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ABSTRACT: 
 
LiDAR is a consolidated technology for topographic mapping and 3D reconstruction, which is implemented in several platforms On 
the other hand, the exploitation of the geometric information has been coupled by the use of laser intensity, which may provide 
additional data for multiple purposes. This option has been emphasized by the availability of sensors working on different wavelength, 
thus able to provide additional information for classification of surfaces and objects. Several applications of monochromatic and multi-
spectral LiDAR data have been already developed in different fields: geosciences, agriculture, forestry, building and cultural heritage. 
The use of intensity data to extract measures of point cloud quality has been also developed. The paper would like to give an overview 
on the state-of-the-art of these techniques, and to present the modern technologies for the acquisition of multispectral LiDAR data. In 
addition, the ISPRS WG III/5 on ‘Information Extraction from LiDAR Intensity Data’ has collected and made available a few open 
data sets to support scholars to do research on this field. This service is presented and data sets delivered so far as are described. 
 
 

1. INTRODUCTION 

Since its appearance in the latest ‘90s, LiDAR (Light Detection 
and Ranging) has consolidated as a major technique for the direct 
acquisition of 3D data (Vosselman & Maas, 2010). 
Notwithstanding the image-based photogrammetric techniques 
are quite competitive in many fields, thanks to Structure-from-
Motion and dense surface matching algorithms (Barazzetti et al., 
2009), the role played by laser scanning (LS) for topographic and 
3-D modelling surveying is relevant at different scales and from 
multiple platforms: airborne (ALS), terrestrial (TLS), mobile 
(MLS), UAV LS, portable and hand-held LS. Satellite laser 
altimetry may complete the options, though based on a different 
data acquisition mode. 
 
In the last decade, several studies have investigated the 
exploitation of the laser intensity returns as additional 
information to extend the use of LiDAR for classification 
purpose, often corroborated by the integration to other data types. 
Due to the typical high-resolution of laser scanning data, intensity 
is potentially a very important data source for classification 
problems, attracting the interest of the scientific community as 
described in the following sections. This potential interest has 
motivated the development of multispectral airborne lidar 
technology to expand vertical applications in high density 
topographic surveying, to enable applications such as land cover 
classification, shallow water bathymetry, among others. 
 
After discussing the current state-of-the-art of sensor technology 
(Sect. 2), in Section 3 the literature on the radiometric calibration 
and intensity normalization is reviewed. Indeed, while spatial 
aspects related to geo-referencing are shared with the standard 
data acquisition, the intensity data need to be specifically pre-

processed before they are ready to be applied. These aspects are 
even more important when more LiDAR intensity data sets have 
to be merged, e.g., because of the presence of multiple strips or 
scans in the same project. Section 4 will report several 
applications organized per research domains. In Section 5 an 
innovative and breakthrough application of the intensity recorded 
by TLS to serve as quality measure is discussed. On 2017 the 
ISPRS Working Group III/5 on “Information extraction from 
LiDAR intensity data” has made available two data sets to enable 
scholars to work on such a type of data (Sect. 6). Finally, Section 
7 draws some conclusions and highlight new perspective for 
future and developments. 

 
 

2. SENSOR TECHNOLOGY 

LiDAR systems directly provide the 3D coordinates of the 
mapped surface at high density. The basic principle of operation 
relies on range measurements, i.e., the determination of the 
distance between the laser firing point and the footprint on the 
mapped object, which is derived based on the laser pulse travel 
time (Kersting, 2011; Vosselman & Maas, 2010). Range 
measurement can be operated in hardware, using for instance a 
constant fraction discriminator (CFD) and time interval meter, or 
by digitizing the received signal and applying any of a number of 
range detection algorithms to the output (Kashani et al., 2015a). 
Besides a laser ranging unit, lidar systems also entail a scanning 
unit allowing the data collection in a strip-wise fashion. The 
scanning mechanism usually consists of an oscillating mirror, 
which produces a zigzag pattern. Rotating polygon, palmer scan, 
and fibre scanner are examples of other scanning mechanisms 
(Wehr & Lohr, 1999). In the case of mobile sensor platforms, the 
integration with a GNSS/INS unit onboard which is used for 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 
ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-1503-2018 | © Authors 2018. CC BY 4.0 License.

