INT. J. CONTROL, 1999, voL. 72, No. 7/8, 643—658

Lazy learning for local modelling and control design

GIANLUCA BONTEMPI{*, MAURO BIRATTARI} and HUGUES BERSINIY

This paper presents local methods for modelling and control of discrete-time unknown non-linear dynamical systems,
when only input—output data are available. We propose the adoption of lazy learning, a memory-based technique for
local modelling. The modelling procedure uses a query-based approach to select the best model configuration by assess-
ing and comparing different alternatives. A new recursive technique for local model identification and validation is
presented, together with an enhanced statistical method for model selection. Also, three methods to design controllers
based on the local linearization provided by the lazy learning algorithm are described. In the first method the lazy
technique returns the forward and inverse models of the system which are used to compute the control action to take.
The second is an indirect method inspired by self-tuning regulators where recursive least squares estimation is replaced by
a local approximator. The third method combines the linearization provided by the local learning techniques with
optimal linear control theory, to control non-linear systems about regimes which are far from the equilibrium points.
Simulation examples of identification and control of non-linear systems starting from observed data are given.

1. Introduction

The problem of modelling a process from observed
data has been the object of several disciplines from non-
linear regression to machine learning and system identi-
fication. In the literature dealing with this problem, two
main opposing paradigms have emerged: local memory-
based versus global methods.

Global modelling builds a single functional model of
the dataset. This has traditionally been the approach
taken in neural network modelling and in other forms
of non-linear statistical regression. The available dataset
is used by a learning algorithm to produce a model of
the mapping and then the dataset is discarded and only
the model is kept.

Local memory-based algorithms defer precessing of
the dataset until a prediction or a local model are
required. The classical nearest neighbour method is the
original approach to local modelling. A database of
observed input—output data is always kept and the esti-
mate for a new operating point is derived from an inter-
polation based on a neighbourhood of the query point.
Local techniques are an old idea in time series prediction
(Farmer and Sidorowich 1987), classification (Cover
and Hart 1967) and regression (Cleveland 1979). The
idea of local approximators as alternative to global
models originated in non-parametric  statistics
(Epanechnikov 1969, Benedetti 1977) to be later redis-
covered and developed in the machine learning field
(Aha 1989, Bottou and Vapnik 1992). Recent work on
lazy learning, also known as just-in-time learning, gave a
new impetus to the adoption of local techniques for
modelling (Stenman ez al. 1996, Atkeson et al. 1997 a)
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and control problem (Schaal and Atkeson 1994,
Atkeson et al. 1997b, Rhodes et al. 1997). For an up-
to-date review on lazy learning methods see the special
issue of Artificial Intelligence Review (Aha 1997).

The new promising feature of this local paradigm is
the adoption of enhanced statistical procedures to iden-
tify the local approximator. One example is the PRESS
statistic (Myers 1990) which is a simple, well-founded
and economical way to perform leave-one-out cross vali-
dation (Efron and Tibshirani 1993) and to assess the
performance in generalization of local linear models.

The aim of this paper is to extend the idea of local
memory-based learning in several directions. First, we
propose a model identification methodology based on
the use of an iterative optimization procedure to select,
through cross-validation (Stoica et al. 1986), the best
local model among a set of different candidates. In class-
ical local modelling, an amount of options had to be
designed by the data analyst according to heuristic cri-
teria and a priori assumptions. More recently, several
authors have considered automatic selection techniques
of the parameters of local polynomial models (Fan and
Gijbels 1995, Ruppert et al. 1995). However, these
works are based on a separate estimation of the bias
and variance components of the mean square approxi-
mation error, making the resulting procedure rather
complicated. Here we propose an automatic selection
procedure which searches for the optimal model config-
uration, by returning for each candidate model its par-
ameters and a statistical description of its generalization
properties. To this aim, we introduce a new algorithm to
estimate in a recursive way the model performance in
cross-validation. In particular, we propose a technique
based on recursive least squares methods to compute the
PRESS in an incremental way. Moreover, a powerful
and well-founded statistical test is used to compare the
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performance of two alternative candidates on the basis
of their cross-validation error sampling distributions.

The contribution of the paper in the control domain
is a set of non-linear control design techniques which
extensively use analysis and design tools from linear
control. The idea of employing linear techniques in a
non-linear setting is not new in control literature but
had recently gained a new popularity thanks to methods
for combining multiple estimators and controllers in
different operating regimes of the system (Murray-
Smith and Johansen 1997). Gain scheduling (Shamma
and Athans 1992), fuzzy inference systems (Takagi and
Sugeno 1985) and local model networks (Johansen and
Foss 1993), are well-known examples of control tech-
niques for non-linear systems based on linear control.
Here, we propose three methods for discrete-time con-
trol based on the local linear description returned by a
lazy learning approximator.

The first method is an example of a gradient-based
controller which exploits the nice properties of the lazy
learning algorithm as a non-linear approximator. It is
inspired to neural controllers and combines an inverse
with a forward model to select the control action which,
according to the available dataset, is supposed to pro-
duce the desired output of the controlled system. The
control algorithm has a one time-step horizon and is
implemented as a gradient based optimization algorithm
where the /azy model computes the value and the gra-
dient of the cost function to be minimized. The algor-
ithm has been introduced by Atkeson et al. (1977 b) but
was tested simply on a static control task. Here we ana-
lyse its dynamic stability properties and we compare it
with the other proposed local control techniques.

The second controller is derived from the self-tuning
regulator (STR) architecture (Astrom 1983) and com-
bines discrete-time conventional control (e.g. general-
ized minimum variance, pole placement) with local
model identification. The control system can be thought
of as composed of two loops. The inner one consists of
the process and a feedback regulator. The parameters of
the regulator are adjusted by the outer loop, that is in
this case an adaptive lazy learning estimator. The main
differences with conventional adaptive control tech-
niques lie in the parameter estimation scheme. In the
STR, identification is performed by a recursive par-
ameter estimator which updates the same linear model
when a new input-output sample is observed. In our
approach there is no global linear model description
but at each time-step the system dynamics is linearized
in the neighbourhood of the current operating regime.
The adaptive feature of the /azy model is due not to a
sequential parameter estimation but simply to the data-
base updating.

The third control system we propose is designed with
optimal control techniques parameterized with the

values returned by the linear local estimator. The com-
bination of linear quadratic regulators (LQR) with local
modelling is not new in literature (Tanaka 1995, Passino
and Yurkovich 1996, Atkeson et al. 1977b). In these
papers, however, the authors make two strong assump-
tions: an analytical description of the locus of equilib-
rium points is available, and the system is supposed to
evolve in a sufficiently restricted neighbourhood of the
desired regime. Here, the idea is that a combination of a
local estimator with a time-varying optimal control can
take into account the non-linearity of a system over a
wider range than conventional linearized quadratic reg-
ulators. We propose a receding horizon controller which
returns at each sampling period the first action of the
optimal sequence found by a gradient based optimiza-
tion procedure. The optimization problem is formulated
as a minimization of a quadratic cost function where the
cost is returned by a forward simulation of the identified
model and the gradient is returned by the discrete-time
Riccati equation for linear time-varying systems.

