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The problem of track-to-track association has been considered

until recently in the literature only for pairwise associations. In view

of the extensive recent interest in multisensor data fusion, the need

to associate simultaneously multiple tracks has arisen. This is due

primarily to bandwidth constraints in real systems, where it is not

feasible to transmit detailed measurement information to a fusion

center but, in many cases, only local tracks. As it has been known in

the literature, tracks of the same target obtained from independent

sensors are still dependent due to the common process noise [2].

This paper derives the exact likelihood function for the track-to-

track association problem from multiple sources, which forms the

basis for the cost function used in a multidimensional assignment

algorithm that can solve such a large scale problem where many

sensors track many targets. While a recent work [14] derived the

likelihood function under the assumption that the track errors

are independent, the present paper incorporates the (unavoidable)

dependence of these errors.
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1. INTRODUCTION

In this paper we consider the problem of associ-
ating tracks represented by their local estimates and
covariances from S sources. These sources are proces-
sors that use data from corresponding local sensor sys-
tems. While different sensors have, typically, indepen-
dent measurement errors, the local state estimation er-
rors for the same target will be dependent due to the
common prior or process noise. This dependence is
characterized by the crosscovariances of the local es-
timation errors–see [2], Sec. 8.4. The association pre-
sented in [2], while accounting for the crosscovariances
of the track errors, is limited to pairs of tracks, i.e.,
it is suitable for the situation of two lists (sources) of
tracks. Consequently, if this is used when there are more
than two lists of local tracks, the results will depend on
the order in which the lists are considered. This order-
dependence can be avoided only by simultaneous con-
sideration of all S-tuples when there are S lists.
While a recent work [14] derived the likelihood

function under the assumption that the state estimation
errors are independent, the present paper incorporates
the (unavoidable) dependence of these errors. Earlier
work on fusion of multiple tracks can be found in
[13]. This work also addressed the issue of dependence
among tracks due to prior communication. The general
fusion of crosscorrelated tracks was derived in [11]. A
recent comparison of different fusion techniques can be
found in [15].
The goal of this paper is to derive a likelihood-ratio

based cost function suitable for the use of a multidi-
mensional assignment (S-D, see, e.g., [3], Ch. 2) to de-
cide which tracks should be fused. The cost function
should allow simultaneous consideration of S tracks cor-
responding to the same target (one from each source)
or any subset of this.
First we shall derive the likelihood function of the

hypothesis that S tracks are from the same target, i.e.,
that they have a common origin. This derivation is based
on [17] where it was presented for the purpose of sen-
sor bias estimation for S = 2 sensors and it accounted
for the dependence of the track estimation errors across
sensors. More recently [14] developed the likelihood
function for the association of tracks from an arbi-
trary number of sensors, but under the assumption that
their track (local state estimation) errors are indepen-
dent. This assumption, however, is not satisfied when
the target state equations have process noise which is
necessary to model motion uncertainty.
These likelihood functions are, however, not di-

mensionless since they are joint pdfs (probability den-
sity functions) of state vectors. As indicated in [4],
Sec. 1.4.2, the pdf of a vector consisting of posi-
tion and velocity in an n-dimensional Cartesian space
has its physical dimension given by the inverse of
the product of the physical dimensions of its com-
ponents, i.e., (length)¡n ¢ (length/time)¡n. Consequently,
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the joint pdf of S such vectors has physical dimension of
(length)¡2Sn ¢ (time)Sn. Therefore, one cannot compare
the likelihood functions of the hypothesis that S tracks
have a common origin with the hypothesis that, say, a
subset of them, consisting of M < S tracks, have a com-
mon origin, i.e, one has an incompatibility. The remedy
for this incompatibility problem is to use dimensionless
likelihood ratios obtained by dividing a common-origin
likelihood function with the likelihood function of the
hypothesis that these tracks are all of different origin.
The latter likelihood function will consist of a diffuse
pdf (a uniform distribution in the augmented (product)
state space–see [4], Sec. 2.3.4), as detailed later. Using
these likelihood ratios one can compare all the hypothe-
ses regardless of how many tracks of common origin are
assumed in them.
The methodology of this paper, based on likelihood

ratios and a diffuse prior for the target state estimates, al-
lows for a systematic way of handling incomplete track-
to-track associations across sensors and was presented
in preliminary form in [6]. Subsequently, an application
to a practical problem was given in [1].
The rest of the paper is organized as follows. The

likelihood function of a set of tracks is derived in Sec-
tion 2. The likelihood ratios for the track-to-track asso-
ciation are presented in Section 3. The assignment with
the negative log-likelihood ratios as cost function is dis-
cussed in Section 4. An investigation of the assignment
accuracy, the sensitivity to the crosscorrelation, and a
tracking example are presented in Section 5. Conclu-
sions are in Section 6.