 
1503



georeferencing, i.e., for deriving the coordinates of the scanned 
object points relative to the mapping frame (Vosselman & Maas, 
2010).   

 
In addition to the geometric information (i.e., the 3D coordinates 
of the mapped points), LiDAR systems also can record the 
intensity (strength) of the backscattered laser signal. Most 
commercial topographic LiDAR systems are commonly 
monochromatic systems, i.e., operating with single laser 
wavelength in the near infrared (NIR - 1064 nm). LiDAR systems 
for bathymetric purposes consist of dual-wavelength, which not 
only operate in the NIR (1064 nm) to measure the water surface 
but also at blue-green region (532 nm) for penetrating the water 
surface to a certain depth. Optech CZMIL Nova and Leica 
HawkEye III are examples of such bathymetric ALS systems. 
 
In 2014 the first multispectral ALS system was released, i.e., 
Optech Titan (www.teledyneoptech.com). This sensor 
incorporates three independent laser beams at different 
wavelengths: 1550 nm in intermediate IR (Channel 1), 1064 nm 
in NIR (Channel 2), and 532 nm in visible green band (Channel 
3). Figure 1 illustrates the spectral signature (reflectance 
properties) of different objects such as water, soil and vegetation 
for different regions of the electromagnetic spectrum, and the 
Titan operating wavelengths. 
 
 

 
 
Figure 1. Spectral signature of different objects. Vertical bars 

represent the operating beam wavelengths of Optech Titan 
multispectral LiDAR (www.teledyneoptech.com). 

 
 

3. RADIOMETRIC CORRECTION AND 
NORMALIZATION 

In order to be exploited, LiDAR intensity data need to represent 
the “real” scattering properties of the target surface. This 
condition is important either for target classification and for 
comparing/merging data obtain from different instruments and 
missions or acquired from multiple locations in the case of 
TLS/MLS. According to Höfle & Pfeifer (2007), the radiometric 
calibration and correction (RCC) of intensity data can be 
operated by two different approaches. In the empirical methods 
some statistics are used to minimize noise in intensity data. The 
physical methods are based on the use of the radar (range) 
equation, and on the knowledge of those factors that may have 
influenced the recorded intensity values (i.e., flying height, 
range, incidence angle, scan angle, terrain slope and aspect, 
sensor aperture size, surface moisture, automatic gain control on 
the backscattered intensity, reflection model, and atmospheric 
attenuation), see Wagner (2010). While more details on the 
methods for absolute calibration can be found in the literature 

(see Kaasalinen et al., 2011 and Yan et al., 2015), all authors 
agree that the RCC leads to an improvement of land cover 
classification results in the average order of 10%, with peaks up 
to 31.2%. More details about the impact of the output product 
when using LiDAR intensity data after radiometric and geometric 
correction can be found in Habib et al. (2011), the latter also 
necessary to define the correct position of target locations (Yan 
et al., 2012). Other authors have followed the approach of 
radiometric normalization to compensate the radiometric 
differences of laser intensity in the case of overlapping strips 
(Jutzi & Gross, 2010; Yan & Shaker, 2014, 2016, 2017). These 
methods rely on the comparison of intensity values in common 
areas. 
 