It is worth saying that this paper will not focus on
algorithmic computational issues. On this subject, the
reader is invited to refer to the literature dealing with
efficient implementations of memory based algorithms
(Moore et al. 1997, Nene and Nayar 1997).

The remainder of the paper is organized as follows.
In §2 we will introduce our modelling technique based
on an iterative selection procedure. In §2.1 we present
the recursive algorithm for PRESS statistic computa-
tion. In §2.2 the method for statistical comparison
between models assessed by the recursive PRESS evalu-
ation is introduced. Algorithmic details and theoretical
analysis of the three algorithms for local control can be
found in §3. Finally, in §4 simulation examples of
identification and of control are given.

2. Local modelling as an optimization problem.

Modelling from data involves integrating human
insight with learning techniques. In many real cases
the analyst faces a situation where a set of data is avail-
able and an accurate prediction is required. Often, infor-
mation about the order, the structure or the set of
relevant variables is missing or not reliable. The process
of learning consists in a trial and error procedure during
which the model is properly tuned on the available data.
In the lazy learning approach, the estimation of the
value of the unknown function is performed giving the
whole attention to the region surrounding the point
where the estimation itself is required.

Let us consider an unknown mapping f : " — R of
which we are given a set of N samples {(¢;,)1),
(@2,¥2)s- -, (@n, )} These examples can be collected
in a matrix @ of dimensionality [N x m], and in a vector
y of dimensionality [N x 1].
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Given a specific query point ¢,, the prediction of
the value y, = f(¢,) is computed as follows. First, for
each sample (¢;,y;) a weight w; is computed as a
function of the distance d(¢;, ¢,) from the query point
¢, to the point ¢;. Each row of @ and y is then
multiplied by the corresponding weight creating the
variables Z = W® and v = Wy, with W diagonal matrix
having diagonal elements W; = w;. Finally, a locally
weighted regression model (LWR) is fitted solving the
equation (ZTZ)p = Z"v and the prediction of the value
f(@,) is obtained evaluating such a model in the query
point

y=0,(272)7'Zv (1)

For an analysis of this method in terms of approxima--

tion properties, see Cybenko (1996).

Here, we will focus mainly on the procedural aspects
of the modelling technique. Typically, the data analyst
who adopts a local regression approach, has to take a set
of decisions related to the model as, for example, the
number of neighbours, the weight function, the para-
metric family, and the fitting criterion to estimate the
parameters. We extend the classical approach with a
method that automatically selects the adequate config-
uration. To this aim, we simply import tools and tech-
niques from the field of linear statistical analysis. The
most important of these tools is the PRESS statistic
(Myers 1990), which is a simple, well-founded and
economical way to perform leave-one-out cross
validation (Efron and Tibshirani 1993) and therefore
to assess the performance in generalization of local
linear models. Due to its short computation time
which allows its intensive use, it is the key element of
our approach to modelling data. Assessing the per-
formance of each linear model, alternative configura-
tions can be tested and compared in order to select
the best one. This same selection strategy can be
exploited to -select the training subset among the
neighbours, as well as various structural aspects like
the features to treat and the degree of the polynomial
used as a local approximator (Bersini et al. 1998). The
general ideas of the approach can be summarized as
follows.

(1) The task of learning an input—output mapping is
decomposed in a series of linear estimation prob-
lems.

(2) Each single estimation is treated as an optimiza-
tion problem in the space of alternative model
configurations.

(3) The estimation ability of each alternative model
is assessed by the cross-validation performance
computed using the PRESS statistic.

In order to make these operations more effective, we
propose two innovative algorithms in the lazy learning
method:

e A recursive algorithm for the parametric estima-
tion and the cross-validation of each local model.
This method avoids having to restart each model
evaluation from scratch and decreases noticeably
the computational cost.

o A more rigorous statistical test to compare the
performance of two alternative candidate models.
The test does not just consider the average values
of the cross-validation errors but also their sam-
pling distributions.

In the next two sections we will discuss these algorithms
in detail.

2.1. The PRESS statistic and the recursive method

We will focus on the leave-one-out cross-validation
procedure (Efron and Tibshirani 1993), which returns a
reliable estimation of the prediction error in ¢, We
define the ith leave-one-out error % (i) as the difference
between y; and the prediction given by the local model
centred in ¢, and fitted using all the examples available
but the ith. An estimation of the prediction error in ¢, is
given by the average of the errors €% (i) each weighted
according to the distance d(¢;, ¢,). When considering a
local linear model, the leave-one-out cross-validation can
be performed without recalculating the regression par-
ameter for each excluded example thanks to the local
version of the PRESS statistic (Atkeson ez al. 1997 a)

v, — 25 (27Z)" 1ZT)

MSE® (g, Z 22( FZz

fZ'2)"'z’
Z Wy Z < —(pz;-r(ZTZ)_lzi v) @

Z 2Z[w e

In our modelling procedure the performance of a model
in cross-validation is the criterion adopted to choose the
best local model configuration. One of the most import-
ant parameters to be tuned in a local model configura-
tion is the size of the region of linearity surrounding ¢,
defined as the region in which the function f(-) can be
conveniently approximated by a linear local model.
Such a parameter can be related to the number of train-
ing examples which fall into the region of linearity itself.
The task of identifying the region of linearity is therefore
akin to the task of finding, among the examples avail-



646 G. Bontempi et al.

able, the number 7 of neighbours of ¢, to be used in the
local regression fit. In terms of generalization properties,
the choice of this parameter is related to the problem of
finding the proper bias/variance trade-off (Geman et al.
1992). Adding points reduces the variances and increases
the bias; on the other hand reducing the number of
neighbours makes the bias smaller at the cost of a
greater variance of the estimator. Thus, we consider dif-
ferent models, each fitted on a different number of ex-
amples, and we use the leave-one-out cross-validation to
compare them and to select the one for which the pre-
dicted error is smaller.

