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Agenda 

• UPF Overview 
– Low Power Management Concepts  

– What is UPF  

– Power Management Structures 

– Power Management Behavior 
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Power Management Concepts 
• Power Gating:   

– Shutting off power to portions of the design (Power 

Domains) to eliminate leakage power consumption 

• Multi Voltage Designs: 
– Organizing the design into different voltage domains 

as a function of performance to minimize dynamic 

and static power consumption 

• Voltage and Frequency Scaling 
– Dynamically tune parts of the design to meet 

performance goals with minimum power 

• Power Management requirements 
–  Isolation, Level Shifting, State Retention, Switching 
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What is UPF? 
•  An Evolving Standard 

– Accellera UPF in 2007 (1.0) 

– IEEE 1801-2009 UPF (2.0) 

– IEEE 1801-2013 UPF (2.1) 

– IEEE 1801A-2014 UPF (2.2) 
 

• For Power Intent 

– To define power 
management 

– To minimize power 
consumption 

– Through control of leakage 

 

• Based upon TCL 

– Tcl syntax and semantics 

– Can be mixed with          
non-UPF TCL 

 

• And HDLs 

– SystemVerilog, Verilog, VHDL 

• For Verification 

– Simulation or Emulation 

– Static/Formal Verification 

• And for Implementation 

– Synthesis, DFT, P&R, etc. 
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Power Management Structures 

• Power Domains 

• Domain Interfaces (ISO/LS) 

• Retention 

• Supply Sets 

• Supply Ports/Nets 

• Power Switches 
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Power Domains 
• A collection of instances that are treated as a 

group for power-management purposes.  

 

• A Power domain exists within a logical scope 
– UPF and HDL identifiers must be unique within the 

scope 

– All UPF commands are executed within the current 
active scope  

 

• A power domain can have associated with it 
isolation strategies, retention strategies and 
level shifter requirements 
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Power Domains 

DUT 

IP1 CPU 2 

cache 

BUS/Fabric 

CPU1 Memory 

P1 P2 P3 IP2 Power CTRL 

C1_PD C2_PD 

DUT_PD 

create_power_domain DUT_PD –include_scope  
create_power_domain C1_PD -elements {CPU1} 
create_power_domain C2_PD -elements {IP1 CPU2} 



Supply Sets 
• Represent a collection of supply nets 

that provide a power source. 

– Consists of a set of up to 6 supply 

“functions” 

• power, ground, nwell, pwell, deepnwell, 

deeppwell 

– One supply net per (required) function 

– Electrically complete model of a power 

distribution network in a domain:  
power, ground, etc. 

• Power domains have a few predefined 

supply sets: primary, default_isolation, 

and default_retention 

• Supply sets can be associated with 

one another to model supply 

connections abstractly 
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deepnwell 

deeppwell 

power 

ground 

nwell 
Main 

pwell 

Functions Supply Nets Supply Set 

U11 U12 

L1 L2 L3 L4 L5 

P R I 

P R I P R I 

U1 

create_power_domain PD_u1 –include scope 

create_power_domain PD_u11 – elements {U1/U11} 

create_power_domain  PD_u12 –elements {U1/U12} 



Domain Interfaces 
• Power gating can cause electrical  and logical 

problems to adjacent domains.   

– Isolation is used to prevent these problems.   

– Isolation cell: An instance that passes logic values during 

normal mode operation and clamps its output to some specified 

logic value when a control signal is asserted. 

• Multi voltage designs can also experience 

problems 

– Level shifters are used to maintain signal integrity. 

• Level shifter cell: An instance that translates signal values from 

an input voltage swing to a different output voltage swing. 
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Retention/Repeaters 
• Device operation may require the use of flip 

flops or memories that preserve state during a 

domain’s power down.  

• Preserving state is achieve through the use of 

UPF retention. 