4. REVIEW OF APPLICATIONS WITH LIDAR 
INTENSITY 

LiDAR intensity has been used in a large variety of applications 
related to geometric and radiometric aspects (or a combination of 
both). Applications range from basic activities where intensity is 
used to “colourize” aerial or terrestrial laser scans (point clouds) 
or images derived from scans. The first basic application is the 
simple visualization of the acquired data, especially from those 
sensors that do not have an associated RGB camera able to 
provide the “real” colour to point clouds (Barfoot et al., 2016). 
Although this task is quite trivial, the advantage of using the 
intensity-based colour information has a primary role in several 
projects, especially when RGB information is not available. The 
intensity-based colour approach was then extended to identify 
common features between multiple scans, resulting in new 
algorithms for matching and registration of point clouds. Such 
approaches include scan-to-scan or image-to-scan registration 
(Böhm & Becker, 2007; González-Aguilera et al., 2009; Kang et 
al., 2009; Alba et al., 2011; Altuntas, 2011; Barnea & Filin, 2011; 
Weinmann et al., 2011; Parmehr et al., 2016; Lohani & 
Sasidharan, 2017). Even though these methods have many 
limitations in practical applications, they represent potential 
useful alternative to traditional registration methods. Some other 
applications of LS intensity for evaluating the quality of 
geometric data will be discussed in Section 5. LiDAR intensity 
has been also used in computer vision problems related to object 
identification (Mioulet et al., 2017), segmentation (Umemura et 
al., 2017), localization (Wei et al., 2017), and deep learning, 
(Asvaldi et al. 2017), among the others. The remainders 
applications can be generally grouped into specific domains. 
  
4.1 Land use classification 

After Song et al. (2002), who proposed the use of LiDAR 
intensity for land cover classification, many authors have dealt 
with this task on the basis of ALS data. In particular, the added-
value of using this type of observations is due to the small 
footprint, which gives the chance to map land cover at high-
resolution. This option is particularly important to study urban 
areas, for example to detect those regions covered by vegetation 
(Höfle et al., 2012). In Yan et al. (2015) a review of applications 
and processing methods related to this field is reported. While 
monochromatic LiDAR sensors have been used in the most case 
studies, recently multispectral sensors (see Sect. 2) have been 
applied, as reported in Morsy et al. (2017a). Also applications in 
non-urban areas have been proposed, such as the discrimination 
between water and land (Brzank et al., 2008; Morsy et al., 2018), 
the salt-marsh characterization (Collin et al., 2010), as well as 
several other specific studies which will be described in the 
following thematic subsections. Usually, intensity is not used 
alone but combined with other types of information, such as RGB 
colour (Cheng et al., 2017) height values (e.g., Morsdorf et al., 
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2010; Zhou, 2013; Zhou & Li, 2017), and LiDAR ranges (El-
Ashmawy & Shaker, 2014). In Mesas-Carrascosa et al. (2012) 
and Yi et al. (2016), LiDAR intensity data are combined with 
multispectral images for classification purpose. 

 
Different classification methods have been used along with 
LiDAR intensity data. El-Ashmawy et al. (2011) discuss the use 
of pixel-based vs object-based classification techniques. In Zhou 
(2013), the integration of LiDAR height and intensity along with 
an object-based classification technique was demonstrated to be 
more efficient for urban land cover than using standard medium-
resolution multispectral imagery. Results were comparable to the 
ones obtainable from multispectral high-resolution images and a 
DSM, see also Zhou & Li (2017) on the same topic. 
 
4.2 Geology and geomorphology 

Laser scanning has evolved into a widely used tool for research 
and applications in geosciences that require geometric and 
structural information about the Earth surface and processes 
shaping it. Raster-DTM and DSM have been in focus the last 
decade (Höfle & Rutzinger, 2011). Eitel et al. (2016) identified 
the point cloud plus time dimension (i.e., multi- and hyper-
temporal) and plus intensity data dimension (one and multiple 
wavelengths) as the most relevant research opportunities for 
Earth and ecological sciences for the future. In geosciences in 
general, LiDAR intensity mainly supports to perform improved 
object and LULC classification (e.g., water surfaces, glacier 
facies and rock types) and derivation of geophysical and 
chemical parameters (e.g., albedo, snow chemistry, foliar 
nitrogen). 
  