To make the procedure faster and to avoid repeating
for each model the computation of the parameters and
of the PRESS statistic,c we adopt an incremental
approach based on recursive linear techniques. Re-
cursive algorithms have been developed in model iden-
tification and adaptive control literature (Goodwin and
Sin 1984) to identify a linear model when data are not
available from the beginning but are observed sequen-
tially. Here we employ these methods to obtain the par-
ameters of the model fitted on n + 1 nearest neighbours
by updating the parameters of the model with n ex-
amples. Furthermore, the leave-one-out errors e (i) are
obtained exploiting partial results from the least squares
method and do not require additional computational
overload. Once adopted as the weighting kernel the indi-
cator function which assigns w; = 1 to the examples used
to fit the model and w; = 0 to others, the recursive lazy
learning algorithm is described as

P | = P. — Pn¢n+1(pr-{+1Pn )
i g 1 +¢I+1Pn(pn+l
Tn+1 = En1@Pny
€nt1 = Vny1 — (a;{-Hﬁn 3)
Bui1 = By + Yny1€nt1 J
efl‘—le—l(l) — Yi— ?:‘rﬁn+l
1-9;Pni0;

where (@,.1,Vnt1) is the n+ I1th nearest neighbour of
the query point, P, is the recursive approximation of
the matrix (ZTZ)'I, B, denotes the optimal least squares
parameters of the model fitted on the n nearest neigh-
bour, and e} (i), with 1 <i<n, is the vector E;’ of
leave-one-out errors. Once this vector is available, equa-
tion (2) is easily computed. This value is a weighted
average of the cross-validated errors and is the simplest
statistic that can be used to describe the performance of
the mode defined by n neighbours. However, the prob-
lem of assessing the right dimension of the linearity
region using a number of samples affected by noise
requires a powerful statistical procedure. In the follow-

1. n=m: initialize the parameter of the local model
(e.g. conventional initialization: B, =0, Py = Al
with large A).

2. Add the example (@, ,,+1). The parameter p is
updated and the vector E;' is evaluated using
equation (3)

3. Check for a departure from the local linear region
comparing the new model with the one previously
accepted. If the new model is significantly worse
go to 4, else accept the model and go to 2 to con-
sider adding further examples.

4. Stop the recursive identification procedure and
return the parameters of the last model accepted.

Figure 1. The procedure adopted to identify a recursively
local linear model and to define the largest region of linearity.

ing section, we will discuss in detail the method we
adopt.

2.2. The statistical test for model selection

The recursive method described in the previous sec-
tion returns for each size n of the neighbourhood a vec-
tor EZ¥ of leave-one-out errors. In order to select the best
model, our procedure, described in detail in figure 1,
consists in increasing the number of neighbours consid-
ered when identifying the local model, until the model
performance deteriorates. This requires a statistical test
to evaluate when the enlarged model is significantly
worse than those already considered. In terms of
hypothesis testing, we formulate the null hypothesis
H, that E;’ and E;}; belong to the same distribution.
To evaluate this hypothesis we use a non-parametric
permutation test (Siegel and Castellan 1988) which
does not require any assumptions about normality,
homogeneity of variance, or about the shape of the
underlying distribution. We adopt a paired version of
the permutation algorithm (see appendix A1) because of
the correlation between the two error vectors.

The permutation tests shows one of the main advan-
tages of a local modelling procedure: with low computa-
tional effort it is also possible to return, along with the
prediction and the linear local parameters, a statistical
description of the uncertainty affecting these results.
This property can prove useful both for prediction and
for control problems.

3. Lazy learning for control design

To illustrate the different approaches to lazy learning
control design, we will first define some notation for the
single input single output (SISO) case. Consider a class
of discrete-time dynamic systems whose equations of
motion can be expressed in the form
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y(k)=fIylk=1),...,y(k = ny),ulk — d),...,
u(k —d —nu),e(k — 1), ..., e(k — ne)] + e(k) (4)

where k denotes the time, y(k) is the system output, u(k)
the input, e(k) is a zero-mean disturbance term, d > 0 is
the input—output time delay and f(-) is some non-linear
function. This model is known as the NARMAX model
(Leontaritis and Billings 1985). Let us assume we have
no physical description of the function f(-) but an
amount of pairs [u(k),y(k)] is available. Defining the
information vector as

ok—1)=pk-1),...,y(k—ny),ulk —d),...,
u(k —d —nu),e(k —1),...,e(k — ne)] (5)
system (4) can be written in the form
y(k) =f[p(k — 1)] + e(k) (6)

It is demonstrated that models (4) can describe the
input—output behaviour of general state-space non-lin-
ear dynamic systems

x(k+1) = g[x(k), u(k)] + v(k)
y(k) = h[x(k)] + w(k) (7)

where x € R is the state vector, v R and w € R are
zero-mean disturbance and noise, and g: R**! — R?,
h: R — R are some non-linear functions.

3.1. Lazy learning and local linear control: a
comparative analysis

Although non-linearity characterizes most real con-
trol problems, methods for analysis and control design
are considerably more powerful and theoretically better
founded for linear systems than for non-linear ones. In
non-linear control literature we therefore find many
approaches based on the extension of linear techniques
to non-linear problems. In the following, a short survey
of these techniques and a comparison with the lazy
approach are provided.

Linearization about an equilibrium point: A point
" = ¢(k) is called an equilibrium point of the plant
(6) if, for each time step k,¢@(k) = ¢(k — 1), where
y(k) =f [p(k —1)] is the first term in the information
vector (5). Assuming that f (-) is continuously differenti-
able at ¢”, we can linearize equation (6) by performing a
multi-variable Taylor series expansion. The outcome is a
linear time invariant system that describes locally the
non-linear dynamics. Under some conditions (Slotine
and Li 1991) this linear model provides information
about the local stability properties of the global system.
Furthermore, starting from its parametric form, a linear
controller can be designed to stabilize (6) around ¢*. A
major drawback of this procedure consists of inaccurate

modelling when the system is operating away from the
equilibrium point. An alternative is provided by linear-
izing along a trajectory.

Linearization about a trajectory: The idea is to study
the behaviour of the system near a prescribed trajectory.
Let ¢ (k) denote a specific trajectory of the non-linear
system (4), that is y*(k) =f [p"(k — 1)] with ¢*(k) an
information vector at time k. Assuming that f(-) is con-
tinuously differentiable, system (6) may be approxi-
mated near the trajectory ¢*(k) by a linear time-
varying system. Let us remark that the time-varying
property makes the control design process more diffi-
cult. Moreover, this approach requires the knowledge
of the trajectory in advance, a condition that unfortu-
nately is not always satisfied.

