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Abstract

Image anomaly detection is the process of distilling a small number of clustered

pixels, which differ from the image’s general characteristics. The type of image,

its characteristics and the type of anomalies depend on the application at hand.

Common applications include detection of targets in images, detection of defects in

silicon wafers, detection of mine features in side-scan sonar and detection of tumorous

areas in medical imaging. Anomaly detection algorithms generally consist of three

stages: selection of an appropriate feature space in which the distinction between the

anomaly and the general clutter is possible; selection of a statistical model for the

feature space representing the image clutter and selection of a detection algorithm.

This last stage implies a selection of an anomaly model, which defines the type of

anomaly or anomalies relevant for the application. This work focuses on the latter

two stages.

The Gaussian distribution is a common basis for feature space statistical models

due to its mathematical tractability. A major drawback of using the Gaussian distri-

bution lays in its inability to appropriately model two common phenomena of often

used feature spaces: heavy tails of the probability density function of the features

(known as excess kurtosis) and volatility clustering (a property of many heteros-

cedastic stochastic processes, which means that large changes tend to follow large

1



ABSTRACT 2

changes and small changes tend to follow small changes). Detection algorithms based

on Gaussian models may result in high false alarm rates when applied to such feature

spaces, due to the inadequacy between the model and the data. In particular, it

was observed that the wavelet transform, which is often used as a feature space in

applications dealing with natural images, yields wavelet coefficients that show excess

kurtosis. It is also observed that spatial and scale-to-scale statistical dependencies of

wavelet coefficients exist. That is, coefficients of large magnitudes tend to appear at

close spatial locations and at adjacent scales and orientations. These characteristics

of a commonly used feature spaces cannot be appropriately modeled by a Gaussian

distribution and therefore call for an alternative multi-dimensional statistical model.

We thus introduce an N dimensional generalized autoregressive conditional het-

eroscedasticity (GARCH) model. The 1D GARCH model is widely used for modeling

financial time series. Extending the GARCH model into N dimensions yields a novel

clutter model which is capable of taking into account important characteristics of

commonly used feature spaces, namely heavy-tailed distributions and innovations

clustering as well as spatial and depth correlations. In this work we utilize an un-

decimated wavelet transform and present a 3D wavelet-based feature space. The

undecimated wavelet transform has the property of translation invariance, which is

important in the context of anomaly detection. A 3D GARCH model is used as the

underlying statistics of this feature space.

Once statistical modeling is accomplished, we are faced with the challenge of devel-

oping an appropriate detection approach. In practice it often happens that the class

of anomalies to be detected is not well defined. Algorithms, which assume a specific

anomaly pattern, such as the matched signal detector are therefore inapplicable. Fur-

thermore, algorithms such as the single hypothesis test, which assume that a priory
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information about the anomalies is not available, are also not sufficient, since some

examples of typical anomalies are often available. In this work we develop two de-

tectors, each is comprised of a set of multiscale Matched Subspace Detectors (MSDs).

The MSD was originally developed for the detection of signal in subspace interference

and additive white Gaussian noise. Our MSDs operate in additive colored Gaussian

noise (corresponding to a 2-D Gauss Markov Random Field (GMRF) model) and

in additive GARCH noise. For every feature space layer (for example, every scale

and orientation in the wavelet domain may be considered a feature space layer) a

separate anomaly subspace is used, thus allowing for better incorporation of a priory

information into the process. When a large training set of anomalies is available a

priory, we utilize a procedure known as eigen-pictures to create an anomaly subspace

of a desired rank. Our approach takes into consideration the fact that not all feature

space layers contribute uniformly to the detection process and allows for selection of

the most relevant layers, where the relevance criterion is application dependent.

We demonstrate the performance of the set of MSDs operating in GMRF noise

by applying it to the detection of defects in wafer images and to detection of faults

in 3D seismic data. These images are 3-D in nature and the image data itself is used

as a feature space. Although the potential of the proposed method is demonstrated

on these examples, applying GMRF based detection methods when the underlying

statistics is characterized by excess kurtosis and innovation’s clustering produces poor

results. This is due to the fact that the image clutter cannot be well modeled using

a Gaussian distribution. For such environments we propose using a GARCH based

detection approach. We demonstrate it using synthetic and real sea-mine side-scan

sonar images. For the sonar images, a wavelet based feature space is created, which
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shows high kurtosis values and clustering of innovations. Our results show the po-

tential of the set of MSDs, the importance of an appropriate statistical model for the

background and the advantages of the GARCH statistical model.
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Chapter 1

Introduction

1.1 Background

Anomaly detection algorithms generally consist of some or all of the following stages:

selection of an appropriate feature space in which the distinction between the anomaly

and the general clutter is possible; selection of a statistical model for the feature

space representing the image clutter and selection of a detection algorithm. This last

stage implies a selection of an anomaly model, which defines the type of anomaly or

anomalies relevant for the application. In this section we present a short review of

published work on each of these stages.

1.1.1 Feature Spaces

A proper selection of a feature space, which allows distinction of anomalies from

the general clutter is an important part of an anomaly detection algorithm. We

next present several image pixel feature spaces, which are constructed directly from

the image pixels. We then describe commonly used transform operation. Using

12
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transforms the feature space may be created in two different manners: It may be

created by first passing the image data through the transform operation, and the

feature space is created based on the data in the transform domain (using similar

techniques to those used in the first approach). Alternatively, the feature space may

be created by passing an image pixel feature space through the transform operation.

Image pixel feature space : As the name implies this feature space is created

based on the image pixels themselves. Kazantsev et al. [20] introduced a feature

space based on two circular concentric windows W1 and W2 with Radius R1 and R2,

respectively, R1 < R2. These two concentric windows act as a moving window, where

at each step the center is located on a different image pixel. The center at each

step is suspected as part of an anomaly. For each image pixel two feature sets are

created. One describing the central pixel (suspected as an anomaly) and the other

describing its surrounding neighborhood (assumed to be image clutter). The first

set is created by an arbitrary selection of pixel values from W1 and the second set

is created by an arbitrary selection of pixels from W2. This method is illustrated in

Figure 1.1. A similar approach is taken by Schweizer and Moura [40]. We describe

their approach originally created for hyperspectral 3D data for the 2D case. Two

concentric rectangles serve as the moving window. The inner rectangle represents the

unknown or suspected area and is of size Nt × Nt. The outer or perimeter rectangle

represents the clutter region and is of size I × J . Each of these regions is further

divided into non-overlapping rectangles of size Ni ×Nj. At every pixel location two

sets of feature vectors are created, one for each region. These vectors are created

by a consistent ordering of the image pixels within the Ni × Nj rectangles. There

are
IJ−N2

t

NiNj
vectors representing the clutter region, and

N2
t

NiNj
vectors representing the

suspected region. This method is illustrated in Figure 1.2. Cohen and Coifman [8]
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perform fault detection in 3-Dimensional (3D) seismic data by using real life seismic

data (from the Gulf of Mexico). The data is a 3D lattice. They pre-process the

data by taking a small analysis cube of size 4 × 4 × 15 that moves through every

spatial location in every data layer. At each location, the analysis cube is partitioned

into 4 sub-cubes each of size 2 × 2 × 15. The sub-cubes are arranged in a consistent

fashion into 4 column vectors. A correlation matrix of the 4 vectors is calculated. The

lower triangle coefficients of the correlation matrix are formed into a column vector

of size 6× 1. In this manner each data layer is turned into a 3D lattice with a depth

dimension of 6. Hazel [16] performed scene segmentation and anomaly detection in

multi and hyper spectral imagery. He viewed the 3D spectral image data as vector

observations on a 2-Dimensional (2D) lattice.

The above mentioned methods create feature vectors representing the pixel to be

tested and its surrounding area, assumed to consist of clutter only. We [32] have

used a similar technique to create a single feature vector for every pixel location by

consistent ordering of neighboring pixels. Let Ωimage be the spatial support of an

image and Let Y be a 2D image of size K1 ×K2. Let y(s) represent an image pixel

at spatial location s ∈ Ωimage. The feature vector y(s) at location s is created by

a consistent ordering of neighboring image pixels, that is: y(s) is a column vector

created by consistent ordering of the pixels in an image chip of size L1 × L2 centered

around s. The methods described above can be applied in the image pixel domain or

in a transform domain (examples of which are described next) to create the feature

space used for anomaly detection.

Transform feature space : We next describe two common transforms used for

anomaly detection, namely the Karhunen-Loeve transform (KLT) and the discrete

wavelet transform (DWT).
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Figure 1.1: Moving window made of two concentric circles. Pixels on the inner circle
represent the suspected central pixel. Pixels on the outer circle represent clutter.

Figure 1.2: Moving window made of two rectangle. The window is divided into two
regions: A clutter region and an unknown region
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KLT: In the context of anomaly detection the KLT serves mainly for two pur-

poses. First, the KLT is used to transform an n dimensional vector space into an m

dimensional vector space, where m < n, such that the mean-square magnitude of the

error resulting from representing the n dimensional vector y using only m dimensions

is minimum. Second, the KLT is used to remove correlation between features. Let

{y(k)}K1K2

k=1 be a set of independent identically distributed (iid) random vectors with

zero mean, and let Σy be their covariance matrix. These vectors are the feature

vectors of the K1K2 image pixels. Let Y be a matrix containing these feature vectors

such that:

Y = [y(1),y(2), . . . ,y(K1K2)] . (1.1)

Let K denote a matrix whose columns are the top p eigen vectors of the covariance

matrix Σy . The top p eigen vectors are selected by the magnitudes of their cor-

responding eigen values. Let yKLT (k) be the KLT of y(k), then yKLT (k) is given

by:

yKLT (k) = KTy(k) . (1.2)

If p = n then the transformation preserves the feature space dimensions and eliminates

correlation between image features, however, if p < n then the resulting feature

vectors representing image pixels, that is
{

yKLT (k)
}K1K2

k=1
has a lower dimension as

well as uncorrelated features. Fukunaga [10] presents a through theoretic description

of the KLT. We have used the KLT to reduce dimensionality and correlation between

layers in 3D data as a pre-processing stage for anomaly detection [31]. Goldman and

Cohen used the KLT to reduce dimensionality by selecting layers corresponding to

the largest eigenvalues of the covariance matrix [12], and also to reduce correlation

between layers [13].

