
International Symposium on Low Power Electronics and Design

Failing to Fail: Achieving Success in
Advanced Low Power Design using UPF

1Rick Koster, 2John Redmond,
and 3Shreedhar Ramachandra

1Mentor Graphics Corporation
2Broadcom Corporation

3Synopsys Inc.

International Symposium on Low Power Electronics and Design

UPF Overview

Rick Koster

Mentor Graphics

Agenda

• UPF Overview
– Low Power Management Concepts

– What is UPF

– Power Management Structures

– Power Management Behavior

3

Power Management Concepts
• Power Gating:

– Shutting off power to portions of the design (Power

Domains) to eliminate leakage power consumption

• Multi Voltage Designs:
– Organizing the design into different voltage domains

as a function of performance to minimize dynamic

and static power consumption

• Voltage and Frequency Scaling
– Dynamically tune parts of the design to meet

performance goals with minimum power

• Power Management requirements
– Isolation, Level Shifting, State Retention, Switching

4

What is UPF?
• An Evolving Standard

– Accellera UPF in 2007 (1.0)

– IEEE 1801-2009 UPF (2.0)

– IEEE 1801-2013 UPF (2.1)

– IEEE 1801A-2014 UPF (2.2)

• For Power Intent

– To define power
management

– To minimize power
consumption

– Through control of leakage

• Based upon TCL

– Tcl syntax and semantics

– Can be mixed with
non-UPF TCL

• And HDLs

– SystemVerilog, Verilog, VHDL

• For Verification

– Simulation or Emulation

– Static/Formal Verification

• And for Implementation

– Synthesis, DFT, P&R, etc.

5

Power Management Structures

• Power Domains

• Domain Interfaces (ISO/LS)

• Retention

• Supply Sets

• Supply Ports/Nets

• Power Switches

6

Power Domains
• A collection of instances that are treated as a

group for power-management purposes.

• A Power domain exists within a logical scope
– UPF and HDL identifiers must be unique within the

scope

– All UPF commands are executed within the current
active scope

• A power domain can have associated with it
isolation strategies, retention strategies and
level shifter requirements

7

8

Power Domains

DUT

IP1 CPU 2

cache

BUS/Fabric

CPU1 Memory

P1 P2 P3 IP2 Power CTRL

C1_PD C2_PD

DUT_PD

create_power_domain DUT_PD –include_scope
create_power_domain C1_PD -elements {CPU1}
create_power_domain C2_PD -elements {IP1 CPU2}

Supply Sets
• Represent a collection of supply nets

that provide a power source.

– Consists of a set of up to 6 supply

“functions”

• power, ground, nwell, pwell, deepnwell,

deeppwell

– One supply net per (required) function

– Electrically complete model of a power

distribution network in a domain:
power, ground, etc.

• Power domains have a few predefined

supply sets: primary, default_isolation,

and default_retention

• Supply sets can be associated with

one another to model supply

connections abstractly

9

deepnwell

deeppwell

power

ground

nwell
Main

pwell

Functions Supply Nets Supply Set

U11 U12

L1 L2 L3 L4 L5

P R I

P R I P R I

U1

create_power_domain PD_u1 –include scope

create_power_domain PD_u11 – elements {U1/U11}

create_power_domain PD_u12 –elements {U1/U12}

Domain Interfaces
• Power gating can cause electrical and logical

problems to adjacent domains.

– Isolation is used to prevent these problems.

– Isolation cell: An instance that passes logic values during

normal mode operation and clamps its output to some specified

logic value when a control signal is asserted.

• Multi voltage designs can also experience

problems

– Level shifters are used to maintain signal integrity.

• Level shifter cell: An instance that translates signal values from

an input voltage swing to a different output voltage swing.

10

Retention/Repeaters
• Device operation may require the use of flip

flops or memories that preserve state during a

domain’s power down.

• Preserving state is achieve through the use of

UPF retention.

– Retention: Enhanced functionality associated with

selected sequential elements or a memory such that

memory values can be preserved during the power-

down state of the primary supplies.