Gain scheduling: It is one of the most widely and suc-
cessfully applied techniques for the design of non-linear
controllers. This method breaks the control design pro-
cess in two steps. First, one designs local linear control-
lers based on linearizations at several different
equilibrium points. Then, a scheme is implemented for
interpolating (scheduling) the parameters at intermedi-
ate conditions. For a formal analysis of this approach
see Rugh (1991). :

Adaptive control: Here an identification algorithm
(RLS) operates all the time to update a linear approx-
imation to the system dynamics, whose parameters are
used to adjust the coefficients of the controller
(Goodwin and Sin 1984). Such an approximation can
provide satisfactory performance only if the local line-
arization changes slowly. Some variants of the approach
(forgetting factor) make the recursive algorithm more
sensitive to recent data in order to better track vari-
ations in the plant transfer function.

Local model networks (LMN): This approach extends
the concept of an operating point by introducing the
notion of an operating regime. An operating regime is
a set of operating points where the system behaves
approximately linearly (Johansen and Foss 1993,
1995). To each of them a validity region and a local
description of the system behaviour are associated.
The function f () is then approximated with a set of
interpolated local models. The use of local model net-
works in identification and control has been proposed
by several authors (Murray-Smith and Hunt 1995). One
major advantage of this approach is the possibility to
integrate a priori knowledge with parametric learning
procedures. Related non-linear modelling approaches
are Takagi and Sugeno (1985) fuzzy inference systems
and radial basis functions (Moody and Darken 1989).
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Multiple model adaptive control: Like LMN, it is a
model-based control strategy that uses a weighted com-
bination of model/controller pairs (Narendra and
Balakrishnan 1997). The main difference lies in the pro-
cedure used to combine the models. Unlike LMN where
the operating domain is partitioned by considering
a priori knowledge or pre-processing observed data,
this approach combines the local model/controllers
according to some local measures of accuracy (e.g. maxi-
mum a posteriori probability and horizon-based error
tracking) estimated on-line during the control process
(Schott and Bequette 1997). In addition, the weighting
measures are used to select which local models to update
with the incoming sample.

Let us now discuss the main differences between the
above-mentioned approaches and the lazy learning tech-
nique.

Lazy learning vs. linearization: A linearization
approach requires an a priori knowledge of the system
in order to have an analytical characterization of the
equilibrium points. Lazy learning does not require an
analytical model, but returns the best linear approxima-
tion that can be extracted from observed data.
Linearization techniques return a local linear model
whose range of validity is restricted to a neighbourhood
of the linearization points. Memory-based techniques
can adaptively change the local description as a function
of the current system state.

Lazy learning vs. adaptive control: The standard recur-
sive procedure embedded in the adaptive controller esti-
mates only one linear model which is the best linear
approximation on the basis of past observations. The
adoption of a forgetting factor aims to make the algor-
ithm able to deal both with non-linear and time-varying
configurations by giving more weight to the most recent
data. On the contrary, the lazy approach treats sepa-
rately non-linear and time-varying systems. The set of
data considered to estimate the local regression par-
ameters is the set of nearest data in the input space
domain, i.e. the information vector space in the case
of (6). This allows different local models for different
operating regimes and then protects them from the
problem of data interference (Jacobs et al. 1991,
Salganicoff 1997)—also known as the stability-plasticity
dilemma (Carpenter and Grossberg 1988). Consider, as
an illustrative example, the simple non-linear dynamics
y(k) = f [u(k — 1)] of which we plot six samples in figure
2. Let the numbers represent the temporal order with
which the samples have been observed. If the system is
identified with a forgetting factor recursive approach,
when example no. 6 is encountered, the estimated
model (dotted line) has lost memory of the dynamics

y(k)

u(k-1)

Figure 2. Recursive vs. lazy learning identification.

existing in the neighbourhood of points 1 and 2. As a
result, the accuracy of the RLS approximation (dotted
line) in 6 is poor due to its limited tracking speed. On the
other hand, the lazy approach is not affected by any
interference phenomenon (from data 4 and 5) and
returns a better local approximation (solid line).
Finally, the lazy technique can deal with time-varying
configurations with minor changes. It is sufficient to
extend the input space by adding to the input features
the current time variable k. Once a prediction is
required, the nearest samples in space and time will be
the candidate neighbours.

Lazy learning vs. gain scheduling: Here the same
remarks made about the linearization approach are
valid. A further major difficulty in the gain scheduling
approach is the selection of appropriate scheduling vari-
ables. The lazy learning selects instead the input features
on the basis of the information vector (5) which repre-
sents the most recent operating condition of the system.

Lazy learning vs. local model networks: The two
approaches share the common idea of decomposing a
difficult problem into simpler local problems. The main
differences concern the model identification procedure.
Local model networks aim to estimate a functional
description to cover the whole system operating domain,
whereas memory based techniques focus simply on a
value estimation about the current operating points.
Local model networks are more time consuming in iden-
tification but faster in prediction. However, when new
data are observed, model update may require us to per-
form the whole LMN modelling process from the begin-
ning. On this matter lazy learning takes advantage of the
absence of a global model: once a new input—output
example is observed, it is enough to update the database
which stores the set of input—output pairs.

Lazy learning vs. multiple model adaptive control: Lazy
learning is situated in the middle ground between LMN
and multiple model control. As in LMN, in lazy learning
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the model scheduling obeys a criterion of locality in the
space of state variables, and not a performance measure
over the preceding time instants. As in multiple model
control, the lazy learning model is sequentially adapted
to the observed data, even though this is done indirectly
by updating the database.

3.2. The lazy learning gradient-based controller

As discussed above, lazy learning can approximate
complex non-linear mappings using observed data. The
idea of the lazy gradient-based controller is to use this
property to solve a one step horizon control problem as
an optimization problem. Consider a dynamic system of
which only a set of observed input—output samples is
available. For clarity, we assume d = 1. Suppose that
the system, formulated in the NARMAX form (4), is
required to reach at the next time step a reference
value y.s. The lazy model (1) can be used to predict
the response of the system to the action '

Pulk) = f Iy —1),..., 0k — ny), o, u(k - 2),...,
u(k —nu),e(k—1),...,e(k —ne)] (8)

In addition, the linearization returned by the local
description provides an estimate of the gradient of the
system output (dj, (k))/du’ with respect to the control
action (Atkeson et al. 1997 a). The control problem can
therefore be formulated as a constraint gradient based
optimization problem.

u" = arg minJ (u') = argminfyer — 9 ()" (9)

In order to speed up the optimization resolution, the
algorithm can be initialized with the value returned
from the model of the inverse dynamics (Jordan and
Rumelhart 1992)

uO =finv[yref7y(k_ 1),...,y(k—ny),u(k—2),...,
u(k —nu),e(k—1),...,e(k —ne)] (10)

A detailed version of the lazy gradient-based control
algorithm is presented in figure 3.