2. THE LIKELIHOOD FUNCTION OF A SET OF
TRACKS

Consider the situation where there are S sensors,
each with its list of tracks represented by the estimates
x̂jii in the same state space, with errors that are zero-mean
jointly Gaussian with covariances Pjii , i= 1, : : : ,S, per-
taining to a common time (not indicated for simplicity),
where subscript i denotes the sensor based on whose
data the (local) track has been obtained and superscript
ji = 1, : : : ,Ni denotes the indices of the tracks at sensor
i. The error crosscovariances for tracks representing the
same target are discussed later.
The likelihood function of the common origin hy-

pothesis Hl1,:::,lS for the tracks represented by the lo-
cal estimates x̂lii , i= 1, : : : ,S, i.e., that they represent the
same target is the joint pdf of the “track data” condi-
tioned on the hypothesis

¤(Hl1,:::,lS ) = p(x̂lSS , : : : , x̂l11 j Hl1,:::,lS ): (1)

Note that in the above we use the fact that the track
estimates are sufficient statistics–a consequence of the
Gaussian assumption. On the other hand, there is no
assumption of independence of the track estimation
errors. As it is known, the estimation errors for the

same target obtained at independent sensors (with the
measurement noises independent across the sensors) are
correlated and this is quantified by the crosscovariance
matrices (see [2], Sec. 8.4.2). Otherwise, these errors
are assumed independent.
The likelihood function (1) can be rewritten by

moving the first (or any other) track estimate into the
conditioning set, as follows

¤(Hl1,:::,lS ) = p(x̂lSS , : : : , x̂l22 j Hl1,:::,lS , x̂l11 )p(x̂l11 j Hl1,:::,lS ):
(2)

Since Hl1,:::,lS does not contribute any information to
the marginal pdf of a single track, it can be dropped
from the last term above. Furthermore, the marginal pdf
of a track estimate can be taken as diffuse (uniformly
distributed in a region of the state space V , whose
volume is V, assumed large enough to qualify for a
diffuse prior), i.e.,

p(x̂l11 j Hl1,:::,lS ) = p(x̂l11 ) =
1
V

(3)

because, in the absence of any information (which is
our assumption), a track estimate can be anywhere in
the state space. This is in accordance to Bayes’ pos-
tulate [8, 10]. The diffuse prior has to have a support
only “sufficiently larger” than the estimates’ pdf. Fur-
thermore, this diffuse prior assumption is only for the
marginal (unconditional) pdf of a track estimate. The
conditional pdf of any track estimate given another es-
timate with the same origin is not diffuse anymore and is
determined by the statistical properties of their estima-
tion errors which are not assumed independent–their
correlation can be due to the common process noise as
well as to a common prior.
With this, (2) becomes

¤(Hl1,:::,lS ) =
1
V
p(x̂lSS , : : : , x̂

l2
2 j Hl1,:::,lS , x̂l11 ): (4)

Note that V¡1, while having a physical dimension (that
makes (4) have the same dimension as (1)), is really a
constant whose exact value only scales the final result.
Consider first the case of common origin of two

tracks, li and lj from sensors i and j, respectively.

Now, under the Gaussian assumption, if x̂lii originated
from the same target as x̂ljj , then, with the diffuse prior
assumption, one has (see Appendix; this result was
presented in [2], Sec. 8.3.3, but without proof)

E[x̂lii j Hli,lj , x̂
lj
j ] = x̂

lj
j (5)

and

E[(x̂lii ¡ x̂ljj )(x̂ljj ¡ x̂ljj )0 j Hli ,lj , x̂
lj
j ]

= E[(x̂lii ¡ xl¡ (x̂ljj ¡ xl))(x̂lii ¡ xl¡ (x̂ljj ¡ xl))0 j Hli,lj ]

= Plii +P
lj
j ¡Pli,lji,j ¡ (Pli,lji,j )

0 (6)
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where xl is the common true state of these tracks,
which is irrelevant. The crosscovariance Pli,lji,j is given
by a Lyapunov type recursion (see [2], Sec. 8.4).1

Thus for tracks li and lj one has

p(x̂lii j Hli ,lj
, x̂
lj
j ) =N [x̂lii ; x̂

lj
j ,P

li
i +P

lj
j ¡P

li ,lj
i,j ¡ (Pli ,lji,j )

0]

=N [x̂lii ¡ x̂
lj
j ;0,P

li
i +P

lj
j ¡P

li ,lj
i,j ¡ (Pli ,lji,j )

0]

(7)

where N [x; x̄,P] denotes the Gaussian pdf with argu-
ment x, mean x̄ and covariance P. Then the joint likeli-
hood function of common origin for the tracks li and lj
is

