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Causality—i.e., asking and answering “Why?’—is fundamental in fields of science.
Roughly speaking, the study of causality concerns what causal questions can be
reduced to statistical ones, and under what assumptions. Due to the scarcity of prior
causal knowledge, it is usually hard to making convincing causal assumptions and
testing plausibility of them. Therefore, randomized controlled trials (RCTs) becomes
the golden standard of studies in causality. While RCTs control biases through
randomization, they often have ethical and practical issues, or suffer from expensive
costs. Thus, solving causal problems from observational data is important.

Recent advance in information collection and storage have made a huge amount
of observational data available for researchers and policy makers in those different
fields. The scientific communities have considerable interests to exploit the so-called
big data to solve causal problems, while they face new challenges at the same time.
Public databases or data collected from the web are unprecedentedly large, people have
little intuition about what types of bias a dataset can suffer from--the more plentiful
data makes it harder to understand and, consequently, harder to come up and validate
causal assumptions. On the other hand, empowered by the increasing collection of big
data and growth in computing power, machine learning and artificial intelligence (AI),
particularly deep learning, have made remarkable progress, surpassing human
performance in many tasks such as object recognition, machine translation, and
reading comprehension. Given its origin in nonparametric statistics and connectivism,
main stream machine learning systems are based on plain statistical associations.
However, the ability of causal reasoning and learning is considered as a significant
ingredient of human-level intelligence and, as argued by some, can serve as the
foundation of AI or help to solve several challenge problems in machine learning such
as robustness, reusability, and interpretability. Thus, causality and machine learning
should go hand-in-hand for scientific discovery and decision-making. In this thesis, we
develop new machine learning methods for causal effect estimation and causal
discovery, the two major problems in causality.

For causal effect, we discuss the identification and estimation of treatment
effects under limited overlap; that is, when subjects with certain features belong to a
single treatment group. We use a latent variable to model a prognostic score which is
widely used in biostatistics and sufficient for treatment effects; i.e., we build a
generative prognostic model. We prove that the latent variable recovers a prognostic
score, and the model identifies individualized treatment effects. The model is then
learned as Intact-VAE——a new type of variational autoencoder (VAE). We derive the
treatment effect error bounds that enable representations balanced for treatment
groups conditioned on individualized features. The proposed method is compared with
recent methods using (semi-)synthetic datasets. Moreover, experiments show state-of-
the-art performance under diverse settings, including unobserved confounding. We also
discuss (possible) theoretical extensions to unobserved confounding. For causal
discovery, we focus on the problem of bivariate causal discovery. Based on recent



developments in nonlinear independent component analysis (ICA), we train general
nonlinear causal models that are implemented by neural networks and allow
nonadditive noise. Further, we build an ensemble framework, namely Causal Mosaic,
which models a causal pair by a mixture of nonlinear models. We compare this method
with other recent methods on artificial and real world benchmark datasets, and our
method shows state-of-the-art performance.

In Chapter 3, we study the identification (Sec. 3.1) and estimation (Sec. 3.2) of
individualized treatment effects under limited overlap. The main contributions of this
chapter are: 1. treatment effect identification under limited overlap of X, via prognostic
scores and an identifiable model; 2. bounds on individualized treatment effect error,
which justify our conditional BRL; 3. a new regularized VAE, B-Intact-VAE, realizing
the identification and conditional balance; 4. experimental comparison to the state-of-
the-art methods on (semi-)synthetic datasets. In Chapter 4, we challenge the problem
of estimating treatment effects under unobserved confounding. The main contributions
of this chapter are: 1. experimental comparison to state-of-the-art methods under
diverse settings; 2. discussions of further theoretical developments and principled
treatment effect estimation using VAEs. In Chapter 5, we study the problem of cause-
effect inference and address the three limitations in previous work mentioned above.
The main contributions of this chapter are: 1. two novel cause-effect inference rules
with identifiability proofs; 2. an ensemble framework that works for real world datasets
with only limited labeled pairs; 3. a neural network structure designed for causal-effect
inference; 4. state-of-the-art performance on a real-world benchmark dataset.
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