– Retention: Enhanced functionality associated with 

selected sequential elements or a memory such that 

memory values can be preserved during the power-

down state of the primary supplies. 
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Supply Ports/Nets 
• Power Domain supply sets consist of supply 

nets that eventually are driven by supply ports 

• Supply ports and nets are defined as objects of 

supply_net_type 

• UPF package defines supply_net_type as: 

typedef enum  

  (OFF=0,UNDETERMINED, PARTIAL_ON, FULL_ON) state 

 

typedef struct packed { 

state state;  

int voltage; // voltage in microVolts 

} supply_net_type; 
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Power Switches 

• A power switch is a design element that 

conditionally connects input supply nets to an 

output supply net 

• A UPF switch can be on or off or partially on 

• The state of the switch is set by Boolean 

functions of the control ports 

• Match = input voltage propagates to output (on) 

• No Match = output port disabled (off) 

• Either power or ground can be switched 
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set_design_top U1 

create_power_domain PD_u1 –include scope 

create_power_domain PD_u11 –elements {U1/U11} 

create_power_domain  PD_u12 –elements {U1/U12} 

create_supply_net sw1_out_net 

create_power_switch  SW1 \ 

   -domain PD_u1 \ 

   -output_supply_port {swout sw1_out_net} \ 

   -input_supply_port {swin PD_u1.primary.power}  \ 

   -control_port {swctrl swCtl1}  \ 

   -on_state {SWon swin swctrl}  \ 

   -off_state {SWoff !swctrl} 

create_supply_set sw1_ss  \ 

             -function {power sw1_out_net} \ 

             -function {ground PD_u1.primary.ground} 

associate_supply_set sw1_ss  

              -handle PD_u11.primary 

associate_supply_set PD_u1.primary  \ 

              -handle PD_u11.default_retention 

associate_supply_set PD_u1.primary  \ 

              -handle PD_u11.default_isolation 

set_isolation iso_pd_u11 –domain PD_u11 \ 

              -location self –clamp_value {1} \ 

              -applies_to outputs 

set_retention ret_pd_u11 –domain PD_u11 \ 

              -elements {U11/ret1} \ 

              -save_signal {U11/ret_n} high \ 

              -restore_signal {U11/ret_n low} 

 

U11 U12 

RET1 L2 L3 L4 RET5 

P R I 

R I P I R P 

U1 
SW1 

ISO 

UPF Structure 

Command example 
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create_supply_net sw2_out_net 

create_power_switch  SW2 \ 

   -domain PD_u2 \ 

   -output_supply_port {swout sw2_out_net} \ 

   -input_supply_port {swin PD_u1.primary.power}  \ 

   -control_port {swctrl swCtl2}  \ 

   -on_state {SWon swin swctrl}  \ 

   -off_state {SWoff !swctrl} 

create_supply_set sw2_ss  \ 

             -function {power sw2_out_net} \ 

             -function {ground PD_u1.primary.ground} 

associate_supply_set sw2_ss  

              -handle PD_u12.primary 

associate_supply_set PD_u1.primary  \ 

              -handle PD_u12.default_retention 

associate_supply_set PD_u1.primary  \ 

              -handle PD_u12.default_isolation 

set_isolation iso_pd_u12 –domain PD_u11 \ 

              -location self –clamp_value {0} \ 

              -applies_to outputs 

set_retention ret_pd_u12 –domain PD_u11 \ 

              -elements {U12/ret1} \ 

              -save_signal {U12/ret_n posedge}  

              -restore_signal {U12/ret_n negedge} 

 

 

 

U11 U12 

RET1 L2 L3 L4 RET5 

P R I 

R I P I R P 

U1 
SW1 SW2 

ISO ISO 

UPF Structure 

Command example 
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Behavior 

 