¤(Hli,lj ) =
1
V
p(x̂lii j Hli ,lj , x̂

lj
j )

=
1
V
N [x̂lii ¡ x̂ljj ;0,Plii +Pljj ¡Pli,lji,j ¡ (Pli ,lji,j )

0]:

(8)

Note that the test statistic (normalized distance
squared)

D(x̂lii , x̂
lj
j ) = (x̂

li
i ¡ x̂

lj
j )
0[Plii +P

lj
j ¡P

li ,lj
i,j ¡ (Pli ,lji,j )

0]¡1(x̂lii ¡ x̂
lj
j )

(9)

has been known in the literature for some time (e.g.,
[2], Sec. 8.4.3) for the association of pairs of tracks.2

While originally this distance was introduced heuris-
tically, it can be seen to follow directly from (8)
as a likelihood test. The first rigorous derivation of
(9) was given in [17] in the context of sensor bias
estimation. The derivation given above is, however,
much simpler and, more importantly, it generalizes to
S tracks.

1Previous communication is difficult to account for in the correlation
but not impossible–this would require restarting (after every com-
munication) the iteration of the Lyapunov equation (8.4.2-3) in [2]
that yields the crosscovariance.
2The importance of using the crosscovariances is twofold: ignoring
the crosscorrelations (which are positive, as discussed in Section 5)
the distance (9) is smaller than it should be and the covariance of the
fused estimate is optimistic (see [2], Sec. 8.4.5).

The general likelihood function (4) for common
origin of the tracks l1, : : : , lS is obtained as follows. The
pdf from (4) can be written as

p(x̂lSS , : : : , x̂
l2
2 j Hl1,:::,lS

, x̂l11 ) =N

0BB@
2664
x̂
l2
2

...

x̂
lS
S

3775 ;
2664
x̂
l1
1

...

x̂
l1
1

3775 ,
264E[(x̂

l2
2 ¡ x̂l11 )(x̂l22 ¡ x̂l11 )0 j Hl1,:::,lS

] ¢ ¢ ¢ E[(x̂l22 ¡ x̂l11 )(x̂lSS ¡ x̂l11 )0 j Hl1,:::,lS
]

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
E[(x̂lSS ¡ x̂l11 )(x̂l22 ¡ x̂l11 )0 j Hl1,:::,lS

] ¢ ¢ ¢ E[(x̂lSS ¡ x̂l11 )(x̂lSS ¡ x̂l11 )0 j Hl1,:::,lS
]

375
1CCA :
(10)

Then, similarly to (7), the mean is shifted into the
argument and this yields the likelihood function

¤(Hl1,:::,lS ) =
1
V
N [x̂1,S;0,P1,S] (11)

where

x̂1,S
¢
=

2664
x̂l22 ¡ x̂l11
...

x̂lSS ¡ x̂l11

3775 (12)

is a stacked (S¡1)nx vector (with nx the dimension
of x), whose covariance, defined within (10) has the
diagonal blocks

(P1,S)i¡1,i¡1 = E[(x̂
li
i ¡ x̂l11 )(x̂lii ¡ x̂l11 )0 j Hl1,:::,lS ]

= Pl11 +P
li
i ¡Pl1,li1,i ¡ (Pl1,li1,i )

0,

i= 2, : : : ,S (13)

and the offdiagonal blocks

(P1,S)i¡1,j¡1 = E[(x̂
li
i ¡ x̂l11 )(x̂

lj
j ¡ x̂l11 )0 j Hl1,:::,lS ]

= Pl11 ¡P
l1,lj
1,j ¡ (Pl1,li1,i )

0+Pli,lji,j ,

i,j = 2, : : : ,S. (14)

Note that with the (invertible) transformation

ŷ1,S =

26666664

1 ¡1 0 ¢ ¢ ¢
0 1 ¡1 0

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ 0 1 ¡1
¢ ¢ ¢ 0 0 1

37777775 x̂1,S =
2666666664

x̂l22 ¡ x̂l33
x̂l33 ¡ x̂l44
...

x̂
lS¡1
S¡1¡ x̂lSS
x̂lSS ¡ x̂l11

3777777775
(15)

one can see that (11) is really symmetric in the sense that
it has an equivalent symmetric form even if it appears
not to be symmetric at first sight. This is due to the
fact that the determinant of the above transformation is
unity.
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REMARKS Note that the expression of the likelihood
function (11) follows from the way in which (4) is
written, namely as the joint pdf of the local track
estimates from sensors S, : : : ,2 (written for convenience
with the indices decreasing) conditioned on the track
estimate from sensor 1. Equation (4) can be rewritten
in the chain rule form as