DWT: In a 1D wavelet transform a signal is split into two parts: high frequencies
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Figure 1.3: One Dimensional wavelet decomposition

Figure 1.4: One Dimensional wavelet reconstruction
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and low frequencies. The low frequencies part is split again into two parts of high

and low frequencies. This process is continued an arbitrary number of times, which

is usually determined by the application at hand. Furthermore, from these DWT

coefficients, the original signal can be reconstructed. This reconstruction process is

called the inverse discrete wavelet transform (IDWT). The DWT and IDWT can be

mathematically stated as follows. Let H(w) =
∑

k

hke
−jkw and G(w) =

∑

k

gke
−jkw

be a lowpass and a highpass filter, respectively, which satisfy a certain condition for

reconstruction to be stated later. A signal, x(n) can be decomposed recursively as:

sj−1,k =
∑

n

hn−2ksj,n (1.3)

dj−1,k =
∑

n

gn−2ksj,n , (1.4)

for j = J+1, J, . . . , J0, where sJ+1,k = x(k), k ∈ Z, J+1 is the high resolution level in-

dex and J0 is the low resolution level index. The coefficients sJ0,k, dJ0,k, dJ0+1,k, . . . , dJ,k

are called the DWT of signal x(n), where sJ0,k is the lowest resolution part of x(n)

and dj,k are the details of x(n) at various bands of frequencies. Furthermore, the

signal x(n) can be reconstructed from its DWT coefficients recursively:

sj,n =
∑

k

hn−2ksj−1,k +
∑

k

gn−2kdj−1,k . (1.5)

The above reconstruction is called the IDWT of x(n). To ensure the above IDWT

and DWT relationship, the following orthogonality condition on the filters H(w) and

G(w) is needed:

| H(w) |2 + | G(w) |2= 1 . (1.6)

An example of such H(w) and G(w) is the Haar wavelet filters given by:

H(w) =
1

2
+

1

2
e−jw (1.7)

G(w) =
1

2
− 1

2
e−jw . (1.8)
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The above DWT and IDWT for a 1D signal x(n) can be described in the form

of two channel tree-structured filterbank as shown in Figures 1.3 and 1.4 respect-

ively. The DWT and IDWT for 2D images y(m,n) can be similarly defined by

implementing the 1D DWT and IDWT for each dimension m and n separately:

DWTn(DWTm(y(m,n))), which is shown in Figure 1.5. The 2D wavelet transform

is a form of multiresolution representation introduced by Mallat [23]. In the analysis

phase of the 2D wavelet transform, each row of the input image is separately filtered

by H and G. The resulting pair of row-transformed images are likewise filtered in

the column direction yielding four subband images is the first octave level. These

four images are the lowpass subband image sj
LL and a set of three bandpass sub-

band images
{

dj
LH , d

j
HL, d

j
HH

}

, referred to as ”details” images. The details images

are termed LH (low-high), HL (high-low) and HH (high-high) and correspond to

specific, non-overlapping bands in the frequency domain. The ”smooth” or LL (low-

low) component Sj
LL is a lowpass filtered version of the original image and is passed

through to the next octave for further subband decomposition. The wavelet trans-

form has been used for anomaly detection and enhancement. Lain et. al [22] used

a dyadic wavelet transform in mammography to emphasize mammographic features

while reducing the enhancement of noise. Strickland and Hahn [43] used an undecim-

ated wavelet transform for detection of Gaussian objects in Markov noise. We would

like to note that the presentation of the wavelet transform is based on the work by

Xia et. al. [47] who used the wavelet transform to insert an undetectable watermark

into digital imagery.

Once the transform domain has been created, it is regarded as the new data

space, and all the above image pixel feature space methods apply for the transform

domain. For example, Strickland and Hahn [43] used the wavelet decomposition as
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Figure 1.5: Two Dimensional wavelet decomposition

a means for computing a feature set for input to a detector. They created a feature

vector for every spatial location consisting of the deferent detail subbands of the

wavelet representation. The reverse order is also possible, that is, creating image

pixel feature vectors and transforming the resulting feature space into a new feature

space using one of the above mentioned methods. For example, Goldman and Cohen

[12] created neighborhood feature vector and used the KLT to select only the most

dominant principle components of the observation vectors. We now turn to explore

statistical models representing the feature space of the image clutter.

1.1.2 Statistical Models of Natural Clutter

Statistical models describing the natural clutter in the selected feature space domain

are usually the next step after defining the feature space in an anomaly detection

scheme. In the following we describe some of the well studied and commonly applied

statistical models in the field of anomaly detection.
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The Gaussian distribution: is a common basis for feature space statistical

models due to its mathematical tractability. In a Gaussian distribution the statistical

distribution of every pixel y(s) in a 1D feature space is:

Py(s) =
1

√

(2π)σy

exp

{

−(y(s) − µy)
2

2σ2
y

}

, (1.9)

where σy and µy are the standard deviation and mean of the random variable y.

In a 2D Gaussian feature space, every pixel location s is represented by a vector

of features and the multivariate Gaussian distribution applies, such that the features

vector y(s) at every location s within the image is distributed as:

Py(s) = (2π)−L1L2/2 | Σy |−1/2 × exp

{

−1

2
(y(s) − µy)T Σ−1

y (y(s) − µy)

}

, (1.10)

where Σy and µy are the covariance matrix and mean of the random feature

vector y, respectively. Ashton [1] performed subpixel anomaly detection in multis-

pectral infrared imagery. A probabilistic background model is formed by using an

adaptive Bayesian classification algorithm. Ashton assumes a multivariate Gaussian

distribution of each pixel class in spectral space.

The Gaussian mixture model (GMM): The assumption of single component

embedded in the multivariate Gaussian model leads to strict requirements for the phe-

nomenon characteristics: a single basic class, which smoothly varies around the class

mean. The smooth behavior is not typically the most significant problem, but the

assumption of unimodality is. For multimodally distributed features the unimodality

assumption may cause an intolerable error to the estimated probability distribution

function (PDF). For a multimodal random variable, whose values are generated by

one of several randomly occurring independent sources instead of a single source, a

finite mixture model can be used to approximate the true PDF. If the Gaussian form
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is sufficient for single sources, then a GMM can be used in the approximation. Stein

et al [42] used a GMM for modeling hyperspectral imagery. They state that the

GMM is a method of characterizing image clutter obtained from nonhomogeneous,

multi-component scenes. This approach models each feature space vector having one

of C possible multivariate Gaussian distributions (classes). The PDF of the scene is

a Gaussian mixture distribution:

Py(s) =
C
∑

c=1

πcN(y | µc,Σc); πc ≥ 0;
C
∑

c=1

πc = 1 , (1.11)

where πc is the probability of class c. The GMM PDF can be interpreted as a

weighted sum of Gaussians, where πc is the weight of the cth component. The GMM

PDF is completely defined by the parameter list: Θ = {π1,µ1,Σ1, . . . , πC ,µC ,ΣC}.

A review on the GMM model and its estimation can be found in the work by Paallanen

et. al. [33].

The linear mixing model (LMM): The basic premises of linear mixture mod-

eling are that within a given scene three assumptions are met: first, the surface is

dominated by a small number of materials with relatively constant spectra (endmem-

bers). Second, most of the spectral variability within the scene results from varying

proportions of the endmembers, and third, the mixing relationship is linear if the

endmembers are arranged in spatially distinct patterns. In the LMM model the spec-

trum of a mixed pixel is represented as a linear combination of components spectra

(endmembers). The weight of each endmember spectrum (abundance) is proportional

to the fraction of the pixel area covered by the endmember. If there are K3 spectral

bands, the spectrum of the pixel and the spectra of the endmembers can be repres-

ented by K3 dimensional vectors. Therefore, the general equation for mixing by area
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is given by:

y =

M
∑

k=1

aksk +w = Sa +w (1.12)

S = [s1, s2, . . . , sM ] (1.13)

a = [a1, a2, . . . , aM ] , (1.14)

where, y is the spectrum of the mixed pixel, sk is the spectra of the endmembers,

ak is the abundances of the endmembers, M the number of endmembers and w an

K3 dimensional error vector accounting for lack-of-fit and noise effects. Physical

considerations dictate the following constraints:

ak ≥ 0 (nonnegativity constraint) (1.15)
M
∑

k=1

ak = 1 (additivity constraint) , (1.16)

which can be enforced, if necessary to guarantee meaningful parameter values.

These two constraints are often ignored in order to simplify calculations as in Mano-

lakis et al. [25] where the LMM was applied for the problem of hyperspectral subpixel

target detection. Another example of using the LMM in the context of anomaly de-

tection can be found in the work by Stein at el [42] who used an LMM for detecting

anomalies in hyperspectral imagery.

The Gauss Markov random field (GMRF): is also a well known Gaussian

model, which has been extensively used in the context of texture analysis and anomaly

and object detection. The 2D GMRF has been introduced by Woods [45]. It assumes

a stationary image background where every image pixel is represented as a weighted

sum of neighboring pixels and additive colored noise (the innovation process). Let

Ωneighbor be a given set of indices representing the neighborhood of a pixel. We denote
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the weight coefficient of a neighbor r ∈ Ωneighbor by α(r) and the innovation process

by ε(s). Assuming an image Y can be modeled as an GMRF, a pixel y(s) in the

image is related to its neighboring pixels as follows:

y(s) =
∑

k∈Ωneighbor

α(k)y(s+ k) + ε(s) (1.17)

The innovation process is spatially correlated with covariance given by:

E {ε(s)ε(s+ k)} =























ρ2, if k = (0, 0)

−α(k)ρ2, if k ∈ Ωneighbor

0, otherwise.

(1.18)

Kashyap and Chellappa [17] showed that the correlation structure imposes sym-

metry on the neighborhood set. That is, k ∈ Ωneighbor implies −k ∈ Ωneighbor and

α(k) = α(−k).

A good review of multiresolution Markov Models for signal and image processing

can be found in [44].

The 1D GARCH: Bollerslev [5] introduced the 1-Dimensional (1D) Generalized

Autoregressive Conditional Heteroscedasticity (GARCH) model, which is often used

as a statistical model for time series. It is an extension to the Autoregressive Con-

ditional Heteroscedasticity (ARCH) model introduce by Engle [9]. The 1D GARCH

has been shown to be useful in modeling different economic phenomena.

Let εt denote a real-valued discrete-time stochastic process, and ψt the information

set of all information through time t. The 1D GARCH(p, q) process is given by:

εt | ψt ∼ N(0, ht) (1.19)

ht = α0 +

q
∑

i=1

αiε
2
t−i +

p
∑

i=1

βiht−i , (1.20)
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where

p ≥ 0 , q > 0

α0 > 0 , αi ≥ 0 , i = 1, . . . , q

βi ≥ 0 , i = 1, . . . , p .

For p = 0 the process reduced to the ARCH(q) process, and for p = q = 0 εt is

simply white noise.

The GARCH model allows for the conditional variance to change as a function

of past squared field values (ε2t−i) and past conditional variance values (ht−i). This

behavior creates a heavy tailed distribution characterized by clustering of innovations.

So far we have discussed feature spaces and statistical models. The final steps in

the anomaly detection scheme are to define an anomaly model and an appropriate

detection algorithm.

1.1.3 Anomaly Detection

The anomaly detection process can be regarded as a problem of classifying a sample

into one of two classes: image clutter or an anomaly, with the assumption of low-

probability anomalies. In practice, it happens that one class (the clutter) is well

defined while the other (the anomaly) is not. For example, if the statistical model

for the image clutter is known, its parameters can be estimated from the image

data. However, without a priory information about the anomalies, such estimation

is impossible for the anomaly class. We next present a set of detection algorithms.