11

Supply Ports/Nets
• Power Domain supply sets consist of supply

nets that eventually are driven by supply ports

• Supply ports and nets are defined as objects of

supply_net_type

• UPF package defines supply_net_type as:

typedef enum

 (OFF=0,UNDETERMINED, PARTIAL_ON, FULL_ON) state

typedef struct packed {

state state;

int voltage; // voltage in microVolts

} supply_net_type;

 12

Power Switches

• A power switch is a design element that

conditionally connects input supply nets to an

output supply net

• A UPF switch can be on or off or partially on

• The state of the switch is set by Boolean

functions of the control ports

• Match = input voltage propagates to output (on)

• No Match = output port disabled (off)

• Either power or ground can be switched

13

set_design_top U1

create_power_domain PD_u1 –include scope

create_power_domain PD_u11 –elements {U1/U11}

create_power_domain PD_u12 –elements {U1/U12}

create_supply_net sw1_out_net

create_power_switch SW1 \

 -domain PD_u1 \

 -output_supply_port {swout sw1_out_net} \

 -input_supply_port {swin PD_u1.primary.power} \

 -control_port {swctrl swCtl1} \

 -on_state {SWon swin swctrl} \

 -off_state {SWoff !swctrl}

create_supply_set sw1_ss \

 -function {power sw1_out_net} \

 -function {ground PD_u1.primary.ground}

associate_supply_set sw1_ss

 -handle PD_u11.primary

associate_supply_set PD_u1.primary \

 -handle PD_u11.default_retention

associate_supply_set PD_u1.primary \

 -handle PD_u11.default_isolation

set_isolation iso_pd_u11 –domain PD_u11 \

 -location self –clamp_value {1} \

 -applies_to outputs

set_retention ret_pd_u11 –domain PD_u11 \

 -elements {U11/ret1} \

 -save_signal {U11/ret_n} high \

 -restore_signal {U11/ret_n low}

U11 U12

RET1 L2 L3 L4 RET5

P R I

R I P I R P

U1
SW1

ISO

UPF Structure

Command example

14

create_supply_net sw2_out_net

create_power_switch SW2 \

 -domain PD_u2 \

 -output_supply_port {swout sw2_out_net} \

 -input_supply_port {swin PD_u1.primary.power} \

 -control_port {swctrl swCtl2} \

 -on_state {SWon swin swctrl} \

 -off_state {SWoff !swctrl}

create_supply_set sw2_ss \

 -function {power sw2_out_net} \

 -function {ground PD_u1.primary.ground}

associate_supply_set sw2_ss

 -handle PD_u12.primary

associate_supply_set PD_u1.primary \

 -handle PD_u12.default_retention

associate_supply_set PD_u1.primary \

 -handle PD_u12.default_isolation

set_isolation iso_pd_u12 –domain PD_u11 \

 -location self –clamp_value {0} \

 -applies_to outputs

set_retention ret_pd_u12 –domain PD_u11 \

 -elements {U12/ret1} \

 -save_signal {U12/ret_n posedge}

 -restore_signal {U12/ret_n negedge}

U11 U12

RET1 L2 L3 L4 RET5

P R I

R I P I R P

U1
SW1 SW2

ISO ISO

UPF Structure

Command example

15

Behavior

• Supply set Power States

• Simstates

• Power Domain States

16

Supply Sets Power States
• The power states of a supply set describe the

expected combination of states of the supply

nets in the supply set

– The state can be defined by a logic expression and

may include supply expression

– State holds when logic expression is TRUE

– A power state defines the legal values of supply set

functions when in that state

– Also may include a simstate
add_power_state PdA.primary

 -state GO_MODE {–logic_expr {SW_ON } –simstate NORMAL

 -supply_expr {{power == {FULL_ON 0.8}}

 && {ground == {FULL_ON, 0}} && {nwell == {FULL_ON 0.8}}}

 -state OFF_MODE {–logic_expr {!SW_ON} –simstate CORRUPT}

 -supply_expr {power == {OFF}}

 17

Simstates
• Simstate defines precise simulation semantics in this

state. That is, the expected behavior of the cells

connected to this supply set.

18

• CORRUPT

– Combinational outputs corrupted

– Sequential state/outputs corrupted

• CORRUPT_ON_ACTIVITY

– Combinational outputs maintained

as long as inputs are stable

– Sequential state/outputs corrupted

• CORRUPT_ON_CHANGE

– Combinational outputs maintained

as long as outputs are stable

– Sequential state/outputs corrupted

• NORMAL

– Combinational logic functions normally

– Sequential logic functions normally

– Both operate with characterized timing

• CORRUPT_STATE_ON_ACTIVITY

– Combinational logic functions normally

– Sequential state/outputs maintained as

long as inputs are stable

• CORRUPT_STATE_ON_CHANGE

– Combinational logic functions normally

– Sequential state/outputs maintained as

long as outputs are stable

Power States of a Power Domain

• A power domain is designed to have a set of

allowable states in which it can operate.