In Geology, a majority of studies using intensity data dealt with 
rock type classification and outcrop lithology. Burton et al. 
(2011) correlated TLS intensity with rock properties such as 
different rock types (coal, mudstone, sandstone) and also 
mineralogy (e.g., weight percentage of clay) for which they could 
derive R2>0.77. Penasa et al. (2014) developed a method to 
differentiate linear chert bands from the surrounding limestone in 
an outcrop setting using intensity and derived local texture 
information. In addition to the intensity/range correction, Carrea 
et al. (2016) applied an empirical angle correction (Oren-Nayar 
model) due to the incidence angle for lithological differentiation 
of rock surfaces for geological mapping purposes. Hartzell et al. 
(2014) tested radiometrically calibrated multispectral TLS data 
to identify different rock types (sandstone, limestone) in an 
outcrop and found out that data fusion with passive RGB images 
could improve the classification performance. In their study they 
applied three different LiDAR systems to mimic a multispectral 
system. Errington et al. (2016) adopted LiDAR intensity data for 
clay mapping. Garroway et al. (2010) and Kaasalainen et al. 
(2010) investigated soil moisture. Mazzarini et al. (2007) 
identified and dated lava flows on the Mount Etna, Italy. The 
review of Telling et al. (2017) on TLS in Earth sciences reveals 
that also the combination of TLS intensity and hyperspectral 
imagery (HSI) is gaining in importance for geologic feature 
mapping, which is also confirmed by new method developments 
for fusion of ALS and HSI (Brell et al. 2017).  
 
4.3 Hydrolology 

Apart from bathymetric LiDAR, topographic LiDAR intensity 
was widely investigated in hydrology to map water bodies and 
inundated areas such as flood-affected regions. In an early study, 
Höfle et al. (2009) applied radiometrically corrected ALS data 
and modelled laser shot dropouts to segment and classify rivers 
in point clouds. Intensity-based variables of a local point 

neighbourhood (e.g., local intensity variation) were jointly used 
with geometry in a region-growing procedure to delineate the 
river water surface. Malinowski et al. (2016) could even 
differentiate between different levels of water and grass coverage 
within single full-waveform ALS footprints using backscattering 
coefficient derived via radiometric calibration. The higher the 
water coverage, the lower the backscatter signal. Roelens et al. 
(2016) made use of airborne LiDAR intensity as proxy for NIR 
reflectance to support the extraction of cross sections (width, 
cross-sectional area) and water levels of vegetated ditches from 
the point cloud. The normalized difference water index (RGB and 
LiDAR intensity) was input for the classification of the presence 
of water and vegetation in ditch profiles. A similar objective of 
mapping channel networks from airborne LiDAR was presented 
by Hooshyar et al. (2015). They mapped wet channels by 
integrating elevation and intensity of ground points via 
empirically derived thresholds on intensity and subsequent edge 
detection in the intensity image. For geophysical parameter 
retrieval, TLS intensity proved to be a suitable method to detect 
surface moisture and derive spatial patterns of the scanned 
surfaces in aeolian environments, see Nield et al. (2014). Lang & 
McCarty (2009) investigated wetland hydrology. 
 
4.4 Glaciology and snow research 

LiDAR intensity was investigated to map and retrieve different 
snow and ice facies and properties. Höfle et al. (2007) applied 
ALS intensity to map different glacier surface classes (snow, firn 
and ice) using point cloud-based segmentation and classification. 
Kaasalainen et al. (2008) found out that TLS intensity is affected 
by snow cover wetness. Joerg et al. (2015) calibrated ALS 
intensity data to derive a spatially distributed albedo proxy map 
of the glacier, which is needed as input for energy and mass 
balance models. In-situ measurements (albedometer, spectro-
radiometer) served as reference in this study to compute 
broadband albedo of the glacier surface from ALS intensity data. 
Podgorski et al. (2018) investigated calving events of a tidewater 
glacier in Antarctica with TLS intensity. They could classify 
different ages of glacier surfaces, i.e., different timing of ice face 
exposure. Median intensity correlated most with the ice exposure 
time with an explanation of 60% of the variability in intensity 
between calving events. 
 