These algorithms differ, among other things, in their representation of the two classes.
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Single Hypothesis Test: The single hypothesis test (SHT) have been proposed

to solve the problem of an undefined anomaly. Typically an SHT involves measuring

the distance of the sample at hand from the clutter mean (normalized by the clutter

covariance matrix), and applying a threshold to determine if it is or is not an anomaly.

That is:

d2 = (y(s) − µy)T Σ−1
y (y(s) − µy)

H1

>

<

H0

ηd , (1.21)

where H0 and H1 represent target absent and target present hypotheses respectively

and ηd is the selected threshold.

Define z = QT (y−µy), where Q is a whitening transformation, then the distance

d2 can be written as:

d2 = zTz =

L1L2
∑

k=1

z2
k , (1.22)

where zk are the elements of the vector z. Since the expected vector and covariance

matrix of z are 0 and I respectively, the zk’s are uncorrelated, E{zk} = 0 and

V AR{zk} = 1. When y is Gaussian, d2 is a sum of squared independent, normally

distributed random variables and therefor is chi-square distributed with L1L2 degrees

of freedom, as follows:

d2 ∼ χ2
L1L2

(0) . (1.23)

It is important to note, that the SHT works well when the dimension of the data

(L1L2) is very low (such as 1 or 2). As the dimension of the data increases, the

error of the SHT increases significantly. The SHT assumes no knowledge about the

anomalies. If information about the anomalies is made available a priory it cannot

be incorporated into the detection scheme. A detailed discussion on the SHT and can
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be found in Fukunaga [10].

Matched Filter Detector: As an opposite approach to the SHT let us now

consider the detection problem specified by the following hypotheses:

H0 : y ∼ N(µy,Σy) Anomaly absent

H1 : y ∼ N(µt,Σt) Anomaly present ,

where the target and background classes follow multivariate normal distributions

with different mean vectors and covariance matrices. Unlike the SHT the probability

densities are completely specified under each hypothesis. The Likelihood ratio de-

tector is given by the ratio of the conditional probability density functions of the two

hypothesis:

L =
Py(y(s) | anomaly present)

Py(y(s) | anomaly absent)

H1

>

<

H0

ηd . (1.24)

If L is larger than the threshold ηd, the ”anomaly present” hypothesis is accepted.

Computing the natural logarithm for the above presented PDFs leads to the quadratic

detector:

L =
1

2
(y − µy)T Σ−1

y (y − µy) − 1

2
(y − µt)T Σ−1

t (y − µt) . (1.25)

which compares the Mahalanobis distances of the observed feature vector y from the

centers of the two classes. The required threshold ηd is determined from:

PFA =

∞
∫

ηd

P (L | H0)dL = αFA , (1.26)

where αFA is the desired probability of false alarm. As a result of the quadratic
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mapping, the distribution of the random variable L (detector output) is not normal,

which makes the performance evaluation of the detector difficult.

If the target and background classes have the same covariance matrix, that is,

Σy = Σt, the quadratic terms in (1.25) disappear, and the likelihood ration detector

(1.24) becomes:

L = (µt − µy)T Σ−1
y y . (1.27)

This is a linear detector:

L = cTy =
∑

k∈Ωimage

ckyk , (1.28)

which is specified by the coefficient vector:

c = Σ−1
y (µt − µy) . (1.29)

The detector output is a linear combination of normal random variables and is therefor

normally distributed. This result simplifies the evaluation of the detector and the

computation of detection thresholds using (1.26). This detector is known as Fisher’s

linear discriminant and is widely used in pattern recognition application. The same

result is well known in the the communication and signal processing literature, where

it is termed the matched filter (MF). There the MF is usually derived by maximizing

the cost function:

J(c) =
[E {L | H1} − E {L | H0}]2

var {L | H0}
=

[

cT (µt − µy)
]2

ctΣyc
, (1.30)

which measures the distance between the means of two normal distributions in units

of the common variance. The maximum is obtained by substituting (1.29) into (1.30):

Jmax = (µt − µy)T Σ−1
y (µt − µy) , (1.31)

which is the mahalanobis squared distance between the means of the anomaly and

clutter distributions.
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Adaptive Matched Filter Detector: The detector in (1.27) requires the mean

vector and the covariance matrix of the anomaly and clutter. In practical applic-

ations, these quantities are often unavailable. To overcome this difficulty we next

present the adaptive matched filter (AMF) [24]. The above mentioned quantities

are estimated from the available data. Once again, under the assumption of low-

probability anomalies, we can use the available data y(s); s ∈ Ωimage to determine

the maximum likelihood estimates of the mean vector and covariance matrix of the

clutter:

µy =
1

L1L2

∑

s∈Ωimage

y(s)

Σy =
1

L1L2

∑

s∈Ωimage

(y(s) − µy)(y(s) − µy)T .

Unfortunately, there is usually not sufficient training data to determine the mean and

covariance of the target. Typically, a target signature t, from a library of the mean

of a small number of known target pixels observed under the same conditions is used.

The resulting AMF is given by:

d(s) =
tT Σ−1

y y(s)

tT Σ−1
y t

, (1.32)

where usually the data mean is removed from the anomaly and clutter data.

If we know the ”true” covariance matrix Σy, the output L under the ”target

absent” hypothesis, is distributed as L ∼ N
(

µL, (t
T Σ−1
y t)

−1
)

, where µL = E{L}.

When the required means and covariances are estimated from the data, the resulting

estimates are random quantities. If we treat them as constants, we can determine

the class-conditional distribution of the detector output as in the known statistics

case. However, the correct approach is to treat the estimated means and covariances

as random and determine the unconditional distribution of L. Unfortunately, the
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derivation of unconditional distributions is a very difficult problem even under the

most simplified assumptions. For more details on the matched filter detector and

adaptive matched filter detector we refer the reader to the work by Manolakis and

Shaw [24].

RX Detector: Reed and Xiaoli developed the RX detector [34]. It is a generalized

likelihood ratio test (GLRT) based detector, where the clutter model parameters are

estimated based on test and reference data. Let {vj ∈ CL1L2 | 1 ≤ j ≤ Nref} be

a set of Nref iid sample vectors having pdf p0(·, θ0). At every pixel location s a

feature vector y(s) is to be classified as arising from either PDF p1(·, θ1) or p0(·, θ0)

(hypothesis H1 or H0 respectively). The GLRT is:

L =
max

θ1

(p1(y(s), θ1)p0 ({vj | 1 ≤ j ≤ Nref}, θ1))

max
θ0

(p0(y(s), θ0)p0 ({vj | 1 ≤ j ≤ Nref}, θ0))

H1

>

<

H0

ηL , (1.33)

where ηL is a threshold. Reed and Yu [34] developed an GLRT for multidimensional

image data assuming that the target signal and the covariance of the clutter are

unknown. The data under the two hypotheses is modeled as:

H0 : y ∼ N(µy,Σy) Anomaly absent

H1 : y ∼ N(µt,Σy) Anomaly present ,
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such that Σy and µt are unknown. The GLRT is:

L = (y − µy)T

[

Nref

Nref + 1
Σ̂y +

1

Nref + 1
(y − µy)(y − µy)T

]−1

(y − µy)

H1

>

<

H0

ηL ,

(1.34)

where Σ̂y = 1
Nref

Nref
∑

j=1

(vj − µy)(vj − µy)T is the sample covariance matrix of the

reference data. As Nref → ∞, L converges to:

L = (y − µy)T
[

Σ̂y

]−1

(y − µy)

H1

>

<

H0

ηL . (1.35)

Asymptotic forms, as Nref → ∞, of the probability distributions of L ,under the H0

and H1 hypotheses are given in terms of the χ2 and noncentral χ2 densities, respect-

ively. Let χ2
n(·) denote the χ2 density on n degrees of freedom, and let χ2

n(·, λ) denote

the noncentral χ2 density on n degrees of freedom having noncentrality parameter λ.

The probability distribution of L under H0 and H1 are:

L ∼











χ2
τL1L2

(0), under H0

χ2
τL1L2

((µt − µy)T Σ−1
y (µt − µy)), under H1

, (1.36)

where τ = 1, 2 if the data are real or complex values, respectively. The probabilities

of false alarm and detection are:

PFA = 1 − P
[

χ2
τL1L2

(0) ≤ ηL
]

(1.37)

PD = 1 − P
[

χ2
τL1L2

((µt − µy)T Σ−1
y (µt − µy)) ≤ ηL

]

. (1.38)
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Note that the distribution of the test statistics under H0 is independent of the un-

known parameters, and thus the test statistics has the constant false alarm rate

(CFAR) property. Chang and Chiang [7] used the RX detector for anomaly detection

in hyperspectral imagery.

Matched Subspace Detector : Scharf and Friedlander [38] extended the GLRT

to situations where the anomaly signature is unknown and assumed to be in a sub-

space. They formulated the MSD for the general problem of detecting subspace

signals in subspace interference and additive white Gaussian noise (WGN). Let 〈H〉

denote the anomaly subspace, spanned by the columns of a matrix H and let 〈S〉 de-

note the interference subspace, spanned by the columns of a matrix S. We denote the

additive iid Gaussian noise by ε where ε ∼ N(0, ρ2I). The problem is to determine

whether the sample vector y contains an anomaly signal. The anomaly signal can be

described as a linear combination of the columns of H, that is, the anomaly signal is:

Hψ, where ψ is a vector of coefficients. The interference signal is described similarly,

using the matrix S and the coefficients vector φ. We define two hypotheses, H0 and

H1 which indicate, respectively, absence and presence of the anomaly signal in the

vector y:

H0 : y = Sφ+ ε (1.39)

H1 : y = Hψ + Sφ+ ε . (1.40)

Let PS denote the projection of a vector onto the subspace 〈S〉:

PSy(s) = S(STS)−1STy(s) , (1.41)

and let PHS denote the projection of a vector onto the subspace 〈HS〉, spanned by

the columns of the concatenated matrix [HS]. The maximum likelihood estimates
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of the additive noise vector ε under H0 and under H1 are denoted by ˆεH0
and ˆεH1

respectively. These estimates are obtained by subtracting from y the components

which lie in the signal and interference subspaces as follows:

ˆεH0
= (I − PS)y (1.42)

ˆεH1
= (I − PHS)y . (1.43)

The detection problem can be formulated as an GLRT between H0 and H1. The

log-likelihood ratio is given by:

L(s) = 2 log

[

P (ε(s) | H0)

P (ε(s) | H1)

]

(1.44)

= 2 log





exp
(

[ ˆεH0
]2

2ρ2

)

exp
(

[ ˆεH1
]2

2ρ2

)



 (1.45)

=
1

ρ2
yT (PHS − PS)y . (1.46)

The signal to noise ratio (SNR) is the ratio between the signal and the noise in terms

of intensity. We define the SNR as the second power of the ratio between the signal

which do not lie in the interference subspace, and the standard deviation of the noise:

SNR =
1

ρ2
[Hψ]T [I − PS][Hψ] . (1.47)

Let u denote the rank of the anomaly subspace. L is a sum of squared independent

normally distributed variables and therefor is chi-square distributed with u degrees

of freedom:

L ∼











χ2
u(0), under H0

χ2
u(SNR), under H1

. (1.48)

Under hypothesis H1, the non-centrality parameter of the chi-square distribution of L

is equal to the SNR [37]. The decision rule is based on thresholding the log-likelihood
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ratio using the threshold ηL:

L

H1

>

≤

H0

ηL . (1.49)

The probabilities of false alarm and detection are:

PFA = 1 − P [χ2
u(0) ≤ ηL] (1.50)

PD = 1 − P [χ2
u(SNR) ≤ ηL] . (1.51)

Kraut et al. [21]extended the MSD to the the case were the noise (clutter) covariance

matrix is unknown. The extended detector is named adaptive subspace detector

(ASD).