3.2.1. Lazy gradient-based control analysis. It is well
known that the parameterization of a plant is ex-
tremely important to prove its stability. Even if power-
ful stability results have been obtained in the control
of linear time-invariant systems using the Lyapunov
method, the same techniques cannot be applied in a
generic non-linear case. In the method discussed
above, lazy learning is used as a black-box approxima-
tor of the input—output representation of a non-linear
dynamical system. The result is a non-linear controller
for which the stability of the closed loop feedback
system cannot be guaranteed theoretically for a generic
non-linear plant.

1. Initialization of the algorithm with the value °
provided by the inverse mapping (10).

2. Prediction of the outcome j,; of the system forced
by the input «'.

3. Computation of the gradient vector (dJ(x))/ds.

4. Updating of the control sequence ' — u'*!. The
optimization step is performed by a constrained
gradient based algorithm implemented in the
Matlab function constr (Grace 1994).

5. If the minimum has been reached (&' = «'*!) go to
6 else go to 2.
6. Control action execution. The action

u(k — 1) = u°™ is applied to the real system.

7. Updating of the database by storing the new
input-output observation.

Repeat these steps at each sampling period.

Figure 3. The lazy gradient-based controller algorithm.

Instability can be a consequence of non-minimum-
phase configurations. In this case the inverse dynamics is
unstable and methods like those described before cannot
prevent the control signal from growing without limit,
making the closed loop system unstable. This problem is
demonstrated by the simulation examples in §4.2 and
§4.3. While the technique can successfully control a
complex minimum-phase non-linear system, it is not
able to regulate a system whose linearization about
some operating regimes is non-minimum-phase.

The concept of minimum-phase is significantly more
complex in the non-linear case than in the linear one.
Hence, a possible solution may come from the adoption
of linear techniques for solving locally the non-mini-
mum-phase problem. In the next section we present a
control technique which can avoid these instability
phenomena by using conventional linear techniques in
a non-linear context.

3.3. The lazy learning self-tuning controller

In this section we propose a hybrid architecture for
the indirect control of non-linear discrete-time plants
from their observed input—output behaviour. An indir-

‘ect control scheme (Narendra and Annaswamy 1989,

Astrém and Wittenmark 1990) combines a parameter
estimator, which computes an estimate 9 of the
unknown parameters, with a control law
u(k) = K[p(k),9"] implemented as a function of the
plant parameters. In the adaptive version, the estimator
generates the estimate 1(k) at each sampling period k by
processing the observed input—output behaviour.
Following the certainty equivalence paradigm, this esti-
mate is assumed to be a specification of the real plant
and-is then used to compute the control law u(k) =
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K[ep(k),9(k)]. In conventional adaptive control theory,
to make the problem analytically tractable, the plant is
assumed to be a linear time-invariant system with
unknown parameters.

Our approach combines the local learning identifica-
tion procedure described in § 2 with conventional linear
control techniques. We adopt the minimum-variance
(MV) and the pole-placement (PP) control technique,
borrowed from linear self-tuning controllers (Astrém
and Wittenmark 1990).

The MV control algorithm was first formulated in
Astrém (1967). Since then the MV technique has had
many practical applications and significant theoretical
developments. The reasons for MV popularity lie in its
simplicity and ease of interpretation and implementa-
tion. Let us consider a linear discrete-time process
described in input—output form by the equation

A(2)y(k) = z79B(2)u(k) + C(z)e(k) (11)

and suppose we want to regulate it to ys = 0. The MV
control problem can be stated as finding the control law
which minimizes the variance of the output. The MV
controlled closed loop system is stable only if B has all
of its roots inside the unit circle (minimum phase).
However, more complex formulations are available in
the case of a tracking problem or in the case of non-
minimum-phase systems (Generalized MV or GMV). In
these cases it is possible to select properly the controller
parameters in order to make the closed loop system
asymptotically stable.

Pole placement design is an alternative technique to
deal with non-minimum-phase configurations. The pro-
cedure first requires us to choose the desired closed loop
pole positions and then to calculate the appropriate con-
troller.

Both these design techniques require a model formu-
lation in the form of equation (11). However, in our
approach the linearization is also performed in config-
urations which are far from the equilibrium locus. As a
consequence, the relationship between the input » and
the output y is given by

A(2)y(k) = z7?B(z)u(k) + C(z)e(k) +b  (12)

where b is an offset term. This requires a slight modifica-
tion to the formulas for GMV (see Appendix A2) and
PP controller design (see Appendix A3 and Hunt and
Johansen 1997).

The proposed control algorithm is described in detail
in figure 4. Note that the selection of neighbours is made
considering only the subset vector

(PS(k_ 1) = [y(k_ 1),...,y(k=ny),ulk —2),...,
u(k — nu),e(k —1),...,e(k —ne)] (13)

1. Acquisition of the vector (13), and selection of
neighbours.

2. Linearization of the function f (-) using the lazy
learning algorithm.

3. Derivation of the polynomials 4, B, C and the off-
set b of (12) from the linearized model.

4. Design of a MVG/PP controller for (12) which
satisfies the required properties (stability, accu-
racy, speed,...) of the closed loop behaviour.

5. Computation of the control signal. For details see
Appendix A2 and A3.

6. Updating of the database by storing the new '
input—output observation.

Repeat these steps at each sampling period.

Figure 4. The lazy self-tuning controller algorithm.

of the information vector (5). In fact u(k — 1) is not

" available as it is the expected outcome of the procedure.

Anyway, the local weighted regression is performed in
the space of the complete information vector (5).

3.3.1. Lazy self-tuning control analysis. In the lazy
self-tuning regulator the non-linear plant (6) is para-
meterized as a linear system where parameters are
changing with the observable state. This means that
the non-linear model can be written as a linear model
where parameters vary with the state of the system.
This configuration recalls the linear parameter varying
(LPV) configuration introduced by Shamma and
Athans (1992) in their analytical analysis of gain
scheduling controllers, or the state-dependent models
presented by Priestley (1988). These models can be
represented as

Alp(k)ly(k) = 2 Blp(R)Ju(k) + Clp(k)le(k) ~ (14)

Let us now assume that there exists a LPV model which
represents the non-linear system (6) in a sufficiently
accurate manner. If we make the hypothesis of complete
controllability and observability, the closed-loop system
may be put into the state-space form

x(k + 1) = Flo(k)]x(k) + v(k) (15)

This representation allows us to analyse the stability of
our controller. If the regulator is designed so that the
eigenvalues of F[gp(k)] are stable, then the system (15)
will be asymptotically stable for any fixed value of ¢
(frozen time stability). However, this is not a sufficient
condition for uniform asymptotic stability of the system.
If we consider the set of values assumed by the matrix
Flp(k)] a sufficient condition for uniform stability
(Tanaka and Sugeno, 1992) then a common matrix
P > 0 exists such that

Flo(k)]"PF[p(k)] - P <0 forallk  (16)
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With the pole placement technique we can impose the
same stable closed loop transfer function for all k. It
follows that there exists a matrix P that satisfies equa-
tion (16). Then under the assumptions:

e the system is completely controllable and observ-
able;
e the system (6) can be put in the form (14);

e the approximation error of the lazy learning iden-
tifier is negligible;

the equilibrium of the non-linear system (6) controlled
by the lazy PP self-tuning controller is globally asymp-
totically stable.