¤(Hl1,:::,lS ) =
1
V

SY
i=2

p(x̂lii j x̂li¡1i¡1, : : : , x̂
l2
2 , x̂

l1
1 )

=
1
V

SY
i=2

p(x̂lii j x̂F
i¡1
) (16)

where x̂F
i¡1
is the fused state estimate from the first i¡ 1

local tracks.
It was this last form that was derived in [14] un-

der the assumption that the local track errors are un-
correlated. While (16) holds also for correlated tracks
since no uncorrelatedness assumption was needed in its
derivation above, its evaluation is relatively simple only
under the assumption that the local track errors are un-
correlated. Otherwise, for the realistic situation of cor-
related track errors it becomes quite complicated. Con-
sequently, expression (11) is believed to be the practical
one when the crosscovariances are taken into consider-
ation.
Note that the local track estimate from sensor 1 is

chosen in the conditioning of (2) only for notational
simplicity. One can use any local estimate as the refer-
ence track to obtain (11) with similar derivation.

3. THE LIKELIHOOD RATIOS FOR GENERAL
TRACK-TO-TRACK ASSOCIATION

The likelihood ratio of the common origin hypoth-
esis Hl1,:::,lS for the tracks represented by the local esti-
mates x̂lii , i= 1, : : : ,S, i.e., that all these tracks represent
the same target is obtained next. The numerator is given
by (11) while the denominator, which is the likelihood
of all being of different origin (hypothesis H̄l1,:::,lM ), is
obtained in a similar manner to (2) as follows

¤(H̄l1,:::,lS ) = p(x̂
lS
S , : : : , x̂

l2
2 j H̄l1,:::,lS , x̂l11 )p(x̂l11 j H̄l1,:::,lS )

=
SY
s=2

p(x̂lss j H̄l1,:::,lS , x̂l11 )p(x̂l11 j H̄l1,:::,lS ):

(17)
Analogously to (3),

p(x̂l11 j H̄l1,:::,lS ) = p(x̂l11 ) =
1
V
: (18)

As shown in [7], [10], the role of the pdf of a
false/extraneous measurement in the likelihood ratio is
played by the spatial density of these measurements un-
der the assumption that they are Poisson distributed.
This was obtained from the rigorous Bayesian deriva-

tion of the Multiple Hypothesis Tracker. Consequently,
assuming the extraneous tracks in the present problem
to be Poisson distributed in the state space with spatial
density3 ¹ex, one has

p(x̂lss j H̄l1,:::,lS , x̂l11 ) = ¹ex: (19)

Using (18) and (19) in (17) yields

¤(H̄l1,:::,lS ) =
¹S¡1ex

V
: (20)

Finally, combining the above with (11) yields the like-
lihood ratio

L(Hl1,:::,lS : H̄l1,:::,lS ) =
¤(Hl1,:::,lS )
¤(H̄l1,:::,lS )

=

1
V
N [x̂1,S;0,P1,S]
1
V
¹S¡1ex

=
N [x̂1,S;0,P1,S]

¹S¡1ex
(21)

which is, clearly, a dimensionless quantity.
Next consider the likelihood ratio of an incomplete

assignment consisting of tracks from the lists cor-
responding to the subset of sensors with indices
Si = fs1,s2, : : : ,sMg, where 1· s1 < s2 < ¢ ¢ ¢< sM · S.
The entire set of list (sensor) indices is denoted
as S.
Assume that the probability of a target having a

(“detected”) track in the list of sensor s is PDs and
that these track detection events are independent across
sensors.4

Then the likelihood ratio of this assignment is [7]

L(Hls1 ,:::,lsM
: H̄ls1 ,:::,lsM )

= V¡1N [x̂Si ;0,PSi]
"Y
s2Si
PDs

#
¹¡S+Mex

£
24Y
s2S̄i
(1¡PDs)

35[V¡1¹¡S+1ex ]¡1

= ¹M¡1ex N [x̂Si ;0,PSi]
"Y
s2Si
PDs

#24Y
s2S̄i
(1¡PDs)

35 :
(22)

The above follows by including in the numerator the
probabilities of the events (assumed independent) that
the tracks belonging to the hypothesized target have
been detected by the sensors in Si but not by the

3Since the true targets are typically not homogeneously distributed in
the space, this should be taken as the local density of the extraneous
(true and false) tracks.
4This is clearly only a convenient mathematical assumption–in prac-
tice the situation can be much more complex: these probabilities de-
pend on the target locations, sensor modes, their fields of view, ob-
scuration conditions, etc.
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sensors in S̄i. For the tracks corresponding to the sensors
in S̄i, their pdfs are the “extraneous” ones, ¹ex. In
the denominator we have the probability densities of
the tracks assuming they are not of common origin,
modeled as having pdfs ¹ex. The pdfs of the tracks
corresponding to the sensors in S̄i cancel between the
numerator and denominator.
The first argument of the Gaussian density in (22)

is, similarly to (12), given by

x̂Si
¢
=

2664
x̂
ls2
s2 ¡ x̂

ls1
s1

...

x̂
lsM
sM ¡ x̂

ls1
s1

3775 (23)

and PSi is its covariance matrix with blocks given by
expressions similar to (13)—(14).

