improved performance.

5.4 Total Hop Count of Communication in Shortcut

Network Topologies

Sections 5.2 and 5.3 compared the hop counts of collective and point-to-point
communication in circulant network and random shortcut network topologies,
respectively. In this section, we would like to analyze the total communication hops of
point-to-point communication and collective communication in circulant and random
shortcut network topologies.

The number of switches and compute nodes are both 1024. We vary the number of
compute nodes involved in communication from 8 to 1024 and the ratio of collective
communication from 10%

Software-based collective communication operations are realized through a series
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of point-to-point communications; we use< to represent the number of point-to-point
communications within one collective communication operation. For a collective
communication operation, its point-to-point communication count can be expressed
like this:

< =


# − 1, Broadcast

# log2 #, Allreduce or Alltoall

N is the number of compute nodes involved in the communication; assume that N
is a power of 2. Considering that the Broadcast uses a binomial tree and that Allreduce
and Alltoall use Bruck’s algorithm, respectively. We use = to represent the number of
collective communication operations and ? to represent the number of point-to-point
communications outside of collective communication operations. Then, the ratio of
collective communication can be represented as:

A0C8> =
<=

<= + ?

We control the total number of communications to be 102400, i.e.,<= + ? = 102400,
changing the ratio of collective communications by adjusting the number of collective
communication operations =.

Figure 5.14 illustrates how the total number of hops varies with the collective
communication ratio. The X-axis represents the collective communication ratio, and the
Y-axis represents the total communication hop count. The collective communication
operation is Alltoall; the mapping strategies use the one described in the previous
chapter, and a random tra�c pattern is used for point-to-point communication.

The evaluation results in Figure 5.14 show that varying the collective communication
ratio on circulant or random shortcut network topology does not change the total
number of communication hops when using random mapping. Other mapping
strategies, such as a hierarchical tree, ring-based consecutive mapping, and circulant
mapping, can reduce the total number of communication hops when the ratio of
collective communication increases. In particular, ring-based consecutive mapping and
circulant mapping on circulant network topology drastically reduce the number of
hops of communication when the ratio of collective communication increases.

Figure 5.14(a) to Figure 5.14(e) show that when the number of compute nodes
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(a) 8 compute nodes involved in communication
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(b) 16 compute nodes involved in communication
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(c) 32 compute nodes involved in communication
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(d) 64 compute nodes involved in communication
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(e) 128 compute nodes involved in communication
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(f) 256 compute nodes involved in communication
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(g) 512 compute nodes involved in communication
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(h) 1024 compute nodes involved in communication

Figure 5.14: Communication hop count vs. Collective Communication ratio.
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involved in communication is small, e.g., less than or equal to 128, the number of
communication hops using ring-based consecutive mapping and circulant mapping in
a circulant network is always smaller than that in random shortcut network topology,
no matter how the ratio of collective communication is changed.

Figure 5.14(f) to Figure 5.14(h) show that as the number of computing nodes
involved in communication increases, e.g., greater than or equal to 256, the total
number of hops in the random shortcut network topology is less than that in the
circulant network topology when the ratio of collective communication is small.
As the ratio of collective communication increases, the total number of hops in the
circulant network topology starts to be less than that in the random shortcut topology.
When all the compute nodes are involved in the communication, i.e., the number of
compute nodes involved in the communication is 1024, when the ratio of collective
communication is more than 50%, the total number of hops in the circulant network
topology starts to be less than that in random shortcut topology.

5.5 Performance of Parallel Applications

In this section, we compare the performance of applications in circulant and random
shortcut network topologies. The network parameters are the same as the evaluation in
Sections 3.4.3 and 4.5.3. We evaluate the applications in NAS parallel benchmark [130],
which are FT, IS, MG, and LU. The problem size is Class A, the number of processes is
128, using the mapping strategies described in the previous chapters, and the iteration
times of the two-opt approach is 20,0000. Broadcast, Allreduce, and Alltoall algorithms
are binomial trees, recursive doubling, and Bruck’s ones [99]. For random shortcut
topologies, use random, ring-based consecutive mapping strategies and corresponding
two-opt rank placement optimization approach, and for circulant network topology,
use ring-based and circulant mapping strategies.