1.2 Motivation and Goals

The Gaussian distribution is a common basis for feature space statistical models. This

is due to the mathematical tractability of the Gaussian statistics. It is of no surprise

that anomaly detection is often applied using a Gaussian distribution. Consider as

an example the GMRF based algorithm presented by Goldman and Cohen [13]. This

algorithm is based on 2D GMRF modeling of uncorrelated layers in a multiscale

representation of the image. Correlation between layers is reduced by means of the

KLT. Anomaly detection is performed by means of an MSD followed by a threshold

operation. We next apply this algorithm to the sea-mine sonar images in the top row

of Figure 1.6. The side-scan sonar images presented in this work are from the Sonar-

5 database collected by the Naval Surface Warfare Center (NSWC) Coastal System

Station (Panama City, FL). The images are 8-bit grayscale. An elongated sea-mine
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(such as those presented in the top row of Figure 1.6) is characterized by a bright line

(the highlight or echo) corresponding to the scattering response of the mine to the

acoustic insonification and a shadow behind it, corresponding to the blocking of sonar

waves by the mine. The image background corresponds to the reverberation from the

seabed. A description of the acquisition process of side-scan sonar imagery and a

discussion on the various shapes of mine like objects in such imagery is presented by

Reed et. al. in [35, 36]. Further technical and navigational information about the

specific database used is not available. It is worth noting that the anomaly, being the

mine and its shadow, is skewed. We shall not pursue this further in this work since

our goal is to propose a novel clutter model and a corresponding detection approach

without the specifics of a certain application. However, for specific applications,

when information about the statistical characteristics of the anomaly is available a

priory, it can be accounted for in order to improve detection results. Applying the

anomaly detection algorithm described above to the sea-mine sonar images in the

top row of Figure 1.6 results in a high false alarm rate. This high false alarm rate

is demonstrated at the bottom row of Figure 1.6, where the dark target like symbol

marks locations where an anomaly has been detected. To explain this high false

alarm rate let us first look into the statistical characteristics of the feature space of

Figures 1.6 (a) and (b). The kurtosis (forth moment divided by the square second

moment) is a measure of fat tail behavior as noted by Buccigrossi and Simoncelli

[6]. The sample kurtosis of the multiresolution feature space of these two figures is

9.8 and 10.9 respectively. The expected kurtosis value for the Gaussian distribution

is 3. The high kurtosis values of the feature space for these two images implies a

distribution with much heavier tails than the Gaussian distribution. Second, let us

examine Figure 1.6 (c). The sample kurtosis value for the feature space of this image
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is about 4.2 meaning that the distribution is not highly leptokurtic. However, in the

areas where false alarms are detected, clustering of innovations occurs. Clustering of

innovations is a phenomena where large changes tend to follow large changes, and

small changes tend to follow small changes. In either case, the changes are typically

of unpredictable sign. Clustering of innovations is clearly seen in the image itself and

is also apparent in the layers of the multiresolution representation as demonstrated

in Figure 1.7 (c)-(d). This phenomena is also present in Figure 1.6 (b) and in its

corresponding multiresolution layers presented in Figure 1.7 (a)-(b). We note that the

clustering of innovations phenomena demonstrated in Figure 1.7 appears at the same

spatial location in the different multiscale representation layers. This demonstrates

scale to scale dependency. These two characteristics of the feature space, namely:

heavy tailed distribution and clustering of innovations, cannot be accounted for by

the GMRF model underlying the detection algorithm of Goldman and Cohen [13]

and therefore call for an alternative statistical model. For that purpose we introduce

the multidimensional GARCH model.

The 1D GARCH model introduced by Bollerslev [5] has been used for modeling

financial time series. It is an extension to the ARCH model introduced by Engle [9].

The GARCH model was designed to capture the fat tails and volatility clustering

associated with financial time series. In a GARCH model the conditional variance at

every location is dependent on conditional variance values and squared field values

of neighboring locations yielding clustering of innovations. The notion of conditional

variance and neighboring locations is mathematically defined in Chapter 3. For details

on the 1D GARCH model we refer the reader to the work by Bollerslev [5] and to the

book by Hamilton [14].

We begin by demonstrating the heavy tails and volatility clustering properties of
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the multidimensional GARCH model. Figure 1.8 shows seven layers of a 3D synthetic

GARCH data (the anomaly planted in these layers is discussed later in Chapter 4).

The sample kurtosis of the complete data set is 26.87. The kurtosis of each of the 2D

layers in Figure 1.8 is shown in Table 1.1. The kurtosis values are much larger than

the value of 3 characterizing the Gaussian distribution, demonstrating the heavy tails

property of the GARCH model. The heavy tails of this sample data can also be viewed

from the data’s histogram shown in Figure 1.9. The volatility clustering property of

the GARCH model, which is due to the special structure of the conditional variance,

is apparent from Figure 1.8, where clustered areas of high variations in gray-scale

levels are easily noticed. To further demonstrate it Figure 1.10 shows the seven layers

of the conditional variance field based on the estimated model parameters. Darker

areas in Figure 1.10 represent areas of high conditional variance. These darker areas

appear in clusters and not as scattered pixels. The match between darker areas in

Figure 1.10 and the areas of clustered variations in Figure 1.8 is obvious.

In this work we introduce the multidimensional GARCH model. Since we assume

the multiscale feature space follows a GARCH distribution, we are faced with the

challenge of developing an appropriate detection approach. Scharf and Frienlander

[38] developed an MSD for the detection of signals in subspace interference and ad-

ditive WGN. Here we introduce a set of multiscale MSDs operating in subspace

interference and additive GARCH noise. Since the statistical model is not limited to

2 dimensions, our MSD utilizes the correlation within and between layers, meaning

that detection at each location in the feature space may be based on feature space

data from adjacent layers, and not limited to a single layer. A separate anomaly

subspace is assumed for each feature space layer, thus allowing incorporation of a

priory information into the detection process. These anomaly subspaces need not be
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(a) (b) (c)

Figure 1.6: Detection results in side-scan sea mine sonar images: (top row) Original
side-scan sea-mine sonar images; (bottom row) Detection Results using a GMRF

based method.

of the same size thus allowing for greater adaptivity of the anomaly subspace to the

characteristics of the feature space, namely: scale and orientation. Recognizing that

not all feature space layers contribute evenly to the detection process, our multiscale

MSD allows for a selection of the layers to use. This selection can be made a priory,

or after some processing has been performed and intermediate results of the detection

process are available.

1.3 Overview of the Thesis

The original contribution of this thesis starts from Chapter 2, where we present an

anomaly detection approach for three dimensional data. In a pre-processing stage, we

de-correlate the data layers using the KLT. After de-correlating the data layers, each
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(a) (b) (c) (d)

Figure 1.7: Example of layers from an undecimated wavelet transform
representation of sea mine sonar images: (a)-(b) Two layers from the

multiresolution representation of Figure 1.6(b); (c)-(d) Two layers from the
multiresolution representation of Figure 1.6(c).

Layer Kurtosis
1 7.81
2 9.57
3 17.44
4 15.91
5 11.94
6 14.59
7 16.28

Table 1.1: Kurtosis Values of Each of the 2D Layers in Figure 1.8
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(a) (b) (c) (d)

(e) (f) (g)

Figure 1.8: Seven layers of a GARCH synthetic image with a Gaussian shaped
anomaly
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Figure 1.9: Histogram of the 3D GARCH data shown in Figure 1.8. The sample
kurtosis of this data is 26.87
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(a) (b) (c) (d)

(e) (f) (g)

Figure 1.10: Seven layers of the conditional variance field of the synthetic GARCH
data presented in Figure 1.8. Darker areas represent higher conditional variance

values.

layer is modeled as a GMRF. The GMRF accounts for spatial correlation between

neighboring image pixels. We present a least squares model estimation, and present

a parametric form of the model inverse covariance matrix. The inverse covariance

matrix is later used in the anomaly detection stage, thus saving the computational

burden of covariance matrix inversion. Anomaly detection is performed by utilizing a

set of MSDs. Our MSD detects anomalies in colored Gaussian noise, and interference

subspace. We use a different MSD for each data layer. This approach allows us to

incorporate into the anomaly subspace a-priori knowledge about the sensors used to

capture the data, or a-priori information about the anomalies. Using such information

would yield better detection rates, and lower false alarm rates. However, if such

information is not available, detection is carried out based on a general subspace.

We utilize the eigen-picture technique for creating the anomaly subspace when a
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large training set of anomaly examples is available. The robustness of the proposed

detection approach is demonstrated on real life data from two different applications:

detection of defects in wafer images and detection of faults in 3D seismic data.

In Chapter 3, we introduce the N -Dimensional (ND) GARCH model. The ND

GARCH model is a novel clutter model which is capable of taking into account im-

portant characteristics of a 3D feature space, namely heavy-tailed distributions and

innovations clustering as well as spatial and depth correlations. We utilize an un-

decimated wavelet transform and present a 3D wavelet-based feature space. The

undecimated wavelet transform has the property of translation invariance, which is

important in the context of anomaly detection. A 3D GARCH model is used as the

underlying statistics of the feature space.

In Chapter 4 we develop a multiscale MSD operating in subspace interference and

additive GARCH noise. We show that the GARCH model is more appropriate for the

background clutter than the Gaussian model. For every scale and orientation in the

wavelet domain (referred to as feature space layers) a separate anomaly subspace is

used, thus allowing for better incorporation of a priory information into the process.

Our multiscale MSD approach takes into consideration the fact that not all feature

space layers contribute uniformly to the detection process. It allows for selection of

the most relevant layers, where the relevance criteria is application dependent and

independent of the detection algorithm. We demonstrate the potential advantages of

the proposed method on synthetic data and real life sea-mine side-scan sonar imagery.

We Conclude in Chapter 5 with a summary and discussion on future research

directions.
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1.4 Organization

The organization on this thesis is as follows. In Chapter 2, we present an anomaly

detection approach for three dimensional data, based on the GMRF statistical model

and an appropriate MSD anomaly detection scheme operating in colored noise. In

Chapter 3 we introduce the multi-dimensional GARCH statistical model. We present

a maximum likelihood model estimation. In chapter 4 we introduce an anomaly sub-

space detection approach operating in an undecimated wavelet domain, modeled using

the multidimensional GARCH model. We analyze the performance of the proposed

method and demonstrate that by using a multiscale MSD under GARCH clutter

modeling, rather than GMRF clutter modeling, a reduced false alarm rate can be

achieved without compromising the detection rate. Finally in Chapter 5 we conclude

with a summary and discussion on future research directions.