4.5 Vegetation studies in Agriculture, Ecology and Forestry  

As the range of wavelength covered by LiDAR is 800-1500 nm, 
it is a powerful instrument for analysing vegetation structure. 
LiDAR intensity has been investigated to derive biogeochemistry 
descriptions of vegetation (e.g., foliar nitrogen and chlorophyll 
photosynthesis) and ecologically relevant geographic parameters 
(e.g., drought stress, plant phenology, leaf area distribution, etc. 
- see Eitel et al. 2016). The main assumption is that plant 
parameters and the geometry of plant compartments alter the 
strength of backscatter due to changing reflectance and/or 
changing target area within the footprint. This fact can be used to 
empirically derive plant properties that are perfectly located in a 
topographic reference frame in contrast to passive spectral 
measurements. Eitel et al. (2014) applied a green-wavelength 
(523 nm) TLS intensity to estimate the nitrogen status of 
agricultural crops (winter wheat). In a similar study, Magney et 
al. (2014) used green-TLS intensity to empirically describe 3D-
photosynthetic performance over time of different species’ plant 
leaves in a lab experiment. Adding more wavelengths, 
Nevalainen et al. (2014) could apply hyperspectral TLS to 
estimate chlorophyll concentrations in tree canopies. Lab 
investigations showed high correlation between chlorophyll 
concentrations and a modified chlorophyll absorption ratio index 
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using LiDAR reflectance at 750 nm and 705 nm. The derivation 
of 3D leaf water content was subject of investigation in Junttila 
et al. (2017) and Zhu et al. (2017). In Gaulton et al. (2013), a 
dual-wavelength laser scanner was used to evaluate vegetation 
moisture. Luo et al. (2018) evaluated the leaf performances on 
the basis of height and intensity data for leaf area index 
estimation. Chust et al. (2008) studied the coastal and estuarine 
habitat by integrating LiDAR height and intensity to multi-
spectral imagery. 
 
LS has been largely used in Forestry for the measurement of 
biomass, for tree species classification and for the evaluation of 
other parameters. The integration of LiDAR intensity in the 
analyses was carried out by several authors to extend or 
consolidate those results. Most applications are from airborne 
sensors, but TLS was also used for detailed studies in small plots. 
In many applications, height and intensity data captured using 
ALS over a forest were analysed. For example, García et al. 
(2010) estimated the biomass carbon stock for a Mediterranean 
forest. Donoghue et al. (2007) analysed the species mixture in 
conifer plantations. Li et al. (2016) measured forest topsoil 
properties, while Wang & Glenn (2009) presented a method for 
terrain characterization in forested areas. With focus on full-
waveform airborne LiDAR, Milenkovic et al. (2017) developed 
a novel method to estimate total canopy transmittance of forest 
areas by looking at the full-waveform backscatter of ground and 
single non-ground laser echoes. The difference between ground 
and canopy echo energy was used to derive total canopy 
transmittance. The study of Milenkovic et al. (2017) indicates 
that based on full-waveform information also deterministic 
models (with no need of training data) are possible to derive 
ecologically relevant parameters from LiDAR backscatter. Eitel 
et al. (2010) adopted TLS for simultaneous measurement of plant 
structure and chlorophyll content. 