4. THE USE OF THE LIKELIHOOD RATIOS IN
ASSIGNMENT

We first consider the assignment formulation for
track-to-track association from two sensors. Assume
sensor 1 has a list of N1 tracks and sensor 2 has a list
of N2 tracks. Define the binary assignment variable Âij
as

Âij =

8<:
1 track i from sensor 1 and track j

from sensor 2 are from the same target,

0 otherwise.

(24)

Denote by Lij the likelihood ratio of the two tracks be-
ing from the same target vs. from two different targets
which is the two sensor case of (22). If we assume that
the track association events among different track pairs
are independent, then the 2-D assignment formulation
finds the most likely (joint) track-to-track association
hypothesis by solving the following constrained opti-
mization5

min
Âij

N1X
i=0

N2X
j=0

cijÂij (25)

subject to

N1X
i=0

Âij = 1, j = 1, : : : ,N2 (26)

N2X
j=0

Âij = 1, i = 1, : : : ,N1 (27)

Âij 2 f0,1g, i= 0,1, : : : ,N1, j = 0,1, : : : ,N2

(28)

5Each list of tracks from a sensor is augmented by a “dummy element”
with index 0, which stands for “no track,” to allow for incomplete
associations, while keeping the assignment problem complete.

where

cij =¡ lnLij : (29)

This can be solved using the Auction or JVC algorithm
[19]. As shown in [12] this can also be solved opti-
mally using linear programming by relaxing the integer
constraint.
The extension to multidimensional assignment

(S-D) is as follows. Assume there are S sources (S ¸ 3)
where source Si has a list of Ni tracks. Define the binary
assignment variable Âi1i2 :::iS as

Âi1i2 :::iS =

½
1 tracks i1, i2, : : : , iS are from the same target,

0 otherwise.

(30)

We allow a subset of indices fi1, i2, : : : , isg to be zero in
the assignment variable meaning that no track will be
from the target in the corresponding list of the sources.
Denote by Li1i2:::iS the likelihood ratio of the track as-
sociation hypothesis vs. all tracks being from different
targets which is given by (22). The S-D assignment for-
mulation finds the most likely hypothesis by solving the
following constrained optimization

min
Âi1 i2 :::iS

N1X
i1=0

N2X
i2=0

¢ ¢ ¢
NSX
iS=0

ci1i2 :::iSÂi1i2:::iS (31)

subject to

N2X
i2=0

¢ ¢ ¢
NSX
iS=0

Âji2:::iS = 1, j = 1, : : : ,N1

N1X
i1=0

N3X
i3=0

¢ ¢ ¢
NSX
iS=0

Âi1ji3:::iS = 1, j = 1, : : : ,N2

¢ ¢ ¢
N1X
i1=0

¢ ¢ ¢
NS¡1X
iS¡1=0

Âi1i2:::iS¡1j = 1, j = 1, : : : ,NS

(32)

and

Âi1i2 :::iS 2 f0,1g,

i1 = 0,1, : : : ,N1, i2 = 0,1, : : : ,N2 , : : : , iS = 0,1, : : : ,NS:

(33)
In (31) the assignment cost is

ci1i2 :::iS =¡ lnLi1i2:::iS (34)

where the likelihood ratio Li1i2:::iS (written here with a
simpler index-only notation) can be computed using
(22). The above constrained integer programming is,
in general, NP hard. However, efficient algorithms exist
to find a suboptimal solution via Lagrangian relaxation
(see, e.g., [19]).

BAR-SHALOM & CHEN: MULTISENSOR TRACK-TO-TRACK ASSOCIATION FOR TRACKS WITH DEPENDENT ERRORS 7



5. SIMULATION RESULTS

5.1 Evaluation of the Association Accuracy and
Sensitivity

We want to study the track association accuracy for
a different number of local sensors with various cross-
correlation coefficients. To make it simple, we assume
that the local estimates are scalars with unity variances.
The crosscorrelation coefficients between two local es-
timates is denoted by ½. We choose various values of
½, namely, 0, 0.1, 0.3, 0.5, when the local tracks corre-
spond to the same target.
The null hypothesis H0 is that all the local estimates

correspond to the same target with its location uniformly
distributed within the surveillance region of length V =
10