We would like to note that Chapters 2, 3 and 4 are the detailed and extended

version of our published materials. Chapter 2 is based on [30, 31], Chapter 3 is based

on [30, 32] and Chapter 4 is based on [30].



Chapter 2

Anomaly Detection Based on

GMRF Modeling

2.1 Introduction

Anomaly detection in three dimensional data has many practical applications in-

cluding automatic target detection in multispectral and hyperspectral images, defect

detection, detecting of faults in seismic data, etc. Statistical methods in this field

assume distinct statistical models for both the background and the anomalies. Stat-

istical parameters for the background are estimated from the 3D data, while statistical

parameters for the anomalies are estimated based on some training set, such as in

the RX algorithm used by Stein et al. [42]. Other methods assume a known anomaly

pattern in a random clutter background, such as in the RX algorithm introduced

in [34], or the adaptive matched filter detector of Manolakis and Shaw [24]. Some

detection algorithms assume the anomalies are those portions of the data that have

the worst fit to the background model. Examples of those algorithm are the single

44
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hypothesis tests presented by Schweizer and Moura [40] and the iterative detection

procedure of Goldman and Cohen [12]. Another example is the detector presented

by Ashton [1], in which image clustering is performed in a preprocessing stage fol-

lowed by spectral decorrelation and energy detection for each cluster. No knowledge

about the anomaly is required. In anomaly detection, Once statistical modeling is

accomplished, hypothesis testing is often used for deciding which pixels represent an

anomaly and which represent the background. For a more thorough introduction to

the field of anomaly detection we refer the reader to Chapter 1 in this thesis.

A major limitation of these methods is the inefficient statistical model for the

anomalies. In real life the anomaly has an unknown pattern and one searches for

different anomalies within a given data set. Estimating the statistical parameters for

the anomalies from a given training data set yields poor detection results when the

anomalies differ from the examples in the training set. Estimating these parameters

based on the data itself renders the estimation unstable since the anomalies are sparse

within the data and their location is unknown. Detecting anomalies based on worst

fit to the background model does not allow utilization of a-priori information about

the anomaly, if such information is available. An additional drawback of many of

these methods is their high computational complexity. The computational cost comes

from inefficient parameter estimation techniques and from the need to find inverse

covariance matrices for the hypothesis testing stage.

In this chapter, we present an anomaly detection approach for three dimensional

data, such as multispectral and hyperspectral imagery (referred to as spectral im-

agery for convenience), seismic data and images taken from different sensors, which

are spatially registered and grouped into a 3D data format. In a pre-processing stage,
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we de-correlate the data layers using the Karhunen-Loeve transform (KLT). After de-

correlating the data layers, each layer is modeled as a GMRF. The GMRF accounts

for spatial correlation between neighboring image pixels. We present an efficient

least squares model estimation, and present a parametric form of the model inverse

covariance matrix. The inverse covariance matrix is later used in the anomaly de-

tection stage, thus saving the computational burden of covariance matrix inversion.

Anomaly detection is performed by utilizing a set of matched subspace detectors.

The MSD was originally developed by Scharf and Friedlander [38] for the detection

of signals in subspace interference and additive WGN. Our MSD detects anomalies

in colored Gaussian noise, and interference subspace. We use a different MSD for

each data layer. This approach allows us to incorporate into the anomaly subspace

a-priori knowledge about the sensors used to capture the data, or a-priori information

about the anomalies. Using such information would yield better detection rates, and

lower false alarm rates. However, if such information is not available, detection is

carried out based on a general subspace. If a large set of anomaly and interference

examples are available for creating of the anomaly and interference subspace a pro-

cedure known as eigen-faces is utilized. The robustness of the proposed detection

approach is demonstrated on real life data from two different applications: detection

of defects in wafer images and detection of faults in 3D seismic data.

It is appropriate to note that the approach presented in this chapter has some

similarities with that presented by Goldman and Cohen [11, 13], however, the two

methods differ in the following aspects: Goldman and Cohen suggested using a mul-

tiresolution representation of a given 2D image in order to create an appropriate

feature space for natural clutter images having several periodical patterns of various

period lengths. Since the GMRF model may not sufficiently describe such clutter
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image, Goldman and Cohen assumed that there exists a multiresolution represent-

ation such that the GMRF model can be appropriately applied. In contrast, this

work deals with true 3D data, such as seismic data or registered data taken from a

number of sensors and organized in a 3D data structure. In creating a subspace for

the anomalies, Goldman and Cohen overlooked the limitation of anomaly and inter-

ference subspaces ranks. If a large training set of anomaly (or interference) examples

is made available, and is to be used to improve creation of the anomaly (or interfer-

ence) subspace, Goldman and Cohen did not suggest any means to deal with it. If

all anomaly examples are to be used in the anomaly subspace creation method they

suggested, it would result in anomaly subspace, which spans the entire feature space,

thus resulting in a high false alarm rate. We utilize a procedure often used in the field

of face recognition, namely eigen-pictures, to overcome this limitation. In addition,

the MSD suggested by Goldman and Cohen suffers from the computational burden of

inverting the covariance matrix of the innovation process. We utilized a parametric

form of the inverse covariance matrix, such that no matrix inversion is required.

This chapter is organized as follows: In Section 2.2, we present the GMRF model

and present an efficient estimation method of its parameters. In Section 2.3, we

propose our anomaly and interference subspaces creation method, which is based on

the eigen-picture procedure followed by our anomaly detection approach. In Section

2.4 we demonstrate the performance of our approach by applying it to the detection

of defects in wafer images and to the detection of faults in 3D seismic data. Finally

in Section 2.5 we conclude.
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2.2 Gauss Markov Random Field

In this section we begin by performing a pre-processing layer de-correlation stage using

the KLT. We then model each transformed data layer as a GMRF, and perform an

efficient model estimation method based on least squares.

2.2.1 Clutter Modeling

A 3D data set of size K1 ×K2 ×K3 can be regarded as K3, 2D images stacked one on

top of the other. We assume that the layers are uncorrelated. Since this assumption

is generally incorrect, we use a KLT of the data in the depth direction to create the

uncorrelated layers. Let Y represent a 3D data set, and let Yij be a column vector

(of size K3 × 1) representing all data layers at spatial location (i, j) in Y . Let K

denote a matrix whose columns are the eigenvectors of the covariance matrix of Yi,j.

The 3D data W whose layers are independent is given by:

Wij = KTYij . (2.1)

The KLT transform allows for dimensionality reduction by creating W from only

those layers in KTYij corresponding to the larger eigenvalues of the covariance matrix

of Y. Dimensionality reduction may be important for reducing the computational

complexity, reducing memory and disk space and for using only layers containing

information relevant to the problem at hand. Each independent data layer in W is

modeled as a zero mean, homogenous, first order, GMRF. The GMRF accounts for

spatial correlation between neighboring image pixels. Let wij be an image pixel at

location (i, j). Let βh and βv be the minimum mean square error (MMSE) estimation

parameters of wij from its four nearest neighbors, and let εij be the estimation error.
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A first-order GMRF model is given by:

wij = βh

(

wi(j−1) + wi(j+1)

)

+ (2.2)

+βv

(

w(i−1)j + w(i+1)j

)

+ εij .

We assume a first order GMRF with zero boundary conditions for simplicity. We

refer the interested reader to the work by Moura and Balram who investigated higher

order fields and different boundary conditions for the GMRF model [2, 28]. We now

turn to the parametric representation of the inverse covariance matrix of the GMRF

model. All pixels within an image (data layer) of size K1 ×K2 are row stacked into a

column vector w. The estimation error pixels εij are arranged into a column vector

ε in a similar manner. Using this vector notation we can write (2.2) as:

Aw = ε . (2.3)

Schweizer and Moura [39] showed that the matrix A is structured and can be written

in Kronecker notation as:

A = IK1
⊗B +HK1

⊗ C (2.4)

where

B = −βhHK2
+ IK2

C = −βvIK2
. (2.5)

IK1
, IK2

are identity matrices of size K1, K2 respectively. HK1
, HK2

have ones on the

first upper and lower diagonals and zeros everywhere else. They also proved that the

error vector ε is a colored Gaussian random vector with covariance matrix Σε = σ2A

(where σ2 is a positive constant). Using (2.3) and the fact that ε is Gaussian we can
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write:

Σw = A−1ΣεA
−1

Σw = σ2A−1 ,

such that the inverse covariance matrix of w is given by:

Σ−1
w =

1

σ2
A . (2.6)

The three parameters βh, βv and σ2 fully represent the inverse covariance matrix of

w. These parameters are to be estimated for each data layer, based on the data at

hand as described in the following section.

2.2.2 Model Estimation

We now address the problem of model estimation. Let us note that due to the

sparse presence of anomalies and interference signal in the data, the influence of

the anomalies and interference signal on the parameter estimation is insignificant

and therefore can be neglected. Much work has been done on the subject of GMRF

model estimation. For example, Schweizer and Moura [39] explored three methods for

model estimation: Maximum likelihood, approximate maximum likelihood and lease

squares (minimizing the mean-square modeling error). The three methods differ in

their computational complexity and in the fact that the maximum likelihood based

approaches are parametric and thus take advantage of the Gaussian PDF of the clutter

background. It is shown there that the least squares approach is computationally and

statistically efficient. Schweizer and Moura performed least squares estimation based

on averaging of mutually independent Markov windows within the image. Here we

present an MMSE estimator (lease squares) applied to the entire image as a whole.
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In addition Schweizer and Moura selected to solve the least squares problem using

Kronecker products, we use a simpler notation by rearranging terms as described

below. In a first order GMRF model every pixel wij has four neighboring pixels.

Arranging these pixels in a row vector:

ηij =

[

wi(j−1) + wi(j+1) w(i−1)j + w(i+1)j

]

(2.7)

and lexicographically setting these vectors as rows in a matrix: X =

[

ηT
11 ηT

12 · · · ηT
K1K2

]T

yields the following representation of (2.2):

w = Xθ + ε (2.8)

where θ =

[

βh βv

]T

is a vector of the unknown GMRF parameters. Our goal is

to find θ which minimizes the mean square error: εTε. The MMSE estimation of θ

is given by:

θ̂ =
(

XTX
)−1

XTw . (2.9)

The third GMRF model parameter σ2 can be estimated using the two correlation

coefficients, by:

σ̂2 =
1

K1K2
wTAw =

1

K1K2
(Sw − 2βhχh − 2βvχv) (2.10)

where

Sw =

K1
∑

i=1

K2
∑

j=1

(wij)
2

χh =

K1
∑

i=1

K2−1
∑

j=1

wijwi(j+1)

χv =

K1−1
∑

i=1

K2
∑

j=1

wijw(i+1)j . (2.11)

This result is based on the maximum likelihood estimation presented by Schweizer

and Moura [39].
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2.3 Anomaly Detection

In this section we present our anomaly detection method. We develop a set of MSDs

operating in a colored Gaussian noise environment for the detection of anomalies in

3D data. The MSD was originally developed by Scharf and Friedlander [38] for the

detection of signals in subspace interference and additive WGN. We use a separate

MSD for each data layer thus allowing the incorporation of a priory information about

the anomalies and the data acquisition process. If a large training set of anomalies or

subspace interference is available there is a difficulty in selecting the most appropriate

examples for creating a anomaly or interference subspace of an appropriate rank. For

that purpose we suggest using a principal component analysis (PCA) based approach,

namely eigen-faces or eigen-pictures. We utilize the parametric form of the inverse

covariance matrix presented in Chapter 2.2 thus reducing the computation burden of

inverting the covariance matrix.