 
Among the applications related to vegetation, a great attention is 
paid to agriculture. LiDAR is also one of the technologies 
usually used together with assisted GPS navigation, robotics, and 
drones (among others), for precision agriculture, i.e., the use of 
technology to optimize costly fertilizer and to ensure more 
efficiency and sustainability (Tamirat et al., 2018). Typical 
examples of practical applications are those related to the 
determination of soil and crop type Carranza & Blanco, 2015), 
agricultural planning and management, yield forecasting, crop 
analysis (Eitel et al., 2014), crop damage identification (Alberto 
et al., 2014), mapping of irrigation paths, and other applications 
related to field management. 
 
4.6 Buildings and infrastructures 

Applications based on LiDAR intensity for structures and 
infrastructures were proposed in the field of damage detection by 
González et al. (2010), Kashani (2014), Kashani & Graettinger 
(2015), Kashani et al. (2015b), and Hou et al. (2017). Usually, 
the proposed approach is based on the use of well-known 
algorithms (or enhanced versions) for different preliminary tasks, 
such as classification or feature extraction. Then, specific 
application-based algorithms are used to detect damages, for 
example, after natural disasters (hurricane, earthquake, floods, 
tsunami, tornado), where major damages appear and can be found 
from the analysis of pre- and post-event information with an 
approach based on direct comparison of the two stages. In some 
cases, the analysis has to be conducted only on the post-event 
data because of the lack of data sets before the event. Identifying 
sudden changes in texture or other geometric and radiometric 
features allows to highlight possible damages. 
 

5. LIDAR INTENSITY AS A QUALITY MEASURE 

One of the most frequently asked questions in Geodesy, 
regardless of which sensor has been deployed, is related to the 
achievable precision of measurements that are also referred to as 
stochastic characteristics. This information is vital in order to 
weigh observations in the stochastic model of a parameter 
estimation, to reject outliers or to draw statistically sound 
conclusions for instance in deformation measurement. While the 
computation of stochastic measures for established geodetic 
instruments is well understood, this issue is still in the spotlight 
of current research when it comes to reflectorless rangefinders 
that form the key component of laser scanners. Hence, the 
following of this section has a thorough look at existing 
contributions on the subject of influencing factors onto the 
rangefinder precision of laser scanners as well as how these 
influences can be combined to an all-embracing stochastic 
model. Once the stochastic characteristics of an applied scanner 
are known, this information can be used to compute stochastic 
point clouds. This means that the individual precision is known 
for every single point within a dataset.  
 
The identification of influencing factors onto the precision of 
reflectorless rangefinders is of great interest ever since the 
emergence of laser scanners. One of the first notable 
contributions on the subject was made by Böhler et al. (2003) 
who investigated the influence of different reflective 
characteristics. Furthermore the impact of increasing object 
distance was of interest. Vögtle et al. (2008) revealed notable 
differences among common building materials in terms of range 
noise for a TLS. In addition, noteworthy variations in terms of 
precision have been discovered between samples that were 
captured during the day or at night. Soudarissanane et al. (2011) 
approach the issue from a geometric point of view by analysing 
the effect of the angle of incidence. It was shown that the impact 
of interest increases for rising incidence angles. Interestingly, a 
stringent explanatory pattern can still be found in current 
research, see, e.g., Ozendi et al. (2017) and Bolkas & Martinez 
(2018), that assign various influences into certain categories. In 
summary, the most relevant influences can be tributed to the 
survey configuration as well as the local radiometric 
characteristics of the object.  
 