H0 = f“same target”g: (35)

The hypothesis H1 is that all local estimates correspond
to different targets with their locations uniformly dis-
tributed within the surveillance region

H1 = f“different targets”g: (36)

In this case, the separation of two targets is random and
it depends on the volume of the surveillance region and
no further prior knowledge is assumed.
Note that with the relatively small region V the

targets, even if they are different, can be close enough
to appear as they were the same, i.e., it is difficult to
discriminate between the two hypotheses because they
are not easily distinguishable. Consequently, even the
most powerful test will not be very powerful is this
situation.
The test based on (22) is used to compute the

receiver operating characteristic (ROC) curves for the
cases of N local tracks from the same target, i.e., the
curves of the power of the test

PD = Pf“H0” jH0g (37)

where “H0” denotes “accept H0,” vs. the false alarm
probability

PFA = Pf“H0” jH1g: (38)

Fig. 1 shows the ROC curves for the track as-
sociation test with 2, 3, and 4 local track estimates
and various crosscorrelation coefficients. One thou-
sand random realizations are used for each hypothe-
sis with fixed ½ and N to compute these curves. We
can see that the test power increases as N increases for
fixed V since the H0 hypothesis becomes more distin-
guishable when more targets are uniformly distributed
within the surveillance region. The crosscorrelation be-
tween the local track estimates is beneficial in terms
of the test power under a given false alarm rate for
all cases. As ½ increases, the alternative hypothesis
(“different targets”) becomes more distinguishable from
the null hypothesis (“same target”) because common
origin tracks will then be closer to each other (in terms

Fig. 1. ROC curves for the track association test with a different
number of local estimates and various crosscorrelation coefficients.

of their normalized distance–see (9), which improves
the decision accuracy. However, once H0 is declared, the
variance of the fused track estimate is larger than when
they are uncorrelated [11].
Consider a case where one uses the test assuming

½= 0. The threshold is determined for a certain max-
imum allowed miss probability of H0, that is, 1¡PD.
If the true crosscorrelation coefficient is, e.g., ½= 0:5,
the actual PD will be higher than the one calculated un-
der ½= 0. At the same time, the actual PFA will also be
higher.
For two tracks (each with unity variance, for simplic-

ity) assuming ½= 0, the (chi-square) test statistic used
is

D0 = (x̂1¡ x̂2)2=2 (39)

and the “design” probability of falsely rejecting the null
hypothesis is

PfD0 > ¿0 jH0g= 1¡P0D (40)

based on the chi-square distribution with one degree of
freedom

D0 » Â21: (41)

However, since ½= 0:5, (41) does not hold, Instead,
under H0,

D = (x̂1¡ x̂2)2=[2(1¡ ½)]» Â21: (42)

Thus the test statistic used, D0, is

D0 =D=2 (43)

i.e., half of what it should have been. Consequently,
the statistic D0 will be more inclined to accept the
“same target” hypothesis than the correct statistic D,
i.e., PFA, as well as PD, will increase. Because the test
statistic used is a scaled version of the correct one, the
test assuming ½= 0 uses effectively a threshold that is
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double of what it would have been with ½= 0:5. Thus
the ROC for the test assuming ½= 0 is the one with the
true ½= 0:5 but the operating point on it is different than
the “design operating point.”
This can be illustrated on Fig. 1. Assume N = 3 and

the design operating point (on the ½= 0 ROC curve)
is PD = 0:83, PFA = 0:025. The actual operating point
for this test is on the ½= 0:5 ROC curve at PD = 0:86,
PFA = 0:05. Note the sensitivity of the actual FA rate
to ignoring the crosscorrelation: it is twice the design
value.

5.2 A Multisensor Tracking Example

We consider a target tracking scenario where three
sensors are located at (¡50, 0) km, (0, 187) km, and
(50, 0) km, respectively. All three sensors measure the
target range and bearing with the same standard devia-
tions of the measurement error given by ¾r = 50 m and
¾b = 2 mrad. The sampling interval of sensors 1 and 2
is T1 = T2 = 2 s while the sampling interval of sensor 3
is T3 = 5 s.
The two targets in the scenario considered are ini-