2.3.1 Anomaly and Interference Subspaces

Since we deal with 3D data, the anomalies are also three dimensional with a spa-

tial size L1 × L2 which is much smaller than K1 × K2 but larger than the GMRF

neighborhood. The anomaly has the same depth dimension as the data (K3 layers).

We assume the anomalies lie within a known subspace spanned by G image chips

og, g = 1, 2, · · · , G, each of size (L1 × L2 × K3). This 3D anomaly model allows us

to represent a different pattern for the anomaly in every layer. Each 3D image chip

is passed through the same KLT transform used for the 3D data. For each layer we

create a matrix H`, whose columns span the anomaly subspace in that layer. This

is done by row stacking layer ` of every image chip into a column vector and setting
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these vectors as columns in a matrix: H`, ` = 1, 2, · · · , K3.

We model the interference subspace in a similar manner. We use T image chips

st, t = 1, 2, · · · , T each of size (L1 × L2 ×K3). These image chips are passed through

the KLT transform and a matrix spanning the interference subspace of each layer

S`, ` = 1, 2, · · · , K3 is created.

2.3.2 Dimensionality Reduction Using PCA

To generalize the discussion assume that the anomaly chip has spatial size L1 × L2

as defined above and depth dimension L3 ≤ K3. When rank(H`) ≈ L`
1L

`
2L

`
3 or

rank(H`) > L`
1L

`
2L

`
3, the anomaly subspace practically spans the entire space, and

anomalies may be falsely detected everywhere within layer `. In this case dimension-

ality reduction is performed by means of a technique commonly used in computer

vision known as eigen-pictures or eigen-faces. This technique is based on PCA (also

known as KLT). PCA techniques choose a dimensionality reducing linear projection

that maximizes the scatter of all projected samples. For example, eigen-pictures are

used by Wu et al. [46] for classification of chromosome images, and by Belhumeur et

al. [3] for face recognition.

Let us consider the set of G` image chips o`
g. Consistent ordering of these anomaly

chips into column vectors creates a set of G` column vectors o`
g of size L`

1L
`
2L

`
3 × 1.

We next consider a linear transformation mapping of the original L`
1L

`
2L

`
3 dimensional

space into an M ` dimensional feature space, where M ` < L`
1L

`
2L

`
3. The new feature

vectors o
′`

g are defined by the following linear transformation:

o
′`

g = UTo`
g g = 1, 2, . . . , G` , (2.12)

where U is an L`
1L

`
2L

`
3 ×M ` matrix with orthonormal columns.
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If the total scatter matrix So is defined as:

So =

G
∑̀

g=1

(o`
g − µo)(o`

g − µo)T , (2.13)

where µo = 1
G`

G
∑̀

g=1

o`
g is the mean image of all image chips, then after applying the

linear transformation UT , the scatter of the transformed feature vectors {o′`

g }G`

g=1 is

UTSoU . In PCA, the projection U is chosen to maximize the determinant of the

total scatter matrix of the projected samples, i.e.,

U = arg max
U

|UTSoU |

= [u1u2 · · ·uM` ] (2.14)

where {ui|i = 1, 2, . . .M `} is the set of L`
1L

`
2L

`
3 dimensional eigen-vectors of So cor-

responding to the M ` largest eigenvalues. Since these eigenvectors have the same

dimension as the original images, they are referred to as eigen-pictures.

2.3.3 Three Dimensional MSD

Scharf and Friedlander [38] developed an MSD for the detection of subspace signals

in subspace interference and white Gaussian noise. Here, we introduce a set of MSDs

for the detection of signals in subspace interference and colored Gaussian noise.

Let y` represent layer `, and let y`(s) represent a pixel at spatial location s in y`.

For each pixel y`(s) we create a column vector n`(s) by row stacking an image chip

of size L1 × L2 centered around s.

Let v`(s) be a GMRF vector of size L1L2 × 1, and let φ`(s), ψ`(s) be the weight
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vectors for the interference and anomaly subspaces respectively. We define two hy-

pothesis:

H0 : n`(s) = S`φ`(s) + v`(s)

H1 : n`(s) = H`ψ`(s) + S`φ`(s) + v`(s) .

Under the two hypothesis n` is distributed as:

H0 : n`(s) ∼ N(S`φ`(s),Σv`
)

H1 : n`(s) ∼ N(H`ψ`(s) + S`φ`(s),Σv`
) .

GMRF parameter estimation (as described in Section 2.2.2) is performed for each

layer. The inverse covariance matrix of v` is calculated using the estimated GMRF

parameters. The vectors ψ`(s) and φ`(s) are estimated from the data based on

maximum likelihood (ML) and are given by (see appendix A):

H0 : φ`(s) = P0Σ
−1/2
v`

n`(s) (2.15)

H1 : [φ`(s)
T ,ψ`(s)

T ]T = P1Σ
−1/2
v`

n`(s) (2.16)

where

P0 = (ST
` Σ−1
v`
S`)

−1ST
` Σ

−1/2
v`

(2.17)

P1 = ([S`, H`]
T Σ−1
v`

[S`, H`])
−1[S`, H`]

T Σ
−1/2
v`

. (2.18)

Following the above notation we have:

H0 : v̂
(0)
` (s) = (I − S`P0Σ

−1/2
v`

)n`(s) (2.19)

H1 : v̂
(1)
` (s) = (I − [S`, H`]P1Σ

−1/2
v`

)n`(s) . (2.20)
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Since v` is a Gaussian vector with zero mean and a known structured inverse covari-

ance matrix Σ−1
v`

, the log generalized likelihood ratio (GLR) (log GLR) is:

L`(s) = 2 ln

[

Pr (v̂` (s) |H0 )

Pr (v̂` (s) |H1 )

]

=

= v̂
(0)
` (s)

T
Σ−1
v`
v̂

(0)
` (s) − v̂

(1)
` (s)

T
Σ−1
v`
v̂

(1)
` (s) =

= (Σ
−1/2
v`

n`(s))
T (Σ

−1/2
v`

[S`, H`]P1 −

−Σ
−1/2
v`

S`P0)(Σ
−1/2
v`

n`(s)) =

= (Σ
−1/2
v`

n`(s))
T (B1 − B0)(Σ

−1/2
v`

n`(s)) (2.21)

where

B0 = Σ
−1/2
v`

S`P0

B1 = Σ
−1/2
v`

[S`, H`]P1 (2.22)

are the projections into the subspaces spanned by the columns of Σ
−1/2
v`

S` and Σ
−1/2
v`

[S`, H`]

respectively. Due to the fact that the layers are uncorrelated, the log GLR based on

K3 image layers is:

L(s) =

K3
∑

`=1

L`(s) (2.23)

L(s) is a sum of squared independent normally distributed variables. Muirhead [29]

shows that under these conditions L(s) is chi-square distributed with q = K3·rank(H)

degrees of freedom:

H0 : L(s) ∼ χ2
q(0)

H1 : L(s) ∼ χ2
q(λ)
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where:

λ =

K3
∑

l=1

(Σ
−1/2
v`

H`ψ`)
T (B1 −B0)(Σ

−1/2
v`

H`ψ`) =

=

K3
∑

l=1

(Σ
−1/2
v`

H`ψ`)
T (I − B0)(Σ

−1/2
v`

H`ψ`) . (2.24)

λ is the ratio between the energy of the signal which does not lie in the interference

subspace and the variance of the noise, and can therefore be regarded as a measure

of SNR. If no interference subspace is assumed, such that S = 0, then P0 = 0 and

B0 = 0. In this case λ =
K3
∑

l=1

(H`ψ`)Σ
−1
v`

(H`ψ`)
T and is the ratio between the signal

energy and the noise variance.

The decision at every spatial location is performed by thresholding L(s). The

threshold γ is chosen such that it would satisfy the desired detection and false alarm

probabilities:

PFA = 1 − P [χ2
q(0) ≤ γ]

PD = 1 − P [χ2
q(λ) ≤ γ] .

2.4 Experimental Results

In this section we demonstrate the performance of our anomaly detection approach

by applying it to the detection of of defects in wafer images, and to the detection of

discontinuities in 3D seismic data.

2.4.1 Defect Detection in Silicon Wafers

The wafer 3D data is composed of 3 layers. Each layer is taken from a different

perspective (right angle, left angle, and top). The three layers are perfectly aligned.
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The 3D data is of size 128 × 128 × 3. Figures 2.1(a)-(c) show the three layers of the

wafer image. The defect size is approximately 3 × 3 pixels. We use L1 = L2 = 3.

The anomaly subspace is constructed from 3 image chips. We did not use real defects

for the anomaly image chips, but rather simple bar shape structures in each layer.

The results of the proposed anomaly detection algorithm (without thresholding) are

presented in Figure 2.1(d). Correct detection is apparent from the image (the small

target like symbol marks the detection location. To increase contrast in the detection

image, we performed gamma correction on the displayed detection image. We chose

to compare our results with those of Goldman and Cohen [13] and with those of

the RX algorithm presented in Chapter 1.1.3. In order to implement the Goldman-

Cohen algorithm we perform detection in each of the three image layers separately.

A multiresolution representation of each image layer is achieved by means of an

undecimated wavelet transform. The image chips used for detection are identical to

those used in our algorithm for anomaly subspace creation. The results for each of

the three original image layers of Figures 2.1(a)-(c) are presented in Figures 2.2(a)-

(c) respectively. The gamma correction applied to image 2.1(d) is applied here as

well to increase contrast. Detection is only achieved for Figure 2.2(a) and 2.2(c). In

Figure 2.2(a) there are also several false alarms. In Figure 2.2(b) only false alarms

are detected. Since it is not known a priory, which of the image layers would produce

accurate results, using the Goldman-Cohen algorithm creates a problem of choosing

the image to use. Heuristically trying to add the three detection images results in the

detection image presented in Figure 2.2(d). Although positive detection is achieved a

false alarm also occurs. This demonstrates the advantage of using all available input

data (in this case all three image layers) compared to using a single image layer. We

next compare our results with those of the RX algorithm presented in Chapter 1.1.3.
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Unlike the Goldman-Cohen algorithm the RX algorithm was designed to deal with

hyperspectral data, and thus is expected to produce adequate results for the multi-

layered wafer image presented here. The RX algorithm is implemented here without

a training set, such that Nref = 0 and the clutter mean and covariance matrix are

estimated from the image itself, under the assumption that the contribution of the

anomalies to the calculation is negligible. Detection results for the RX algorithm are

presented in Figure 2.3. Although positive detection is achieved, a false alarm also

occurs. The potential advantage of the proposed method is apparent.