Detailed knowledge about the impact of all these influencing 
factors onto laser scans is undeniably of vital importance. 
However, not a single contribution was able to mathematically 
tie these relevant influences together which would result in an all-
embracing stochastic model. Probably the biggest challenge in 
this context is bound to the consideration of radiometric 
characteristics. Yet numerous authors have reported significant 
effects onto the range noise for samples with different 
radiometric properties, what they have not mentioned is, how 
information about these properties can be captured or modelled. 
Spectrometers, for instance, are appropriate sensors to gather 
radiometric information at a certain wavelength, but they are not 
feasible to be applied in practice to analyse a point cloud 
collected by TLS. Hence, an alternative methodology has been 
proposed in Wujanz et al. (2017) that is based the analysis of raw 
laser intensity values. The general idea is based on the fact that 
laser scanners are photometric devices that convert an optical 
signal that is reflected by an object’s surface into ranges. To this 
purpose, photo diodes are used that also deliver the intensity 
values as a by-product. Generally, the degree of range noise is 
bound to: (i) the strength of the incoming signal; and (ii) the 
individual characteristics of the applied photodiode. Wujanz et 
al. (2017) argue that all aforementioned influences cause a 
deterioration of the emitted signal that consequently yields to a 
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loss of the precision – yet a causal separation of influencing 
factors cannot be made. However, if one has exact knowledge 
about (i) and (ii), then some conclusions about the achieved 
precision of individual measurements can be drawn. Since some 
manufacturers of laser scanners allow to export raw intensity 
values, such as Zoller + Fröhlich or Riegl just to name a few, the 
question arises how to derive (ii). The first option to achieve this 
is based on repeated distance measurements under varying 
acquisition configurations by solely using the rangefinder of a 
TLS. Stochastic measures are generated by computing the mean 
of raw intensity values as well as the standard deviation of ranges. 
Figure 2 illustrates some results gathered in different experiments 
with a phase-shift Zoller + Fröhlich Imager 5006 h TLS, where 
raw intensity values are reported in horizontal direction while the 
standard deviation of ranges is associated to the vertical axis. 
Black circles stem from an experiment where planar panels with 
varying radiometric properties have been scanned under normal 
incidence angles and varying distances. The blue circles originate 
from measurements onto various building materials which have 
been captured under different incidence angles and ranges. The 
red circles have been also acquired under different incidence 
angles at two distances yet by usage of the aforementioned 
panels. It is obvious that a systematic run emerges - regardless of 
which influencing factor has been altered. Hence, these values 
can be used to estimate a function that finally forms the stochastic 
model of the rangefinder.  
 

 
 
Figure 2. Intensity-based stochastic model for a Zoller + Fröhlich 

IMAGER 5006h. 
 
Once the stochastic behaviour of a laser scanner is known, the 
deterministic information in form of the original point cloud can 
be enriched by stochastic information (see Wujanz et al., 2018). 
As a result, a stochastic point cloud emerges; an example is 
depicted in Figure 3. The upper right diagonal depicts an 
intensity-coded point cloud. Based on the radiometric 
information a stochastic information can be computed as 
illustrated on the lower left part of the figure.  
 

 
Figure 3. Stochastic point cloud (lower left) and intensity-coded 

point cloud (upper right).  

6. THE ISPRS WG III/5 DATA SET 

As previously observed, object extraction in urban and land 
environment is still an active field of research, with the focus 
shifting from accuracy evaluation to using data from new sensors, 
or to advanced processing techniques. The success of 
benchmarking data sets in different research fields has shown the 
importance of providing free common data for comparing 
different approaches on the same problems. The availability of a 
unique benchmark can on one side highlights convergences 
between different strategies and put in evidence common 
problems; on the other hand, it may indicate the most promising 
approaches among a set of various available solutions. Even if 
some benchmarks exist for specific LiDAR processing task, there 
is a need for specific test data for both urban and land object 
extraction making use of the benefits of modern airborne sensors 
such as multispectral ALS sensor as well as MLS sensors with 
increased spectral and radiometric resolution. 
 
These considerations led ISPRS WG III/5 to establish in 2017 a 
new benchmarking data set on “Information Extraction from 
LiDAR Intensity Data: Multi-Spectral and Mobile LiDAR data.” 
The data set can be requested by the research community via the 
WG website (www2.isprs.org/commissions/comm3/wg5. html). 
Scholars are given access to the sensor data and are encouraged 
to share their results. In particular, currently two data sets are 
provided, as illustrated in next subsections.  
 