3.4. The lazy learning optimal controller

Consider the optimal control problem of the non-
linear system (7) over a finite horizon time. Using a
quadratic cost function, the solution to an optimal con-
trol problem is the control sequence U that minimizes

J = Ix(t)"Px (1)

Y Q. M;
+%k§ x(k)T u(k)” W R, x(k) u(k)] (17)

with Qy, My, Ry, P, weighting terms designed a priori.
While analytic results are not available for a generic
non-linear configuration, optimal control theory
(Stengel 1986) provides the solution for the linear case.
In the following, we will present the non-linear problem
in a linear time varying setting.

Consider the trajectory of the dynamical system once
forced by an input sequence U = [u(0),u(1),...,u(z; — 1)].
Assume that the system can be linearized about each state
of the trajectory. Neglecting the residual errors due to the
first order Taylor series approximation, the behaviour of
the linear system along a generic trajectory is the behav-
iour of a linear time varying system whose state equations
can be written in the form

x(k + 1) = Flp(k)]x(k) + Glo(k)Ju(k) + Klp(k)
= Fix(k) + Geu(k) + Ky (18)

with F, G;, K, parameters of the system linearized
about the query point @(k). K, is an offset term that
equals zero in equilibrium points. This term requires a
slight modification in the linear controller formulation.
However, in order to simplify the notation, in the fol-
lowing we will neglect the constant term.

Optimal control theory provides the solution for the
linear time-varying system (18). At each time step the
optimal control action is

u(k) = — (Ry + G Px1 Gy) ™ (MY + Gi Py, Fi)x(k) (19)

where Py is the solution to the backward Riccati equa-
tion

P = Qi + Fi Py Fy — (M; + F{ Py, Gy)

X (R + Gy Py 1Gy) ™ (M + GIPy Fr)  (20)

having as final condition
P(i)) = Py (21)
The piecewise-constant optimal solution is obtained by
solving the Euler-Lagrange equations which are the

three necessary and sufficient conditions for optimality
when the final time is fixed.

H,

0= _ \Th TR 4+ NTLGe (22)
Ouy,
OH,

A = Wk =x;Q + My + AL Fy (23)
k

with A\, = P;x; as adjoint term in the augmented cost
function (Hamiltonian)

Hi = J + N [Fix(k) + Geu(k)] (25)

The Euler—Lagrange equations do not hold for non-
linear systems. Anyway, if the system can be represented
in the form (18), formula (22) can be used to compute
the derivative of the cost function (17) with respect to a
control sequence U. This requires at each time k the
matrices F; and G that can be obtained by linearizing
the system dynamics along the trajectory forced by the
input sequence.

As discussed in §2, our modelling procedure per-
forms system linearization with minimum effort, no a
priori knowledge and only observed data. Hence, we
propose an algorithm for non-linear optimal control,
formulated as a gradient based optimization problem
and based on the local system linearization.

The algorithm searches for the sequence of input
actions

U = arg rr%]m J(UY (26)

that minimizes the finite-horizon cost function (17)
along the future # steps. The cost function J(U") for a
generic sequence U’ is computed simulating forward for
ty steps the model identified by the local learning
method. The gradient of J(U’) with respect to U’ is
returned by (22).

These are the basic operations of the optimization
procedure (described in detail in figure 5) executed each
time a control action is required.

e forward simulation of the lazy model forced by a
finite control sequence U’ of dimension #;
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e linearization of the simulated system about the
resulting trajectory;

e computation of the resulting finite cost function
J(UY);

e computation of the gradient of the cost function
with respect to the simulated sequence;

e updating of the sequence with a gradient based
algorithm.

Once the search algorithm has returned to U, the first
action of the sequence is applied to the real system—
receding horizon control strategy (Clarke 1994). Let us
remark that the lazy learning model has a twofold role in
the algorithm in figure 5: (i) at step 2 it is an estimator
which predicts the behaviour of the system once forced
with a generic input sequence, (ii) at step 3 it returns a
linear approximation of the system’s dynamics.

3.4.1. Lazy optimal control analysis. Atkeson et al.
(1997b), Tanaka (1995), and Passino and Yurkovich
(1996), applied infinite-time LQR regulator to non-lin-
ear systems linearized with lazy learning and neuro-
fuzzy models. The drawback of these approaches is
that an equilibrium point or a reference trajectory is
required. Moreover, they made the strong assumption
that the state of the system will remain indefinitely
in a neighbourhood of the linearization point. Sjéberg
and Agarwal (1997) proposed a control algorithm
where a linear time-varying description is used for
non-linear control problems. However, their approach
requires an initial controller that stabilizes the plant.

The advantage of the lazy approach is that the
above requirements do not need to be satisfied. First,
lazy learning is able to linearize a system in points far
from equilibrium. Second, the time varying approach
makes possible the use of a linear control strategy
even though the system operates within different linear
regimes.

There are no demonstrated stability properties for
linear time-varying optimal control. However, with
respect to the other approaches this control strategy
presents some nice properties. Firstly, it can easily deal
with MIMO (multi-input multi-output) systems, as
shown in the simulation example 4.4. Secondly, it allows
control policies on a longer time horizon than the simple
delay of the system. Finally, this formalism can take into
consideration the uncertainty affecting the model. In our
controller we make the assumption that the parameters
returned by the local models are a real description of the
local behaviour (certainty equivalence principle).
However, this is a restricting assumption which requires
a sufficient degree of accuracy in the approximation.
Optimal control theory can represent a possible solution
to this limitation. In fact, stochastic optimal control
theory provides a formal solution to the problem of par-

1. Initialization: for k=0, U° is set to a random
sequence; for k> 0, UY is set equal to U°™ at
the previous time step, with the first component
removed.

2. Forward simulation of the system forced by the
sequence

U'=[w'(k),u'(k+1),...,u'(k+1t - 1)]
where u’(j) denotes the action applied to the
simulated system at time j. The system behaviour
is predicted using the model identified by the
local learning method.

3. Formulation of the non-linear system in the time-
varying form. The parameters F;, G;, K;, with
J=k,...,k+1t,—1, are returned by the local
model identification.