2.4.2 Fault Detection in Seismic Data

We use real life seismic data (from the Gulf of Mexico). The data is a 3D lattice of

size 201×201×226. We pre-process the data in a similar manner to that suggested by

Cohen and Coifman [8]: A small analysis cube of size 4× 4× 15 moves through every

spatial location in every data layer. At each location, the analysis cube is partitioned

into 4 sub-cubes each of size 2 × 2 × 15. The sub-cubes are arranged in a consistent

fashion into 4 column vectors. A correlation matrix of the 4 vectors is calculated. The

lower triangle coefficients of the correlation matrix are formed into a column vector

of size 6 × 1. In this manner each data layer of size 201 × 201 × 1 is turned into a

201× 201× 6 lattice. Detection is performed independently on each such lattice. We

first perform the KLT transform described in Section 2.2.1. The 6 layers are highly

correlated, therefor after the KLT transform has been applied, we only use the layer

corresponding to the largest eigenvector, and neglect all other layers (K3 = 1). We

use the detection method described in Section 2.3 on the single layer data. The signal

subspace is constructed from a single image chip of size 1 × 5, which describes a bar

shape. Figure 2.4 shows a horizontal slice of the original data, and the results of the
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(a) (b)

(c) (d)

Figure 2.1: Detection results in silicon wafers: (a)-(c) The three layers of the
original image; (d) Anomaly detection.
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(a) (b)

(c) (d)

Figure 2.2: Defect detection in silicon wafers using the algorithm suggested by
Goldman and Cohen: (a)-(c) detection results for layers 1-3 respectively;

(d) Heuristic sum of detection results in all layers.
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Figure 2.3: Defect detection in silicon wafers using the RX algorithm.

(a) (b)

Figure 2.4: Detection of faults in seismic data: (a) Horizontal slice of the 3D seismic
data; (b) Anomaly detection.

anomaly detection algorithm (without thresholding).

2.5 Conclusion

In this chapter, we have presented an anomaly detection approach for three dimen-

sional data. We presented a detector constructed from a set of MSDs working in a

colored noise environment modeled as a GMRF. Each MSD is utilized to perform
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anomaly detection in a single image layer. Using MSDs allows us to incorporate into

the signal subspace a-priory information about the sensors used to capture the data

and about the anomalies. We used a different MSD for each data layer, thus allowing

for maximal use of a priory information. Incorporating such information potentially

produces improved detection results. We demonstrated the proposed approach on two

applications: detection of defects in wafer images, and detection of faults in real life

seismic data. We compared our results with the RX algorithm designed for dealing

with layered data and with the Goldman-Cohen algorithm designed for single layer

data. Although our results show the potential of the proposed approach, using the

GMRF may be inappropriate for some images, specifically, images characterized by

a heavy tailed distribution cannot be statistically well modeled by a Gaussian dis-

tribution. In addition, if the images are characterized by clustering of innovations,

that is, areas (sets of clustered pixels) in which there are large changes, and areas in

which there are only minor changes may also be poorly represented by the GMRF

model. This is true for both single and multi-layered data. In the following chapter we

present a statistical model for multidimensional data, which is capable of capturing

the above mentioned phenomena.



Chapter 3

GARCH Random Field Modeling

3.1 Introduction

Two common phenomena of often used feature spaces are heavy tails of the probability

density function of the features (known as excess kurtosis) and volatility clustering (a

property of many heteroscedastic stochastic processes, which means that large changes

tend to follow large changes and small changes tend to follow small changes). In par-

ticular, the wavelet transform, which is often used as a feature space in applications

dealing with natural images, yields wavelet coefficients that show excess kurtosis.

Spatial and scale-to-scale statistical dependencies of wavelet coefficients also exist.

That is, coefficients of large magnitudes tend to appear at close spatial locations

and at adjacent scales and orientations. Srivastava [41] explains that the strongest

evidence of non-Gaussianity of image comes from the observed histograms: heavier

tails than Gaussian (implying larger kurtosis), sharp cusps at the center and higher

correlation at different scales. Willsky [44] discusses non-Gaussian models to capture

the ”heavy tails” nature of a wavelet representation of imagery. Mallat [23] discusses

64
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the histogram of the detail image in the wavelet domain and presents an experiment-

ally obtained histogram model, which is not Gaussian. Buccigrossi and Simoncelly [6]

explain the non-Gaussian statistics of wavelet subband coefficients in that images typ-

ically have spatial structure consisting of smooth areas interspersed with occasional

edges or other abrupt transitions. The smooth regions lead to non-zero coefficients,

and the structures give occasional large-amplitude coefficients. Commonly used fea-

ture space statistical models, such as the GMRF presented in the previous chapter,

may not sufficiently describe the feature space. Detection algorithms based on these

models may result in high false alarm rates due to the inadequacy between the model

and the data.

Bollerslev [5] introduced the 1D GARCH ,which is often used as a statistical model

for time series. It is an extension to the ARCH model introduce by Engle [9]. The

GARCH model allows for the conditional variance to change as a function of past

squared field values and past conditional variance values. This behavior creates a

heavy tailed distribution characterized by clustering of innovations. The 1D GARCH

has been shown to be useful in modeling different economic phenomena. In this

chapter we introduce an extension of the GARCH model to the general case of ND.

This may be a more suitable statistical model for multidimensional data characterized

by the two phenomenons mentioned above. For a given 2D image we propose a

3D multiresolution feature space. This feature space will be used in Chapter 4 for

anomaly detection. We assume that our feature space follows a 3D GARCH model,

that is, the conditional variance at every location within the feature space depends on

squared field values and conditional variance values of neighboring locations, where

the neighborhood is 3D.

This chapter is organized as follows: In Section 3.2 we define the ND GARCH
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model. In Section 3.3 maximum likelihood GARCH model estimation is presented.

In order to guarantee bounded variance for an infinite GARCH lattice, conditions

for wide sense stationarity (WSS) of the GARCH model are presented. In Section

3.4 the proposed wavelet based feature space is presented and its statistical model is

discussed.

3.2 N Dimensional GARCH Model Definition

Let q = (q1, q2, . . . , qN ), qi ≥ 0, i = 1, . . . , N ; p = (p1, p2, . . . , pN), pi ≥ 0, i =

1, . . . , N denote the order of an ND GARCH model, and let Γ1 and Γ2 denote two

neighborhood sets, such that:

Γ1 = {k | 0 ≤ ki ≤ qi, i = 1, . . . , N andk 6= 0}

Γ2 = {k | 0 ≤ ki ≤ pi, i = 1, . . . , N andk 6= 0} .

Define an ND index vector i = (i1, i2, . . . , iN). Let εi represent a random variable

on an ND lattice, and let hi denote its variance conditioned upon the information

set ψi = {{εi−k}k∈Γ1
, {hi−k}k∈Γ2

}. Define the ND causal neighborhood of location

i as: Γ = Γ(i) = {k | kj ≤ ij, j = 1, . . . , N} and let ηi
iid∼N(0, 1) be another random

variable on an ND lattice independent of {hk}k∈Γ. An ND GARCH(p;q) process is

defined as:

εi =
√

hi ηi (3.1)

hi = α0 +
∑

k∈Γ1

αkε
2
i−k

+
∑

k∈Γ2

βkhi−k (3.2)

and is therefore conditionally distributed as:

εi | ψi ∼ N(0, hi) . (3.3)
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In order to guarantee a non-negative conditional variance the model parameters must

satisfy:

α0 > 0

αk ≥ 0, k ∈ Γ1

βk ≥ 0, k ∈ Γ2 . (3.4)

From (3.2) we see that at every location i, both the ND neighboring squared field

values and the ND neighboring conditional variances play a role in the current con-

ditional variance. This yields clustering of variations, which is an important charac-

teristic of the GARCH process.

A special case of the GARCH model is when q = p = 0. In this case εi is simply

WGN. Another worth noting case is when N = 1, that is: q = q1 and p = p1 in

which case the multidimensional GARCH model resorts to the 1D GARCH model

introduce by Bollerslev [5].

Note that although causality may seem an unnatural model limitation, it is a

means of guaranteeing non negativity of the conditional variance in the above model

(see Appendix B for more details). The causality of the model may lead to different

results depending on the image orientation. This is demonstrated in Section 4.4.2.

Depending on the application and on the data at hand, it may be appropriate to

consider more than one image orientation when performing anomaly detection based

on the casual GARCH model.
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3.3 Estimation of an N-D GARCH Model

In this section we find a maximum likelihood estimate for the GARCH model. We let

εi be innovations of a linear regression on an ND lattice, where yi is the dependent

variable, xi a vector of explanatory variables and b a vector of unknown parameters,

such that:

εi = yi − ui , (3.5)

where ui = xT
i
b.

Note that if εi in (3.5) is WGN (as described in Section 3.2) the regression model

is a casual GMRF. This is a special case of the GARCH process.

Using (3.5) we can write (3.2) as:

hi = α0 +
∑

k∈Γ1

αk(yi−k − ui−k)
2

+
∑

k∈Γ2

βkhi−k . (3.6)

The conditional distribution of yi is Gaussian with mean ui and variance hi,

f(yi | ui, ψi) =
1√
2πhi

exp

(

−(yi − ui)
2

2hi

)

. (3.7)

Let δ denote a column vector of the GARCH model parameters,

δ = [α0,α,β]T

and define four neighborhood column vectors associated with location i: εi, hi, yi,

ui. These vectors represent consistent ordering into a column vector of the random

fields elements: {εi−k}k∈Γ1
, {hi−k}k∈Γ2

, {yi−k}k∈Γ1
, {ui−k}k∈Γ1

respectively.

We further define

zi = [1, (εT
i
)·2,hT

i
]T =

= [1, (yT
i
− uT

i
)·2,hT

i
]T ,
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where ()·2 represents squaring element by element. Using the above notation the

conditional variance in (3.6) can be written as:

hi = [zi]
Tδ . (3.8)

Define the sample space Ωs as an ND lattice of size K1 × K2 × · · · × KN such

that: Ωs = {i | 1 ≤ ij ≤ Kj, j = 1, . . . , N} and let θ = [bT , δT ]T be a vector of the

unknown parameters. The conditional sample log likelihood is:

L(θ) =
∑

i∈Ωs

log f(yi | xi, ψi) =

= −1

2

[

(K1 + · · · +KN)log(2π) −
∑

i∈Ωs

log([zi]
Tδ)+

−
∑

i∈Ωs

(yi − ui)
2/([zi]

Tδ)

]

. (3.9)

Equation (3.9) together with the constraints in (3.4) may seem enough to estimate

model parameters. However, due to the structure of the conditional variance (3.2),

WSS is a necessary condition for guarantying bounded variance for an infinite lattice,

and therefore conditions for WSS should be included in the model estimation process.