• The domain power states describe the

allowable set of states for a domain. Each

state is defined by a logic expression

– Logic expressions can be created with:

• States of supply_sets

• Logic port and net values

• Subdomain power states

• Interval Functions

19

Attributes
• Characteristics of a port or design element

• Used to identify power supplies for ports

– set_port_attributes -ports Out1 -attribute \
 {UPF_related_power_port “VDD”}

• Used to specify constraints for IP usage:

– set_port_attributes –ports {logic_port} –attribute \

 {UPF_clamp_value “1”}

• Used to specify structure and behavior

– set_design_attributes –elements ALU1 –attribute \

 {UPF_is_leaf TRUE}

– set_design_attributes –elements ALU1 –attribute \

 {UPF_retention required}

20

• UPF captures power intent of a design

– Power gating, multiple voltage, dynamic voltage and

frequency scaling, isolation, retention, level shifting

• UPF works with HDL

– Verilog, VHDL and SystemVerilog

• UPF guides verification and implementation

• UPF is an evolving standard

– Accellera UPF in 2007 (1.0)

– IEEE 1801-2009 UPF (2.0)

– IEEE 1801-2013 UPF (2.1)

– IEEE 1801a-2014 UPF (2.2)

21

Summary

International Symposium on Low Power Electronics and Design

UPF For ASIC Design

John Redmond *

Broadcom Corporation

* Slides contributed by Sushma Honnavara-Prasad

• Introduction

– How power intent is realized in silicon

– Leaf Cells and macro models

• Soft IP modeling

– Successive refinement

– Constraints, configuration, implementation

• SoC integration

– Hierarchical UPF composition

– Supply network construction

– System power states and transitions

23

Agenda

• Power intent is captured through UPF, HDL and Library

• UPF realizes:

– Supply network specification

• power/ground/nwell/pwell/deepnwell/deeppwell

• Macro and IO power connectivity

• On-chip power switch specification

– Power domain specification

• Identify a standard cell region, supply availability in a region

– Strategies and their implementation

• Dictates inference of isolation cells, level shifters, repeaters and retention cells

• Leaf cell/macros need models to identify supply pins

– Liberty (.lib) provides UPF attributes

– LEF identifies power/ground/signal pins

– 1801-2013 enables cell and macro modeling

24

Introduction

• An instance that has no descendants or

has UPF_is_leaf_cell attribute on it

• Typically refer to standard cells

– HDL – simulation model

– UPF – low power cells specification

– Liberty – implementation

– LEF – physical design

• Attributes of interest

– supply vs signal pins

– supply properties

– cell attributes

– pin attributes

– function attributes

• UPF specifies either explicit, implicit or

automatic supply connectivity to leaf cells

25

Leaf Cells

top module

sub module

leaf

sub module

sub

module

cell (INVX1) {

...

pg_pin (VDD) {

...

pg_pin (VSS) {

...

• Also called IPs, a piece of

functionality optimized for

power/area/performance

– Soft macros – handed off as

synthesizable HDL (technology

agnostic)

– Hard macros – handed off as

LEF/GDS (technology specific)

• Also a leaf cell

• UPF_is_macro_cell attribute allows

the model to be recognized as part

of lower boundary of the domain

containing the instance

• Can be modeled as:

– UPF Power Models

– Liberty models

26

Macros

Example of a hard macro –

Embedded SRAM

• UPF Power models

– Regular UPF commands enclosed between

being_power_model and end_power_model

– Applied on an IP instance using apply_power_model command

– Models power states, port attributes, isolation etc.

• Liberty models

– Pin, supply and cell based attributes available

– switch_pin, pg_pin, is_macro_cell etc.