4. Backward resolution of the discrete-time Riccati
equation (20) for the resulting time-varying
system.

5. Computation of the cost function (17).

6. Computation of the gradient vector

o [ aJ oJ oJ
oU ~ |oui(k) Bui(k+1)" ou(k+ 1 — 1)

by using formula (22).

7. Updating of the control sequence U’ — U™
The optimization step is performed by a con-
strained gradient based algorithm implemented
in the Matlab function constr (Grace, 1994).

8. If the minimum has been reached (U’ = U™')
goto 9 else goto 2.

9. Control action execution. The first action u®? (k)
of the sequence U™ is applied to the real system.

10. Updating of the database by storing the new
input—output observation.

Repeat these steps at each sampling period

Figure 5. The lazy learning optimal controller algorithm.

ameter uncertainty in control systems—dual control
(Fe’dbaum 1965). Furthermore, our modelling pro-
cedure can return at no additional cost a statistical
description of the estimated parameters (see §2.2).
Future work will focus on the extension of this tech-
nique to the stochastic control case.

4. Simulation studies
4.1. The identification of a non-linear discrete-time
system

Our approach has been applied to the identification
of a complex non-linear benchmark proposed by
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Narendra and Li (1996). The discrete-time equations of
the system are

x (k+1) = (1—?%2?)
x5 (k + 1) = x5 (k) cos [x5 (k)]

27
+x,<k)exp<_§%<L;@k_>) @)

+ 1) sin [x, (k)]

N W (k)
1 +u?(k) + 0.5cos [x, (k) + x,(k)]

X (k)
1 + 0.5sin [x,(k)]

Xy (k)
1 + 0.5sin [x, (k)]

y(k) =

where (Xp,X,) is the state and only the input u and the
output y are accessible. The system is modelled in the
input—output form y(k + 1) = fy(k),y(k — 1), y(k — 2),
y(k — 3),u(k)]. We use an initial empty database which
is updated all along the identification. The identification
is performed for 1500 time steps with a test input u(k) =
sin (2wk/10) + sin (27k/25). The plot in figure 6(a)
shows the model and the system output in the last 200
points, while the plot in figure 6(b) shows the identifica-
tion error. We obtain a good performance in modelling
this complex system. These results outperform those
obtained by Narendra and Li (1996) with a much
wider training set of 500 000 points and a complex archi-
tecture (four-layer feed-forward neural network).

4.2. The lazy gradient-based control of a non-linear
discrete-time system

In this simulation we control the plant described by
the difference equations (27), by using the control algor-
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ithm described in figure 3. The system is represented in
the minimum-phase input-output form y(k+1)=
f k), y(k—1),y(k —2),y(k — 3),u(k)]. The reference
output y..r is given by

etk + 1) = 0.75 sin (zﬂ(ﬁil—))

50

2m(k + 1)> (28)

+0.75 s1n< 5

We use an initial empty database which is updated all
along the identification. The system is controlled for
1300 time steps. The plot in figure 7(a) shows the
model and the system output in the last 300 points,
while the plot in figure 7(b) shows the control action.
These results outperform those obtained by Narendra
and Li (1996) after 2000000 steps of on-line adjust-
ments and a complex architecture (four-layer feed-for-
ward neural network).

4.3. The lazy self-tuning control of a non-linear
discrete-time system

In this simulation we consider the control of the non-
linear SISO system described by the difference equation

_ y(k)y(k — 1)y(k = 2)[y(k — 2) — u(k — 1) + u(k)
k1) = T+ 20— 1)+ 2 (k- 2) +e (29)

The system is represented in the input-output form
y(k+1) = fly(k),y(k = 1), y(k — 2),u(k),u(k — 1)]. The
reference output y.r(k) is given by a periodic square
wave. The lazy gradient-based algorithm is not able to
control the system over this reference trajectory. On the
contrary, a self-tuning regulator based on a pole place-
ment algorithm is able to track the trajectory. We initi-
alize the lazy learning database with a set of 5000 points
collected by preliminarily exciting the system with a ran-

2 x10
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Figure 6. Non-linear system identification results: (a) system (solid) and model (dotted) outputs; (b) identification error.
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Figure 7. Gradient-based system control: (a) reference (solid) and system (dotted) outputs; (b) control action.
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Figure 9. Zero of the open loop identified system. .

dom uniform input. The database is then updated on-
line each time a new input—output pair is returned by the
simulated system. The plot in figure 8(a) shows the
reference and the system output when ¢ = 0, while the
plot in figure 8(5) shows the effect of adding band-lim-
ited white noise (peak-to-peak = 0.35 and o2 = 0.1) to
the plant output and to the input variable. In figure 9 we
plot the value of the zero of the open loop system iden-
tified by the lazy learning during the simulation with
€ = 0. It is worth noticing how the system is non-mini-
mum-phase (i.e. absolute value of the zero greater than
one) when the system variable y is in the neighbourhood
of y=—1 (e.g. see the time interval 50-100). This is
indeed the region where the gradient-based controller
fails to control the system by making the feedback
loop unstable.
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4.4. The lazy optimal control of the bioreactor

Consider, as third control example, the bioreactor
system, a well-known benchmark in non-linear control
(Miller et al. 1990, Bersini and Gorrini 1997). The bior-
eactor is a tank containing water, nutrients, and biolo-
gical cells. Nutrients and cells are introduced into the
tank where they mix. The state of this process is char-
acterized by the number of cells (¢;) and the amount of
nutrients (¢, ). The equations of motion of the bioreactor
are

%Ctl =—ciu+ci(l —cy))e?”

(30)
a=ewral-a)en (DEl)
with 8 = 0.02 and v = 0.48. In our experiment the goal
was to stabilize the multi-variable system about the
unstable state (cery, Crer2) = (0.2107, 0.726) by perform-
ing a control action each 0.5s.

We use the control algorithm described in figure 5.
The horizon of the control algorithm is set to ¢y = 5. The
initial state conditions are set by the random initializa-
tion procedure defined in Miller et al. (1990). We initi-
alize the lazy learning database with a set of 1000 points
collected by preliminarily exciting the system with a uni-
formly distributed random input. The database is then
updated on-line each time a new input-output pair is
returned by the simulated system. The plot in figure
10(a) shows the output of the two controlled state vari-
ables, while the plot in figure 10(5) shows the control
action. The bioreactor is considered as a challenging
problem for its non-linearity and because small changes
in the value of the parameters can cause the bioreactor
to become unstable. These results show that using local
techniques it is possible to control complex systems on a
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wide non-linear range, with only a set of examples and
no a priori knowledge about the underlying dynamics.