• Supply set Power States 

• Simstates 

• Power Domain States 
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Supply Sets Power States 
• The power states of a supply set describe the 

expected combination of states of the supply 

nets in the supply set 

– The state can be defined by a logic expression and 

may include supply expression 

– State holds when logic expression is TRUE 

– A power state defines the legal values of supply set 

functions when in that state 

– Also may include a simstate 
add_power_state PdA.primary 

   -state GO_MODE {–logic_expr {SW_ON } –simstate NORMAL   

                                   -supply_expr {{power == {FULL_ON  0.8}}  

                                   && {ground ==  {FULL_ON, 0}} && {nwell == {FULL_ON 0.8}}} 

   -state OFF_MODE {–logic_expr  {!SW_ON}  –simstate CORRUPT} 

                                    -supply_expr {power == {OFF}}  
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Simstates 
• Simstate defines precise simulation semantics in this 

state.  That is, the expected behavior of the cells 

connected to this supply set. 
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• CORRUPT 

– Combinational outputs corrupted 

– Sequential state/outputs corrupted 

 

 

• CORRUPT_ON_ACTIVITY 

– Combinational outputs maintained 

as long as inputs are stable 

– Sequential state/outputs corrupted 

 

• CORRUPT_ON_CHANGE 

– Combinational outputs maintained 

as long as outputs are stable 

– Sequential state/outputs corrupted 

• NORMAL 

– Combinational logic functions normally 

– Sequential logic functions normally 

– Both operate with characterized timing 
 

• CORRUPT_STATE_ON_ACTIVITY 

– Combinational logic functions normally 

– Sequential state/outputs maintained as 

long as inputs are stable 

 

• CORRUPT_STATE_ON_CHANGE 

– Combinational logic functions normally 

– Sequential state/outputs maintained as 

long as outputs are stable 



Power States of a Power Domain 

• A power domain is designed to have a set of 

allowable states in which it can operate. 

• The domain power states describe the 

allowable set of states for a domain.  Each 

state is defined by a logic expression 

– Logic expressions can be created with:  

• States of supply_sets 

• Logic port and net values 

• Subdomain power states 

• Interval Functions 
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Attributes 
• Characteristics of a port or design element 

• Used to identify power supplies for ports 

– set_port_attributes -ports Out1 -attribute \ 
    {UPF_related_power_port “VDD”} 

• Used to specify constraints for IP usage:  

– set_port_attributes –ports {logic_port} –attribute \ 

    {UPF_clamp_value “1”} 

• Used to specify structure and behavior 

– set_design_attributes –elements ALU1 –attribute \ 

     {UPF_is_leaf TRUE} 

– set_design_attributes –elements ALU1 –attribute \ 

     {UPF_retention required} 
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• UPF captures power intent of a design 

– Power gating, multiple voltage, dynamic voltage and 

frequency scaling, isolation, retention, level shifting 

• UPF works with HDL 

–  Verilog, VHDL and SystemVerilog 

• UPF guides verification and implementation 

• UPF is an evolving standard 

– Accellera UPF in 2007 (1.0) 

– IEEE 1801-2009 UPF (2.0) 

– IEEE 1801-2013 UPF (2.1) 

– IEEE 1801a-2014 UPF (2.2) 
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• Introduction 

– How power intent is realized in silicon 

– Leaf Cells and macro models 

• Soft IP modeling  

– Successive refinement  

– Constraints, configuration, implementation 

• SoC integration  

– Hierarchical UPF composition 

– Supply network construction 

– System power states and transitions 
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• Power intent is captured through UPF, HDL and Library 

• UPF realizes: 

– Supply network specification 

• power/ground/nwell/pwell/deepnwell/deeppwell 

• Macro and IO power connectivity 

• On-chip power switch specification 

– Power domain specification 

• Identify a standard cell region, supply availability in a region 

– Strategies and their implementation 

• Dictates inference of isolation cells, level shifters, repeaters and retention cells  

• Leaf cell/macros need models to identify supply pins 

– Liberty (.lib) provides UPF attributes 

– LEF identifies power/ground/signal pins 

– 1801-2013 enables cell and macro modeling 

24 

Introduction 



• An instance that has no descendants or 

has UPF_is_leaf_cell attribute on it 

• Typically refer to standard cells 

– HDL – simulation model 

– UPF – low power cells specification 

– Liberty – implementation 

– LEF – physical design 

• Attributes of interest 

– supply vs signal pins 

– supply properties 

– cell attributes 

– pin attributes 

– function attributes 

• UPF specifies either explicit, implicit or 

automatic supply connectivity to leaf cells 
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Leaf Cells 

top module 

sub module 

leaf 

sub module 

sub 

module 

cell (INVX1) {  

... 

pg_pin (VDD) { 

... 

pg_pin (VSS) { 

... 