• Verilog simulation models

– Model supply as logic functions

27

IP Modeling

28

Successive Refinement

• IP provider

• IP Source
• IP licensee

• Integrator
• Technology

specific

implementation

• Identify "atomic" power domains in the design

– Indivisible, but can be merged during implementation

create_power_domain PD_IP1 –elements { u_inst_ip1 } -atomic

• Identify state elements to be retained during power down

– Type of retention flop, controls not specified

set_retention_elements PD_IP1_ret_elem –elements $ip1_elem_list

– $ip1_elem_list = list of elements that need to be retained in PD_IP1

• Identify isolation clamp values on ports

– Isolation controls not specified

set_port_attributes –elements $ip1_elem_list -applies_to outputs \

 -clamp_value 0

• Specify legal power states and sequencing between them

– Supply ports, actual voltages not specified

add_power_state PD_IP1 –domain \

 -state { nom -logic_expr { (ss_ip1 == nom) && {ss_ip2 != off) }

29

Constraints

• Uniquify/finalize power domains based on RTL configuration

– Number of instances generated determined by RTL parameters

• Merge power domains
create_composite_domains PD_IP –subdomains { PD_IP1 PD_IP2 }

• Create the required power-management ports (pwr/iso/ret)
create_logic_port pwronin –direction in

create_logic_port iso –direction in

• Create isolation strategies to fulfill isolation requirements
set_isolation sw_iso_c0 –domain PD_IP -applies_to outputs \

 -clamp_value 0 –isolation_signal iso \

 -isolation_sense high –location self

• Create retention strategies to fulfill retention requirements
set_retention sw_ret –domain PD_IP –elements $ip1_elem_list \

 –retention_condition { ret }

• Update power states and power transitions
add_power_state PD_IP –domain –update \

 -state { nom -logic_expr { pwronin } }

30

Configuration

• Create supply ports and nets
create_supply_port VDD1 –direction in

create_supply_net VSS –domain PD_SUB1 -reuse

• Update supply set functions
create_supply_set ss_ip1 –update –function {power VDD1} \

 -function {ground VSS}

• Update power states with supply values
add_power_state ss_ip1 –update –supply \

 -state {nom -supply_expr {(power == {FULL_ON 0.9}) && (ground == {FULL_ON 0})}

• Create power-switches
create_power_switch PSW_PD_IP –domain PD_IP \

 -input_supply_port { in_vdd VDDB } \

 -output_supply_port { out_vdd VDD } \

 -control_port { sw_ctrl pwronin } \

 -on_state { full_on in_vdd {sw_ctrl} } \

 -off_state { full_off {!sw_ctrl} }

• Map strategies to technology specific library cells
use_interface_cell sw_low -strategy sw_iso_c0 -domain PD_IP \

 -lib_cells $list_lib_cells

 31

Implementation

• A typical SoC contains:
• Hard IP (fully implemented macros)

• Soft IP (HDL integrated into top

level)

• Analog/mixed signal macros

• IO pads

• Considerations:
• Bottom up or top down

implementation

• IP reuse

• Verification complexity

• System level power states

32

SoC Integration

• Partition design UPF into sub-module UPF
load_upf $env(UPF_PATH)/module1/upf/module1.upf \

 -scope core_inst/module1_inst

load_upf $env(UPF_PATH)/module2/upf/module2.upf \

 -scope core_inst/module2_inst

• Top level UPF can be split into multiple files for readability
source $env(UPF_PATH)/top_level/upf/create_supply_ports.upf

source $env(UPF_PATH)/top_level/upf/create_supply_sets.upf

• Complete supply connectivity to macros and sub-modules
set pll_inst_list [find_objects . -pattern *u_pll* -object_type inst \

 -leaf_only -transitive]

foreach inst $pll_inst_list {

 connect_supply_net 1p8ss.power -ports “$inst/AVDD1P8”

 connect_supply_net 1p8ss.ground -ports “$inst/AVSS”

}

• ISO/LS at top level or inside blocks

• For large number of domains, move complexity into blocks

33

Hierarchical Composition

• Model all primary supplies and on chip supplies
create_supply_port VDD1P8

create_supply_net VDD_LDO

connect_supply_net VDD_LDO –ports u_ldo_inst/VDDOUT

• Model all the power/ground pads and padring connectivity

• Power pads and IO ring power connectivity
set pad_inst_list [find_objects . -pattern *PAD_SEG2_inst* \

 -object_type inst -leaf_only -transitive]

foreach pad_inst $pad_inst_list {

 connect_supply_net pad_ring_VSS -ports “$pad_inst/VSSP”