5. Conclusions and future development

Local memory-based techniques are powerful tech-
niques for learning from observed data and for gaining
insight on the local behaviour of non-linear systems.
Furthermore, together with the required prediction
and/or parametric description, they return a statistical
distribution of the uncertainty affecting this informa-
tion. As far as modelling is concerned, this paper pro-
posed an innovative algorithm to improve the
performance of memory-based techniques which is
based on a recursive version of the cross-validation
and a statistical model selection. In the control domain,
we illustrated and analysed three control systems which
make extensive use of local modelling. The lazy gradi-
ent-based control system, inspired by neural control,
makes use of forward and inverse approximations of
the system dynamics to select the control action. As in
neuro-control, properties of stability cannot be guaran-
teed in a general case. We showed, however, that this
approach obtains performances more accurately than
neural networks even when using a smaller set of train-
ing examples. The lazy self-tuning architecture adopts a
linear control technique which eases the analysis in
terms of stability properties and provides a useful
insight into the dynamic properties of the non-linear
system. In addition, from a computational point of
view, it is the least expensive among the proposed
methods. Finally, the lazy optimal controller extends
the local approaches to control strategies with extended
time horizons. Moreover, the algorithm is well-suited
for regulation of MIMO systems.

Future developments will mainly concern the prob-
lem of model uncertainty in control. To this aim, we will

400 500 700

300

Figure 10. Control results: (a) system outputs (solid) and references (dotted); (b) control action (each discrete-time step corre-
sponds to 0.01s).
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extend our analysis to robust and stochastic dual con-
trol. In fact, lazy learning is one of the few algorithms
for non-linear modelling which returns a statistical
description of the uncertainty affecting the prediction
and the model parameters with minimal additional com-
putational cost.

There are still two main concerns for the adoption of
lazy learning for modelling and control. The first is the
well known problem of the curse of dimensionality, that is
the sparseness of data in situations of high dimension of
the query space. Lazy learning shares this problem with
all other non-linear modelling techniques but unlike
model-based approaches lazy methods can take advan-
tage from their feature of updating continuously the set
of observed samples (Atkeson et al. 1997 b). Techniques
of active learning (Cohn et al. 1995), which detect regions
where data are missing in order to collect additional
samples, could be found useful in this context.

A second major concern is how can lazy learning
model real systems fast enough when the size of the
database grows. This paper does not deal with this
issue but several researchers are fast exploring ways to
find relevant data for local approximation using efficient
software algorithms and special purpose hardware. The
integration of these methods with the modelling and
control techniques we presented here makes lazy
learning one of the most promising tools for non-linear
coritrol.
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Appendix
Al. The paired permutation test

Consider the null hypothesis H that the vector of
leave-one-out errors E;’ = [e (i)]’_; and the first 7 ele-
ments of the vector ES; = [e%,(i)]*], belong to the
same distribution.

The paired permutation test assumes that, for each i,
the observed values can be assigned to one of the two
vectors E,' and E, with the same probability.- This
means that, if H, is true, the difference d; = e}, (i) —
es 1 (i) between paired errors is to be just as likely nega-
tive as positive.

The null hypothesis Hj is tested against some H;
computing the value D =Y ;_, d; and assuming that D
is an instance of the random variable D*. The sampling
distribution of D* is found by a randomization pro-
cedure (Cohen 1995), a computer-intensive statistical
method to derive the sampling distribution of a statistic

by simulating the process of sample extraction. In the
permutation test, this is done by creating a high number
of pseudo-samples Db, with b=1,...,B, derived from
the actual sample D by substituting randomly a differ-
ence d; with —d;. Once the sampling distribution of D* is
generated, a one-tailed test determines whether the null
hypothesis has to be rejected.

If D is in the rejection region, i.e. the right tail con-
sisting of the most extreme values of D*, the two leave-
one-out vectors are assumed not to be extracted from
the same distribution. Hence, the generalization error of
the linear model using 7 + 1 neighbours is assumed to be
significantly greater than the one of the model fitted on n
neighbours.

A2. Generalized minimum variance design with offset
term
Clarke and Gawthrop (1975) developed the
Generalized Minimum-Variance Controller (GMVC)
by introducing the reference signal and the control vari-
able into the performance index

J = E{[P(2)y(k + d) + Q(2)u(k) — yes(K)’} (A1)

where P(z) = Py(z)/Pp(z) and Q(z) = Qw(z)/Qp(2).
Suppose that data are generated according to model
(12). Multiplying both sides of (12) by P we obtain

Py(2) _ Py(2) B(Z)u _
7,0 =50 (A(z) (k=4

b C
+m+me(k)) (A2)

B,y setting y = Ify, Vret = Yret — Qs A= PpA, B= PyB,

C=PNCandb=PNb
A(2)5(k) = 27 B(z)u(k) + Ce(k) + b (A3)

Let the polynomial E(z) and F(z) be the solution of the
Diophantine equation

C(z) = A(2)E(z) + z79F(2) (A4)
Multiplying both sides of (A 3) by zE(z) gives
A(2)E(2)j(k + d) = B(z)E(z)u(k)
+ Ce(k+d)+bE(z) (A5)
From (A 4) we have
C(2)j(k + d) = BE(z)u(k) + Ce(k + d)
+bE(2) + F(2)j(k) (A6)
The optimal control law is then
C(z) (yref - % u(k)) = BE(z)u(k) + bE(z) + F(z2)j(k)

(A7)
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that is equivalent to

Pp(2)Qp(2)C(2)yrer — On(2)Pp(2)C(2)u(k)
= 0p(2)F(2)y(k) + Qp(2)Pp(2) B(z) E(z)u(k)
+0p(2)Pp(2)bE (A8)

in the plant polynomials. The control law is then

—F -

) = Ot = FEE) = Qo@)POEEC) o
G(2)

with G = QNPDC+QDPDBE and H= PDQDC F =

OpF. The result for the basic minimum variance con-

troller can be obtained by setting Py = Pp=0Qp =1
and Qy =0

A3 Pole placement design with offset term

In the pole-placement formulation the desired
closed-loop function is given by

B, (2)
H,(2) =
Ap(2)
The regulator has one output u and two inputs, the
reference signal y.¢, and the measured output y. A gen-
eral structure for the regulator may be represented by

u(l) = 2D yeclk) = 5850 - 610

(A 10)

(A11)

where R, T, G and S are polynomials in the forward-
shift operator ¢. The input—output relationship for the
closed-loop system is obtained by eliminating u between
equations (12) and (A 10) Hence:

BT Rb-GB)  CR
T AR+ B,S”™ T AR+ B,S ' AR+ B,S

with B, = z%B. Requiring that this input—output rela-
tion is equivalent to (A 10) gives

e (Al12)

B,T B,
AR+ BS A, (A13)
b=GBy (A 14)

The pole-placement design problem with offset term is
then equivalent to the conventional one, once the addi-
tional requirement (A 14) is satisfied.
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