 



• Also called IPs, a piece of 

functionality optimized for 

power/area/performance 

– Soft macros – handed off as 

synthesizable HDL (technology 

agnostic) 

– Hard macros – handed off as 

LEF/GDS (technology specific) 

• Also a leaf cell 

• UPF_is_macro_cell attribute allows 

the model to be recognized as part 

of lower boundary of the domain 

containing the instance 

• Can be modeled as: 

– UPF Power Models 

– Liberty models 
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Macros 

Example of a hard macro – 

Embedded SRAM 



• UPF Power models 

– Regular UPF commands enclosed between 

being_power_model and end_power_model 

– Applied on an IP instance using apply_power_model command 

– Models power states, port attributes, isolation etc. 

• Liberty models 

– Pin, supply and cell based attributes available 

– switch_pin, pg_pin, is_macro_cell etc. 

• Verilog simulation models 

– Model supply as logic functions 

27 

IP Modeling 
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Successive Refinement 

• IP provider 

• IP Source 
• IP licensee 

• Integrator 
• Technology 

specific 

implementation 



 

• Identify "atomic" power domains in the design 

– Indivisible, but can be merged during implementation 

create_power_domain PD_IP1 –elements { u_inst_ip1 } -atomic 

• Identify state elements to be retained during power down 

– Type of retention flop, controls not specified 

set_retention_elements PD_IP1_ret_elem –elements $ip1_elem_list 

– $ip1_elem_list = list of elements that need to be retained in PD_IP1 

• Identify isolation clamp values on ports 

– Isolation controls not specified 

set_port_attributes –elements $ip1_elem_list -applies_to outputs \ 

 -clamp_value 0 

• Specify legal power states and sequencing between them 

– Supply ports, actual voltages not specified 

add_power_state PD_IP1 –domain \ 

       -state { nom -logic_expr { (ss_ip1 == nom) && {ss_ip2 != off) } 
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Constraints 



• Uniquify/finalize power domains based on RTL configuration 

– Number of instances generated determined by RTL parameters 

• Merge power domains 
create_composite_domains PD_IP –subdomains { PD_IP1 PD_IP2 } 

• Create the required power-management ports (pwr/iso/ret) 
create_logic_port pwronin –direction in 

create_logic_port iso     –direction in 

• Create isolation strategies to fulfill isolation requirements 
set_isolation sw_iso_c0 –domain PD_IP -applies_to outputs \ 

                        -clamp_value 0 –isolation_signal iso \ 

        -isolation_sense high –location self 

• Create retention strategies to fulfill retention requirements 
set_retention sw_ret –domain PD_IP –elements $ip1_elem_list \ 

                     –retention_condition { ret } 

• Update power states and power transitions 
add_power_state PD_IP –domain –update \ 

       -state { nom   -logic_expr { pwronin } } 
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Configuration 



• Create supply ports and nets 
create_supply_port VDD1 –direction in 

create_supply_net  VSS –domain PD_SUB1 -reuse 

• Update supply set functions 
create_supply_set ss_ip1 –update –function {power VDD1} \ 

 -function {ground VSS} 

• Update power states with supply values 
add_power_state ss_ip1 –update –supply \ 

     -state {nom -supply_expr {(power == {FULL_ON 0.9}) && (ground == {FULL_ON 0})} 

• Create power-switches 
create_power_switch PSW_PD_IP –domain PD_IP \ 

              -input_supply_port  { in_vdd VDDB } \ 

              -output_supply_port { out_vdd VDD } \ 

              -control_port       { sw_ctrl  pwronin } \ 

              -on_state           { full_on in_vdd {sw_ctrl}  } \ 

              -off_state          { full_off       {!sw_ctrl} } 

• Map strategies to technology specific library cells 
use_interface_cell sw_low -strategy sw_iso_c0 -domain PD_IP \ 