}

• Reduce number of supply ports/nets/sets using equivalences

• Several IO supplies are functionally equivalent

• Some supplies might be connected at package level/off-chip
set_equivalent –function_only { AVDD VDD1P8 pad_ana_VDD }

set_equivalent –function_only { AVSS pad_AVSS ana_VSS VSS dig_VSS }

34

Supply Network Construction

35

Supply States

add_power_state var1ss -supply \

 -state { nom -supply_expr { (power == {FULL_ON 0.8}) && (ground == {FULL_ON 0}) && \

 (nwell == {FULL_ON 0.8}) } \

 -state { turbo -supply_expr { (power == {FULL_ON 0.9}) && (ground == {FULL_ON 0}) && \

 (nwell == {FULL_ON 0.9}) } \

 -state { offmode -supply_expr { (power == {OFF}) && (ground == {FULL_ON 0}) && \

 (nwell == {OFF}) -simstate CORRUPT}

• Describe supply states of supply sets using supply_expr

• Describe simstate for a supply state

36

System Power States
• Describe system states for the top domain

– add_power_state PD_TOP –domain

• Expressed using logic_expr with either:

– Supply set states

– Power domain states

• The number of state combinations could be large

– Simplify by identifying illegal states

– Identify equivalent supplies

– Apply state reduction

• When all legal power states are defined, the power state table can be

marked complete

– All remaining undefined states are rendered illegal

37

System Power State Reduction

38

System Power States

add_power_state PD_TOP -domain \

 -state { on \

 -logic_expr { (var1ss != offmode) && (var2ss != offmode) && \

 (var3ss == nom || var3ss==turbo) && (var4ss != offmode)} } \

 -state { var1off \

 -logic_expr { (var1ss == offmode) && (var3ss == nom || var3ss==turbo) && \

 (var4ss != offmode)} } \

 -state { var2off \

 -logic_expr { (var1ss != offmode) && (var2ss == offmode) && \

 (var3ss == nom || var3ss==turbo) && (var4ss != offmode)} } \

 -state { var4off \

 -logic_expr { (var1ss == offmode) && (var3ss == nom || var3ss==turbo) && \

 (var4ss == offmode)} } \

 -state { alloff \

 -logic_expr { (var1ss == offmode) && (var2ss == offmode) && \

 (var3ss == nom || var3ss==turbo) && (var4ss == offmode)} }

39

Power State Transitions

describe_state_transition i1 -object PD_TOP -from {alloff} -to {on} –illegal

describe_state_transition i2 -object PD_TOP -from {on} -to {alloff} –illegal

describe_state_transition t1 –object PD_TOP -from {on} –to {var1off var2off}

describe_state_transition t2 –object PD_TOP -from {var1off} –to {on var2off var4off}

• Describe state transitions, both legal and illegal

• Used to validate power state changes in simulation

• Power intent is augmented based on design phase by a

process of successive refinement

• Soft IP providers deliver UPF constraints, IP integrator

configures it to deliver technology agnostic UPF

• Implementation UPF commands allow for technology

specific design

• SoC UPF is hierarchically composed of sub-module UPF

• SoC supplies, supply states, power states and state

transitions can be modeled in UPF

40

Summary

International Symposium on Low Power Electronics and Design

Power Aware Verification

Shreedhar Ramachandra

Synopsys Inc.

Agenda
• Introduction

• Power Aware Static Verification

• Power Aware Simulation

• Power Aware Coverage

42

Introduction
• Traditional verification does not involve

voltage/power transitions

• Power Aware Verification
– Verify the complex power management schemes
– Make sure that the design can successfully function in all

the power states for which it is designed

• Power related bugs
– Structural
– Control Sequencing
– Power Management Architecture

43

Static Verification

44

Static Verification

Tool

(Performs Analysis)

HDL

(DUT)

Liberty

(.lib)

UPF

Reports

• Static Verification
– Does not involve time domain

• Power Aware Static Verification
– Check for correctness and completeness of the power intent
– Check consistency between power intent and implemented

design

Static Verification: Power State Analysis

• ISO requirement

– Find OFF->ON paths, which contribute to leakage power

• LS requirement

– Find paths where there is voltage difference between source
and sink

45

VAO VCORE VMEM1 VMEM2

St1 1.2 0.8 0.8 0.8

St2 1.2 0.8 0.8 OFF

St3 0.8 0.8 OFF OFF

St4 0.8 OFF OFF OFF

St5 OFF OFF OFF OFF

ISO Analysis (RTL)

• Missing ISO Strategy
– Isolation strategy is required on OFF->ON Paths

• Redundant ISO Strategy

– No state where source is OFF and sink is ON

46

PDCORE

VCORE (0.8)