6.1 Mobile LiDAR Data Set 1 – (“Sun Prairie”) 
 
Data Set 1 covers a urban environment located in Sun Prairie 
(Wisconsin, US). The data set was acquired by using the dual-
head sensor MLS system Optech Lynx SG moving along a couple 
of roads in Sun Prairie city for a total distance of approximately 
2 km. A measurement rate of 1200 kHz (600 kHz per sensor) and 
a scanner frequency of 250 Hz per each sensor (total of 500 lines 
per second) have been used during data acquisition. The data set 
contains a typical urban environment with several object classes: 
buildings, roads, trees, cars, pedestrian, poles, etc. Severe 
occlusions due to cars and trees are present in building facades. 
The sample Data Set 1 consists of three strips collected using the 
two sensors (S1 and S2), stored in 6 LAS files for a total size of 
4.5 GB. In Figure 3 some images related to Data Set 1 are shown. 
 

 
 
Figure 3. MLS Data Set 1: the path followed by the sensor and 

the position of three subsets (on the left); a sample of 
the data set (on the right). 

 
 
6.2 Multispectral LiDAR Data Set 2 – (“Tobermory”)  
 
Data Set 2 covers a natural coastal area located in Tobermory 
(Ontario, Canada). Optech Titan multispectral ALS sensor was 
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used to acquire data was on April 2015 at a flying height of 
approximately 460 m a.g.l. and a speed of 140 knots. The Optech 
Titan sensor has 3 channels, each simultaneously collecting data 
as described in Section 2. Each channel has different 
characteristics resulting in a rich topographic and bathymetric 
data set. The sensor FoV is 40°. The data set contains a couple 
shipwrecks, rock coastline and water depths. The data set consists 
of 11 strips over an area of approximately 10 km x 2 km at a point 
density of approximately 12 points/m2. The data set is provided 
into three main archives, one for each channel, and each archive 
contains 11 strips stored in LAS files for a total size of 26.4 GB. 
In Figure 4 some images related to Data Set 2 are shown. 
 

 
 
Figure 4. Multispectral ALS Data Set 2: outline of LiDAR strips 

(on the left); a sample from Data Set 2 (on the right). 
 
 

7. CONCLUSIONS 

From the current state-of-the-art of research on LiDAR intensity 
in manifold fields one can conclude that using this kind of 
observation has potential for improving classification over urban 
areas, mapping land cover (e.g., water areas) and bio-
/geophysical parameter (e.g., water, chlorophyll and nitrogen 
content) retrieval, as clearly demonstrated in a multitude of 
studies. A major strength is the direct location of the “backscatter 
measurement” in topographic space – even in complex objects 
such as vegetation – compared to all passive spectral approaches. 
Several studies showed that the combination of geometric and 
intensity information leads to improved results. Radiometric 
correction for distance and also angle effects is increasingly 
applied in recent studies. Still, several challenges need to be 
addressed and solved in the future: (1) transfer from controlled 
research in the lab with TLS to applications for large areas with 
ALS is needed because geosciences requires geographic data 
input; (2) correction of the intensity angle effects is still a 
chicken-and-egg question because a lot of information about the 
scattering characteristics of the surface/object of interest is 
required beforehand; 3) integration of LiDAR point clouds (3D 
coordinates+intensity) with hyperspectral imagery reveals a lot 
of opportunities but still demands for new methodologies for data 
fusion and information extraction; 4) hypertemporal time series 
of point clouds including intensity are still hardly exploited (Eitel 
et al. 2016) and no software tools for processing are available. 
New solutions are offered by multi-spectral LiDAR sensors, 
whose development and diffusion is expected to foster even more 
the exploitation of laser intensity data. Interesting applications 
may derive from the use of this kind of observation as a quality 
measure for simultaneously recorded geometric data. Last but not 
least, the availability of free data sets may help students and 
scholars to start doing research on this topic. 
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