 -lib_cells $list_lib_cells 
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Implementation 



• A typical SoC contains: 
• Hard IP (fully implemented macros) 

• Soft IP (HDL integrated into top 

level) 

• Analog/mixed signal macros 

• IO pads 

• Considerations: 
• Bottom up or top down 

implementation 

• IP reuse 

• Verification complexity 

• System level power states 
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SoC Integration 



• Partition design UPF into sub-module UPF 
load_upf $env(UPF_PATH)/module1/upf/module1.upf \ 

  -scope core_inst/module1_inst 

load_upf $env(UPF_PATH)/module2/upf/module2.upf \ 

  -scope core_inst/module2_inst 

• Top level UPF can be split into multiple files for readability 
source $env(UPF_PATH)/top_level/upf/create_supply_ports.upf 

source $env(UPF_PATH)/top_level/upf/create_supply_sets.upf 

• Complete supply connectivity to macros and sub-modules 
set pll_inst_list [find_objects . -pattern *u_pll* -object_type inst \ 

   -leaf_only -transitive] 

foreach inst $pll_inst_list { 

 connect_supply_net 1p8ss.power  -ports “$inst/AVDD1P8” 

 connect_supply_net 1p8ss.ground -ports “$inst/AVSS” 

} 

• ISO/LS at top level or inside blocks 

• For large number of domains, move complexity into blocks  
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Hierarchical Composition 



• Model all primary supplies and on chip supplies 
create_supply_port VDD1P8 

create_supply_net VDD_LDO 

connect_supply_net VDD_LDO –ports u_ldo_inst/VDDOUT 

• Model all the power/ground pads and padring connectivity 

• Power pads and IO ring power connectivity 
set pad_inst_list [find_objects . -pattern *PAD_SEG2_inst* \ 

    -object_type inst -leaf_only -transitive] 

foreach pad_inst $pad_inst_list { 

 connect_supply_net pad_ring_VSS -ports “$pad_inst/VSSP” 

} 

• Reduce number of supply ports/nets/sets using equivalences 

• Several IO supplies are functionally equivalent 

• Some supplies might be connected at package level/off-chip 
set_equivalent –function_only { AVDD VDD1P8 pad_ana_VDD } 

set_equivalent –function_only { AVSS pad_AVSS ana_VSS VSS dig_VSS } 
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Supply Network Construction 
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Supply States 

 

add_power_state var1ss -supply  \ 

  -state { nom     -supply_expr { (power == {FULL_ON 0.8}) && (ground == {FULL_ON 0}) && \ 

                                  (nwell == {FULL_ON 0.8}) } \ 

  -state { turbo   -supply_expr { (power == {FULL_ON 0.9}) && (ground == {FULL_ON 0}) && \ 

                                  (nwell == {FULL_ON 0.9}) } \ 

  -state { offmode -supply_expr { (power == {OFF}) && (ground == {FULL_ON 0}) && \ 

                                  (nwell == {OFF})  -simstate CORRUPT} 

 

• Describe supply states of supply sets using supply_expr 

• Describe simstate for a supply state 
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System Power States 
• Describe system states for the top domain 

– add_power_state PD_TOP –domain .... 