Figure 5.15 illustrates the performance comparison of applications FT. The per-
formance of FT using ring-based consecutive and circulant mapping strategies in
a circulant network topology outperforms the performance in a random shortcut
network topology. The work [134] demonstrates that random topologies with low
ASPL are suitable for HPC applications, especially FT. The application of FT extensively
uses Alltoall operations, and the low diameter and ASPL properties allow random
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Figure 5.15: Performance evaluation of application FT in shortcut network topologies.

shortcut network topology to achieve e�cient FT execution. However, FT performs
even better in circulant network topology than random shortcut network topology. The
Alltoall operations using Bruck’s algorithm can achieve low hop counts in circulant
network topology, resulting in higher performance.
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Figure 5.16: Performance evaluation of application IS in shortcut network topologies.

Figure 5.16 illustrates the performance comparison of applications IS. The ring-
based consecutive mapping with two-opt rank placement optimization in random
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shortcut network topology performs best. Using a ring-based consecutive mapping
strategy is slightly better than circulant network topology.
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Figure 5.17: Performance evaluation of application MG in shortcut network topologies.

Figure 5.17 illustrates the performance comparison of applications MG. The MG
makes extensive use of point-to-point communication. The evaluation results show in
Figure 5.17 that MG performs better in a random shortcut network topology than in a
circulant network topology.
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Figure 5.18: Performance evaluation of application LU in shortcut network topologies.
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Figure 5.18 presents a performance comparison of the LU application. LU involves
numerous neighboring communications, and the ring-based consecutive mapping
ensures that any two neighboring compute nodes are just one hop away, making this
mapping strategy highly e�cient for LU. Additionally, the circulant mapping in the
embedded circulant topology also ensures that any two neighboring compute nodes
are just one hop apart; the evaluation results in Figure 5.18 show that the circulant
mapping in circulant network topology has the best performance.

5.6 Cost Analysis of Shortcut Network Topologies

In previous sections, we compared the performance of collective communication,
point-to-point communication, and parallel applications in circulant and random
shortcut network topologies. In this section, we would like to compare the cable length
and cost of constructing an interconnection network with these two shortcut network
topologies.

Modern supercomputers typically employ a TOR (Top of Rack) network architecture,
where multiple switches and compute nodes are placed within a single cabinet. Then,
the cabinets are interconnected using cables. We assume each cabinet is 0.6 meters
wide and 2.1 meters deep [135]. Each cabinet has 8 switches, and the physical layout of
cabinets is the 2-D grid. The 2-D grid has A rows and 2 columns. The number of rows
A and columns satisfy A = d

√
=e and 2 = d=/Ae. The intra-cabinet cable overhead is

100cm, and the inter-cabinet cable overhead is 200cm, using the Manhattan distance to
represent the distance between two cabinets. We ignore the cable overhead between
the compute nodes and the connecting switch. We use the method in [136] to calculate
the total cable overhead.

Figure 5.19 illustrates the comparison of average cable length between the circulant
network and random shortcut network. The x-axis represents the network size, and
the y-axis represents the cable length. As the network size increases, the average cable
length of the random shortcut topology rises rapidly. Circular network topology has a
much smaller average cable length than random shortcut network topology for the
same network size. When the network size is 1024, i.e., the number of switches is 1024,
the cable length of circulant topology is 46% less than random shortcut topology.

Then, we compare the cost of the circulant network topology and random shortcut
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Figure 5.19: Comparison of average cable length between circulant and random
shortcut network topologies.
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Figure 5.20: Comparison of total cost between circulant and random shortcut network
topologies.
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network topology. We use the cost model in [13], where the total cost includes the
switches’ and cable costs. The switch’s cost is related to the number of switches and
the unit price of the switch. The cable cost is related to cable length and bandwidth; we
assume the cable bandwidth is 100Gbps.