PDMEM1

VMEM1 (OFF / 0.8)

PDMEM2

VMEM2 (OFF)

Missing ISO

Strategy

Redundant

ISO Strategy

LS Analysis (RTL)

• Missing LS Strategy

– Driver and receivers operate at different voltages

• Redundant LS Strategy

– No state where there is a voltage difference

47

PDAO

VAO(1.2)

PDCORE

VCORE (0.8)

PDMEM1

VMEM1 (OFF / 0.8)

Redundant

LS Strategy

Missing LS

Strategy

Static Verification (RTL)

• Control signals driven from domain that could be
shutdown when the receiving logic is ON
– Driver supply of the control signals needs to be at least as

ON as the supply of the receiving logic

48

PDCORE

PDMEM1

(OFF)

VCORE

ISO Supply

• Incorrect ISO supply
– ISO supply needs to be at least as ON as the receiving logic

49

PDMEM1

VMEM1 (OFF)

PDCORE

VCORE(0.8)

PDMEM2

VMEM2 (OFF)

ISO Supply OK

ISO Supply
Incorrect

VCORE / VAO

VMEM1 / VMEM2

ISO Control Connectivity

• Verify ISO cell type, control connectivity and polarity
– Compare ISO strategy in UPF to actual ISO cells in the netlist

50

PDMEM1

VMEM1 (OFF)

Series of INV

and/or BUF

POWER

MANAGER

Clamp Value

PDCORE

VCORE(0.8)

Always ON Buffering

• Buffering
– Always ON buffers on feed-through paths need to use the

proper supply

51

PDMEM1

VMEM1 (OFF)

POWER

MANAGER

VCORE VCORE

VAO

VMEM1

Incorrect

Supply

PDCORE

VCORE(0.8)

Power Aware Simulation (RTL)
• Functional Simulation

– Doesn’t take into account the Power related effects

• Power Aware Simulation
– Simulates the effects due to Power related changes

– Catch Control Sequence and Architectural bugs

52

Power Aware

Simulator

HDL (DUT)

Libraries (.v,

.sv, .vhd, .lib)

UPF

Reports Power aware

Testbench

Waveform

Coverage

Power Aware Simulation (RTL)

• Simulation of Supply Network

• Shutdown Corruption

– OFF domain propagates X values in simulation

• Virtual ISO insertion

53

PDMEM1

X X

X

X

X

PDCORE

Ctrl

VMEM1

Ctrl

Power Aware Testbench

54

Power Aware

Testbench

VCORE VAO

module testbench;

…

…

initial

begin

UPF::supply_on(“VCORE”,

0.8);

UPF::supply_on(“VAO”, 1.2);

…

UPF::supply_off(“VCORE”);

…

end

Modeling off-chip supplies

Retention Simulation (RTL)

• Partial Retention

– Have you retained enough to get back to your original state?

– Have you retained more than required?

55

VDDB
VDD

SAVE
RESTORE

RR

RR

VDD

VDD
VDDB VDD

Power Aware Simulation (RTL)

• ISO control

– Enable before Power OFF and disable after Power ON

• Retention

– Save & Restore signal sequencing

56

SAVE

ISO_EN

PWR_EN

VDD

RESTORE

Power Switch ACK

• Power switch ACK signal
– used to determine when the domain has been powered up

– The domain can then be reset and isolation disabled

• Delay modeled using ack_delay

57

ACK

PWR_EN

VDD

ISO_EN

ack

delay

ack

delay

Power Aware Coverage
• Functional coverage

– only addresses the design functionality without the
effects of Power

• Power Aware coverage
– needs to address the aspects of Power

• Coverage of System Power States
– Power states that a system is designed for need to be

covered by the simulation vectors

• Coverage of Transitions
– All legal transitions need to be covered

– Negative tests to cover illegal transitions ensure the
system doesn’t behave undeterministically

58

Conclusion
• Most of todays SOCs have Low Power.
• Power Aware verification at all design stages (RTL,

Implemented netlist and PG netlist) is a must to
ensure silicon success.

• Power Aware Static verification is required to catch
basic power related bugs quickly without having any
test scenarios.

• Power Aware simulation is required to catch control
sequence related bugs using power aware
testbench.

• Power Aware coverage ensures that all Power
related scenarios have been covered.

59