• Expressed using logic_expr with either: 

– Supply set states 

– Power domain states 

• The number of state combinations could be large 

– Simplify by identifying illegal states 

– Identify equivalent supplies 

– Apply state reduction 

• When all legal power states are defined, the power state table can be 

marked complete 

– All remaining undefined states are rendered illegal 
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System Power State Reduction 
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System Power States 

add_power_state PD_TOP -domain  \ 

  -state { on           \ 

  -logic_expr  { (var1ss  != offmode) && (var2ss  != offmode)  && \ 

                 (var3ss  == nom || var3ss==turbo) && (var4ss  != offmode)} }  \ 

  -state { var1off    \ 

  -logic_expr  { (var1ss  == offmode) && (var3ss  == nom || var3ss==turbo) && \ 

                 (var4ss  != offmode)} }  \ 

  -state { var2off    \ 

  -logic_expr  { (var1ss  != offmode) && (var2ss  == offmode) && \ 

                 (var3ss  == nom || var3ss==turbo) && (var4ss  != offmode)} }  \ 

  -state { var4off    \ 

  -logic_expr  { (var1ss  == offmode) && (var3ss  == nom || var3ss==turbo) && \ 

                 (var4ss  == offmode)} }  \ 

  -state { alloff       \ 

  -logic_expr  { (var1ss  == offmode) && (var2ss  == offmode) && \ 

                 (var3ss  == nom || var3ss==turbo) && (var4ss  == offmode)} } 
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Power State Transitions 

 

describe_state_transition i1 -object PD_TOP -from {alloff}  -to {on}     –illegal 

describe_state_transition i2 -object PD_TOP -from {on}      -to {alloff} –illegal 

 

describe_state_transition t1 –object PD_TOP -from {on}      –to {var1off var2off}  

describe_state_transition t2 –object PD_TOP -from {var1off} –to {on var2off var4off} 

 

• Describe state transitions, both legal and illegal 

• Used to validate power state changes in simulation 



• Power intent is augmented based on design  phase by a 

process of successive refinement 

• Soft IP providers deliver UPF constraints, IP integrator 

configures it to deliver technology agnostic UPF 

• Implementation UPF commands allow for technology 

specific design 

• SoC UPF is hierarchically composed of sub-module UPF 

• SoC supplies, supply states, power states and state 

transitions can be modeled in UPF 
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Summary 
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Agenda 
• Introduction 

• Power Aware Static Verification 

• Power Aware Simulation 

• Power Aware Coverage 
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Introduction 
• Traditional verification does not involve 

voltage/power transitions 

• Power Aware Verification 
– Verify the complex power management schemes 
– Make sure that the design can successfully function in all 

the power states for which it is designed 

• Power related bugs 
– Structural 
– Control Sequencing 
– Power Management Architecture 
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Static Verification 
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Static Verification 

Tool 

(Performs Analysis) 

HDL 

(DUT) 

Liberty 

(.lib) 

UPF 

Reports 

• Static Verification 
– Does not involve time domain 

• Power Aware Static Verification 
– Check for correctness and completeness of the power intent 
– Check consistency between power intent and implemented 

design 



Static Verification: Power State Analysis 

• ISO requirement 

– Find OFF->ON paths, which contribute to leakage power 

• LS requirement 

– Find paths where there is voltage difference between source 
and sink 

45 

VAO VCORE VMEM1 VMEM2 

St1 1.2 0.8 0.8 0.8 

St2 1.2 0.8 0.8 OFF 

St3 0.8 0.8 OFF OFF 

St4 0.8 OFF OFF OFF 

St5 OFF OFF OFF OFF 



ISO Analysis (RTL) 

• Missing ISO Strategy 
– Isolation strategy is required on OFF->ON Paths 

• Redundant ISO Strategy 

– No state where source is OFF and sink is ON 
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PDCORE 

VCORE (0.8) 

PDMEM1 

VMEM1 (OFF / 0.8) 

PDMEM2 

VMEM2 (OFF) 

Missing ISO 

Strategy 

Redundant 

ISO Strategy 



LS Analysis (RTL) 

• Missing LS Strategy 

– Driver and receivers operate at different voltages 

• Redundant LS Strategy 

– No state where there is a voltage difference 
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PDAO 

VAO(1.2) 

PDCORE 

VCORE (0.8) 

PDMEM1 

VMEM1 (OFF / 0.8) 

Redundant 

LS Strategy 

Missing LS 

Strategy 



Static Verification (RTL) 

• Control signals driven from domain that could be 
shutdown when the receiving logic is ON 
– Driver supply of the control signals needs to be at least as 