tially at (0, 86:6) km and (0:4, 86:6) km, respectively.
Both targets move in parallel with a speed of 300 m/s.
The motion of the two targets is characterized as fol-
lows. Both targets initially move south-east on a course
of approximately 135±. Then at t= 15 s both targets
make a course change with a constant turn rate of 4±/s
(acceleration of about 2.1 g over a duration Tman of about
11 s) and head east. Both targets make a second course
change at t= 35 s with a constant turn rate of 4±/s and
head north-east. The trajectories of the two targets are
shown in Fig. 2 where the true target positions are in-
dicated at the time instances at which a measurement
is made by one of the three sensors. The total time for
the two targets to complete the designated trajectories is
60 s. Note that the target ranges are around 100 km at
the beginning for all sensors, where the standard devia-
tion of the crossrange measurement is around 200 m.
Thus the tracker has measurement origin uncertainty
when updating the target state estimates. The true target
motion has a random acceleration from a white process
noise with power spectral density (PSD) q= 1 m2=s3 in
each realization. We assume that the two targets have
unity detection probability by each sensor and there are
no false measurements, i.e., each sensor has both tracks
and no false tracks–in this case there are no incomplete
associations to consider (see [1] for a problem with in-
complete associations). The results presented are based
on 100 Monte Carlo runs.
Two tracking configurations for performance com-

parison are implemented as follows.
i) A centralized estimator which uses an IMM with

two models and sequentially updates the target state
with measurements from sensors 1—3. This IMM es-
timator has a discretized continuous white noise accel-
eration (DCWNA) model (see [4], Sec. 6.2.2) with low

Fig. 2. Target trajectories with true positions at the times when
measurements are made by the sensors.

process noise power ql to capture the uniform target mo-
tion and a DCWNA model with high process noise PSD
qh to capture the two turns. We use ql = 1 m

2=s3 and
qh = 8000 m

2=s3 which, for Tman = 11 s, corresponds to
a target average acceleration of

p
qh=Tman ¼ 2:6 g. The

process noise is the same in east and north of the Carte-
sian coordinates and uncorrelated between these coor-
dinates. The transition between the modes is modelled
according to a continuous time Markov chain with the
expected sojourn times ([4], Sec. 11.7.3) in these modes
given by 1=¸1 and 1=¸2, respectively. These correspond
to exponential sojourn time distributions with parame-
ters ¸1 and ¸2, respectively. The transition probability
matrix between the two models (generalized version of
(11.6.7-1) in [4]) from any time t1 to time t2 is [18]

¦(t2, t1) =
1

¸1 +¸2

·
¸2 +¸1e

¡(¸1+¸2)T ¸1¡¸1e¡(¸1+¸2)T
¸2¡¸2e¡(¸1+¸2)T ¸1 +¸2e

¡(¸1+¸2)T

¸
(44)

where T = jt2¡ t1j. For the scenario used in simulation,
we chose ¸1 =

1
20 s

¡1 and ¸2 =
1
10 s

¡1. For the central-
ized IMM estimator, 2-D assignment is used to solve
the measurement-to-track association problem and the
most likely hypothesis is chosen for the filter update.
ii) In the decentralized tracking configuration each

sensor uses an IMM estimator and the fusion cen-
ter fuses the local estimates every TF = 10 s using
all local state estimates and the corresponding covari-
ances with approximate crosscovariances. For each lo-
cal IMM estimator, 2-D assignment is used to solve
the measurement-to-track association problem and the
most likely hypothesis is chosen for the filter up-
date. The track-to-track association is based on the
most likely hypothesis obtained by solving the 3-D
assignment. If the local tracks are declared as from
the same target, then the track-to-track fusion is car-
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Fig. 3. Crosscorrelation coefficients vs. target maneuvering index
for DCWNA model. ½11: position-position, ½12: position-velocity,

½22: velocity-velocity.

ried out with an approximate crosscovariance matrix,
as in [11].
The combined estimates and their covariances gen-

erated by the IMM were used in the association and
the corresponding state errors were approximated as
Gaussian. The crosscovariance used at the fusion cen-
ter is calculated using the fixed crosscorrelation coef-
ficients detailed below. Assuming equal variances of
the measurement error for both sensors, we can solve
the Lyapunov equation for the steady state discretized
continuous-time white noise acceleration (DCWNA)
model ([2], Sec. 6.2.2). The resulting crosscorrelation
coefficients between the estimation errors from the two
local trackers are shown in Fig. 3 for the target maneu-
vering index6 within (0.05, 2). In the simulation, we
used the following fixed values for the crosscorrelation
coefficients: ½11 = 0:15 (position-position), ½12 = 0:25
(position-velocity) and ½22 = 0:7 (velocity-velocity) to
obtain an approximate crosscovariance matrix between
the local track pairs (see [11]) which was then used in
the optimal track-to-track fusion algorithm.
Figs. 4 and 7 show the RMS position errors at the

fusion center for the above two tracking configurations
as well as that by sensor 1 alone for target 1 and target
2. Figs. 5 and 8 show the corresponding RMS velocity
errors for target 1 and target 2. We can see that the
track fusion of three local IMM estimators (configura-
tion (ii)) has the RMS errors close to that of the cen-
tralized estimator (configuration (i)). Thus the proposed
assignment solution to the track-to-track association is
very effective when the consistency of the local tracks
is good. Figs. 6 and 9 show the normalized estimation

6The target maneuvering index for a DCWNA model is given byp
qT3=¾w where q is the process noise PSD, T the sampling interval

and ¾w the measurement noise standard deviation [4], Sec. 6.5.4.