Figure 5.20 illustrates the total cost comparison between the circulant and random
shortcut network topologies. The x-axis represents the network size, and the y-axis
represents the total cost. We assume that for a circulant topology and random topology
with the same network size, the number of switches and the unit price are the same, i.e.,
the cost of the switches is the same, and the di�erence in the total cost is determined
by cable length. Figure 5.20 illustrates that as the network size grows, the e�ect of the
cost of cable length on the total cost becomes signi�cant; the cable length highly
a�ects the network cost. When the network size is 1024, i.e., the number of switches is
1024, the total cost of circulant topology is 18% less than random shortcut topology.
In this context, the circulant network topology is better than the random shortcut
network topology, especially in the case of large-scale networks.
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6
Conclusions and Future Direction

6.1 Conclusions

Applications on large parallel computers face the challenge of solving challenging
problems, such as weather forecasting and �nding drugs. In parallel applications,
compute nodes communicate with each other. Then, collective communication is
widely used in these massively parallel applications and a�ects their performance.

Improving the performance of collective communication is an essential way to
shorten the execution time of the application of parallel computers. Both hardware
and software levels in�uence the performance of collective communication. At the
hardware level, an essential factor is the network interconnection. In a low-diameter
network topology network interconnection, the delay of messages from one computing
node to another becomes low. Reducing the communication delay between nodes
can improve the overall performance of collective communication. Implementing
algorithms and process/job mapping a�ect collective communication performance at
the software level.
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In this dissertation, we co-design network topology, process mapping, and processes’
rank placement strategies to improve collective communication performance on
random shortcut and circulant network topology.

Firstly, we applied the two-opt approach for random shortcut network topology
to re-place processes’ rank for building e�cient collective communication. The
discrete-event simulation results signi�cantly enhance collective communication
performance using the two-opt approach. This improvement is achieved by reducing
the hops of collective communication operations. We also evaluate the performance of
parallel applications in random shortcut network topology. In applications where
collective communication dominates performance, the two-opt approach dramatically
improves application performance through e�cient collective communication.

Secondly, we proposed circulant process mapping to implement e�cient collective
communication in circulant network topology. Although compared to the random
shortcut network topology, the circulant network topology has a larger diameter
and average shortest path length, the circulant network topology is more suitable
for collective communication. The collective communication operations such as
Broadcast, Allreduce, and Alltoall can achieve a minimum number of hops in circulant
network topology. Moreover, we proposed a process mapping strategy named circulant
mapping for circulant network topology. Combining the circulant network topology
and the circulant process mapping strategy can achieve signi�cantly e�cient collective
communication.

Finally, we compared these two shortcut network topologies in depth. The
random shortcut network topology has a lower diameter and average shortest path
length(ASPL). Intuitively, communication within this topology involves fewer hops.
However, combining a suitable mapping strategy with a circulant network topology
results in lower hop counts and higher e�ciency for collective communication. In
some cases, such as fewer nodes involved in the communication, the number of hops
for point-to-point communication in a circulant network is even less. We also analyze
the cost of these two network topologies for building an interconnection network for
parallel computers; the results show that using a circuit network topology to make an
interconnection network has less cost.

In scenarios where collective communication is pivotal in performance, opting
for a circulant network yields outstanding results. Conversely, when point-to-point
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communication holds sway, a shortcut network with a lower diameter and average
shortest path length (ASPL) o�ers a distinct advantage. We recommend using the
second approach when target applications heavily rely on collective communications.
In the other cases, we recommend the �rst approach for a fast execution of parallel
applications.

6.2 Future Directions

The dissertation illustrates that e�cient collective communication e�ciently combines
network topology and process mapping. We analyze the performance of collective
communications in various environments. Our future work is their implementation on
real parallel computers and measuring the performance of parallel applications using
collective communications.

More generally, network topology, routing, switching technique, and �ow control
are the heart of interconnection-network design on a parallel computer. Thus, they
a�ect the router architecture [98], and there are a large number of their prior works.
However, we expect that the next-generation interconnection network should care
about the design of collective communication. For example, it is reported that 15 main
applications out of 64 consume 60% or more execution time by MPI communication
in a production supercomputer [16]. We believe that our �ndings in this study will
contribute to the network design e�ciently in such a collective-communication-centric
era.
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