ON as the supply of the receiving logic 
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PDCORE 

PDMEM1 

(OFF) 

VCORE 



ISO Supply 

• Incorrect ISO supply 
– ISO supply needs to be at least as ON as the receiving logic 
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PDMEM1 

VMEM1 (OFF) 

PDCORE 

VCORE(0.8) 

PDMEM2 

VMEM2 (OFF) 

ISO Supply OK 

ISO Supply 
Incorrect 

VCORE / VAO 

VMEM1 / VMEM2 



ISO Control Connectivity 

• Verify ISO cell type, control connectivity and polarity 
– Compare ISO strategy in UPF to actual ISO cells in the netlist 
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PDMEM1 

VMEM1 (OFF) 

Series of INV 

and/or BUF 

POWER 

MANAGER 

Clamp Value 

PDCORE 

VCORE(0.8) 



Always ON Buffering 

• Buffering 
– Always ON buffers on feed-through paths need to use the 

proper supply 
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PDMEM1 

VMEM1 (OFF) 

POWER 

MANAGER 

VCORE VCORE 

VAO 

VMEM1 

Incorrect 

Supply 

PDCORE 

VCORE(0.8) 



Power Aware Simulation (RTL) 
• Functional Simulation 

– Doesn’t take into account the Power related effects 

• Power Aware Simulation 
– Simulates the effects due to Power related changes 

– Catch Control Sequence and Architectural bugs 
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Power Aware 

Simulator 

HDL (DUT) 

Libraries (.v, 

.sv, .vhd, .lib) 

UPF 

Reports Power aware 

Testbench 

Waveform 

Coverage 



Power Aware Simulation (RTL) 

• Simulation of Supply Network 

• Shutdown Corruption 

– OFF domain propagates X values in simulation 

• Virtual ISO insertion 

53 

PDMEM1 

X X 

X 

X 

X 

PDCORE 

Ctrl 

VMEM1 

Ctrl 



Power Aware Testbench 
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Power Aware 

Testbench 

VCORE VAO 

module testbench; 

… 

… 

initial 

begin 

UPF::supply_on(“VCORE”, 

0.8); 

UPF::supply_on(“VAO”, 1.2); 

… 

UPF::supply_off(“VCORE”); 

… 

end 

Modeling off-chip supplies 



Retention Simulation (RTL) 

• Partial Retention 

– Have you retained enough to get back to your original state? 

– Have you retained more than required? 
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VDDB 
VDD 

SAVE 
RESTORE 

RR 

RR 

VDD 

VDD 
VDDB VDD 



Power Aware Simulation (RTL) 

• ISO control 

– Enable before Power OFF and disable after Power ON 

• Retention 

– Save & Restore signal sequencing 
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SAVE 

ISO_EN 

PWR_EN 

VDD 

RESTORE 



Power Switch ACK 

• Power switch ACK signal 
– used to determine when the domain has been powered up 

– The domain can then be reset and isolation disabled 

• Delay modeled using ack_delay 
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ACK 

PWR_EN 

VDD 

ISO_EN 

ack 

delay 

ack 

delay 



Power Aware Coverage 
• Functional coverage 

– only addresses the design functionality without the 
effects of Power 

• Power Aware coverage 
– needs to address the aspects of Power 

• Coverage of System Power States 
– Power states that a system is designed for need to be 

covered by the simulation vectors 

• Coverage of Transitions 
– All legal transitions need to be covered 

– Negative tests to cover illegal transitions ensure the 
system doesn’t behave undeterministically 
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Conclusion 
• Most of todays SOCs have Low Power. 
• Power Aware verification at all design stages (RTL, 

Implemented netlist and PG netlist) is a must to 
ensure silicon success. 

• Power Aware Static verification is required to catch 
basic power related bugs quickly without having any 
test scenarios. 

• Power Aware simulation is required to catch control 
sequence related bugs using power aware 
testbench. 

• Power Aware coverage ensures that all Power 
related scenarios have been covered. 
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