Fig. 4. Comparison of the RMS position errors for centralized
IMM estimator (configuration (i)), track fusion from three IMM

estimators (configuration (ii)) for target 1; local IMM estimator from
sensor 1 also shown.

Fig. 5. Comparison of the RMS velocity errors for centralized
IMM estimator (configuration (i)), track fusion from three IMM

estimators (configuration (ii)) for target 1; local IMM estimator from
sensor 1 also shown.

error squared (NEES, see [4], Sec. 5.4.2) at the fusion
center for the above two tracking configurations as well
as that by sensor 1 alone. We can see that the distributed
track fusion yields larger NEES than the centralized es-
timator during the target turns. Thus caution has to be
exercised when fusing the local estimates that are not
credible on their own NEES statistics.7

7While, for maneuvering targets, the IMM estimator is superior, in
terms of its NEES consistency, compared to a fixed model Kalman
filter due to its adaptability, this adaptation takes about 2 sampling
intervals, during which it can experience short-term inconsistency (see
[4], Sec. 11.7).
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Fig. 6. Comparison of the NEES for centralized IMM estimator
(configuration (i)), track fusion from three IMM estimators

(configuration (ii)) for target 1; local IMM estimator from sensor 1
also shown.

Fig. 7. Comparison of the RMS position errors for centralized
IMM estimator (configuration (i)), track fusion from three IMM

estimators (configuration (ii)) for target 2; local IMM estimator from
sensor 1 also shown.

The ML assignment for track-to-track association
from the 3 sensors over the 100 runs yielded in all runs
the correct association.

6. SUMMARY AND CONCLUSIONS

In this paper the problem of track-to-track associa-
tion from an arbitrary number of sources was considered
where tracks of the same target obtained from differ-
ent sensors have dependent estimation errors. The ex-
act likelihood function for the track-to-track association
problem from multiple sources was derived. This forms
the basis for the likelihood ratio cost function used in
a multidimensional assignment algorithm that can solve
such a large scale data association problem. Simulation

Fig. 8. Comparison of the RMS velocity errors for centralized
IMM estimator (configuration (i)), track fusion from three IMM

estimators (configuration (ii)) for target 2; local IMM estimator from
sensor 1 also shown.

Fig. 9. Comparison of the NEES for centralized IMM estimator
(configuration (i)), track fusion from three IMM estimators

(configuration (ii)) for target 2; local IMM estimator from sensor 1
also shown.

results using a two-target three-sensor tracking scenario
show that the estimation errors of the distributed track
fusion with the assignment solution to the track asso-
ciation problem are only slightly larger than those of
the centralized estimator. These results are in line with
those of [5].
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APPENDIX. THE PDF OF A STATE ESTIMATE
CONDITIONED ON ANOTHER STATE ESTIMATE

Under the common origin hypothesis Hli,lj one has

x̂
lj
j = x¡ x̃ljj (45)

and
x̂lii = x¡ x̃lii (46)

where x is the common true state.
Equations (45)—(46) yield

x̂lii = x̂
lj
j + x̃

lj
j ¡ x̃lii : (47)

If the prior (unconditional) pdf of a state estimate x̂ljj
is diffuse (noninformative or improper [4]), it follows
from (45) that the prior of the true state x is also diffuse
because
1) x and x̃ljj are independent,
2) the error x̃ljj has a proper prior pdf, and
3) in order for the convolution of the pdfs of x and

x̃
lj
j to yield a diffuse pdf for x̂

lj
j (as assumed), the (prior)

pdf of x has to be also diffuse.
Consequently, x̃ljj is independent of x̂

lj
j since there is no

inference one can make on x̃ljj from x̂
lj
j because their

relationship contains x, which has a diffuse prior pdf.
Thus

E[x̃ljj j x̂ljj ] = 0 (48)

and, similarly
E[x̃lii j x̂ljj ] = 0: (49)

The conditional expectation of (47) can the be writ-
ten using (48)—(49) as

E[x̂lii j Hli ,lj , x̂
lj
j ] = E[x̂

lj
j + x̃

lj
j ¡ x̃lii j Hli ,lj , x̂

lj
j ] = x̂

lj
j

(50)

which proves (5). Equation (6) follows in a similar
manner.
Finally, because all the state errors are assumed

Gaussian, the conditional pdf of a state estimate in terms
of another state estimate (7) follows.
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