Bollerslev [5] proves that a sufficient condition for WSS of the 1D GARCH process is

that the sum of all model parameters is smaller than 1. We [32] have extended this

results for the 2D GARCH process. A similar result is obtained here for the ND case

as we prove in the following theorem.

Theorem 1 The GARCH(p;q) process as defined in (3.1) and (3.2) is wide-sense

stationary with:

E(εi) = 0

var(εi) = α0

[

1 −
∑

k∈Γ1

αk −
∑

k∈Γ2

βk

]−1

cov(εi, εk) = 0, ∀i 6= k ,



CHAPTER 3. GARCH RANDOM FIELD MODELING 70

if and only if

1T (α+ β) ≤ 1 ,

where α and β are column vectors of the parameter sets {αk}k∈Γ1
and {βk}k∈Γ2

respectively.

Proof: See Appendix C.

The parameter vector θ is found by numerically solving a constrained maximiza-

tion problem on the log likelihood function with respect to the unknown parameters

(see for example the work by Berndt et al. [4]). The constraints used are those

presented in (3.4) and in Theorem 1. To solve the maximization problem, knowledge

of εi and hi where i1, . . . , iN ≤ 0 is required. We set these boundaries in a similar

way to that used by Bollerslev for the 1D case [5] and by us for the 2D case [32] such

that:

εi = hi =
1

N
∏

`=1

K`

∑

k∈Ωs

(yi − ui)
2; ∀ i1, . . . , iN ≤ 0 . (3.10)

Since GARCH model estimation requires an iterative procedure to solve the con-

strained maximization problem presented above it may be desirable to test if it is

appropriate before going into the effort of estimating it. Several tests have been pro-

posed for the 1D GARCH model (see for example Bollerslev [5] and Engle [9]). The

problem of testing for GARCH and model order estimation is beyond the scope of

the current work and may be the subject of future research.

3.4 Statistical Model in the Wavelet Domain

In this section we present the wavelet based multiresolution feature space. The sug-

gested multiresolution feature space is an example of a multidimensional feature space
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that can be statistically modeled using the proposed GARCH model. Let Y be a 2D

image of size K1×K2. We use an undecimated wavelet transform into z levels to cre-

ate a multiresolution representation of Y . The undecimated wavelet transform yields

4 subband images at every analysis level. These 4 subband images are labeled di
LH ,

di
HL, di

HH and si
LL, where the subscripts L, H stand for low and high pass filtering

respectively, d labels a detail subband, s represents the ”smooth” subband and the

superscript i specifies the analysis level. The undecimated wavelet transform yields a

redundant representation. However, the same analysis and synthesis filters are used

as in the decimated wavelet transform, and since the transform preserves the spatial

dimensions, it is easy to work with. Furthermore, the undecimated wavelet transform

has an additional property, namely translation invariance, which is important in the

context of anomaly detection. Strickland [43] used the subband images of an unde-

cimated wavelet transform to create a 3D lattice Y of size K1 ×K2 × (2 ∗ z + 1) by

creating a feature vector at every spatial location (i1, i2):

εi1,i2 = [d1
LH + d1

HL, d
1
HH, d

2
LH + d2

HL, d
2
HH , . . . , d

z
LH + dz

HL, d
z
HH , s

z
LL]T(i1,i2)

. (3.11)

Depending on the application and on the anomalies and clutter characteristics, it

may be more appropriate to use each subband image as a separate feature, yielding

a 3D lattice Y of size K1 ×K2 × (3 ∗ z + 1). If such an approach is selected then the

following represents the vector at every spatial location (i1, i2):

εi1,i2 = [d1
LH , d

1
HL, d

1
HH , d

2
LH, d

2
HL, d

2
HH , . . . , d

z
LH , d

z
HL, d

z
HH, s

z
LL]T(i1,i2)

. (3.12)

The transformation from Y to Y generates a multiresolution representation with

K3 layers, where K3 = 2 ∗ z + 1 or K3 = 3 ∗ z + 1 depending on the selected feature

vector (3.11) or (3.12) respectively.
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As discussed in the introduction, it has been noted by researchers that the dis-

tribution of wavelet coefficients of natural images is characterized by heavier tails

than the often applied Gaussian distribution. It is also argued that spatial and scale-

to-scale statistical dependencies of wavelet coefficients exist. That is, coefficients of

large magnitudes tend to appear at close spatial locations and at adjacent scales and

orientations. We assume that there is a set of wavelet filters such that Y follows a

3D GARCH model.

3.5 Conclusion

The GARCH statistical model is a heavy tailed distribution characterized by cluster-

ing of innovations. It is of interest since a heavy tailed distribution and clustering of

innovations are common characteristics of image multiresolution representations, and

thus cannot be well modeled by often used Gaussian based statistical models such as

the GMRF. In this chapter we have extended the 1D GARCH model into the mul-

tidimensional case, and proposed a maximum likelihood model estimation scheme.

Conditions for WSS of the model were presented to ensure bounded conditional vari-

ance for unlimited feature space dimensions. We presented an undecimated wavelet

multiresolution representation and assumed clutter modeling can be based on a 3D

GARCH model, thus allowing for correlation between pixels of different spatial and

depth locations within the 3D data cube. An appropriate subspace anomaly detector

is developed for the proposed feature space and statistical model in the following

chapter.



Chapter 4

Multiscale Anomaly Detection

4.1 Introduction

Many anomaly detection algorithms have been developed over the years. A short

review of some of the most common anomaly detection algorithms is presented in

Chapter 1. Markou and Singh [26] published a comprehensive review of statistical

approaches to detection. There is a strong connection between the selection of fea-

ture space, clutter statistical model, anomaly model and the detection algorithm. In

this chapter we develop an anomaly detector, which is based on modeling the un-

decimated wavelet transform image feature space (presented in Section 3.4) as a 3D

causal autoregressive model with GARCH innovations. Scharf and Frienlander [38]

developed an MSD for the detection of signals in subspace interference and additive

WGN. Here we develop a set of multiscale MSDs operating in subspace interference

and additive GARCH noise. For every scale and orientation in the wavelet domain

(referred to as feature space layers) a separate anomaly subspace is used, thus allowing

for better incorporation of a priory information into the process. Our multiscale MSD

73



CHAPTER 4. MULTISCALE ANOMALY DETECTION 74

approach takes into consideration the fact that not all feature space layers contribute

uniformly to the detection process. It allows for selection of the most relevant layers,

where the relevance criteria is application dependent and independent of the detection

algorithm. The potential advantages of the proposed approach are demonstrated by

synthetic and real data examples.

As an input point into the development of the proposed detector let us note the

following: we assume that the anomalies and interference signals are sparse within

the image and therefore their influence on the model estimation and on the estimated

conditional variance field is negligible. GARCH model estimation is performed as

described in Section 3.3. The conditional variance field hi1,i2,i3 is calculated based

on the estimated model parameters using (3.2) and (3.10) and is later used in our

detection process. We next turn to present our multiscale MSD anomaly detection

approach.

4.2 Anomaly and Interference Subspaces

Our anomaly detection approach introduces a designated, best fit multiscale anomaly

subspace for each feature space layer. The anomaly subspaces for different layers can

be based on different anomaly dimensions. This results in greater adaptivity of the

anomaly subspace to the wavelet feature space and improves incorporation of a priory

information, thus potentially reducing the false alarm rate of the detection algorithm.

The anomaly subspace for layer ` is spanned by a training set of G` anomaly chips.

The anomaly chips are denoted: o`
g, g = 1, 2, · · · , G` and are each of size L`

1×L`
2×L`

3

where: L`
1 � K1, L

`
2 � K2 and L`

3 ≤ K3. To create these anomaly chips we may

start with a training set of images containing anomalies at known image locations.
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These images are passed through the process of undecimated wavelet transform and

an anomaly chip of size L`
1×L`

2×L`
3 is cut out around the spatial center of the anomaly

and layer `. Alternatively we may try to create these anomaly chips synthetically by

using prior knowledge. Each anomaly chip is reshaped in a consistent order into a

column vector of size L`
1L

`
2L

`
3×1. The G` vectors associated with layer ` are arranged

as columns in a matrix H`, such that the columns or H` span the anomaly subspace

for layer `. This procedure is performed for every layer ` = 1, . . . , K3.

When the number of available image chips for a certain layer is high, such that

rank(H`) ≈ L`
1L

`
2L

`
3, the subspace practically spans the entire space, and anomalies

may be falsely detected everywhere within layer `. In this case dimensionality reduc-

tion using PCA is utilized (see Section 2.3.2 for more details).

An interference subspace is modeled in a similar manner using T` subspace chips

s`
t, t = 1, 2, · · · , T` each of size L`

1 × L`
2 × L`

3. A matrix spanning the interference

subspace S` is created accordingly.

4.3 Multiscale Matched Subspace Detection

In this section we introduce an anomaly detection approach based on an MSD and the

multidimensional GARCH statistical model presented above. Scharf and Frienlander

[38] developed an MSD for the detection of signals in subspace interference and ad-

ditive WGN. Here the underlying statistics is more appropriate for the background

clutter. We derive a modified MSD operating in subspace interference and additive

GARCH noise.

Let y(`, s) represent a pixel at layer ` and spatial location s in the 3D lattice Y.

For each pixel y(`, s) we create a column vector y(`, s) by row stacking an image chip
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of size L`
1 × L`

2 × L`
3 centered around (`, s). Let ε(`, s) be a result of row stacking a

chip of a GARCH field of size L`
1×L`

2×L`
3 centered around (`, s). Similarly let u(`, s)

be a vector representing the explanatory variable field
(

xT
i1,i2,i3

b
)

in the L1 ×L2 ×L3

neighborhood of (`, s). Let φ(`, s), ψ(`, s) be vectors locating the interference and

anomaly within their subspaces < S` >= span{S`}, < H` >= span{H`} respectively.

We define two hypotheses, H0 and H1, which represent absence and presence of an

anomaly respectively:

H0 : y(`, s) = S`φ(`, s) + u(`, s) + ε(`, s)

H1 : y(`, s) = H`ψ(`, s) + S`φ(`, s) + u(`, s) + ε(`, s) . (4.1)

Let h(`, s) represent a row stack of the conditional variance field hi1,i2,i3 around (`, s),

and let Σ(`, s) be a diagonal matrix whose main diagonal equals the elements of

h(`, s). Under the two hypotheses the sample conditional distribution of y(`, s) is

Gaussian with identical covariance matrices and with different means:

H0 : y(`, s) ∼ N(S`φ(`, s) + u(`, s),Σ(`, s))

H1 : y(`, s) ∼ N(H`ψ(`, s) + S`φ(`, s) + u(`, s),Σ(`, s)) .

Note that although Σ(`, s) is a diagonal matrix, the vector elements in y(`, s) are

only conditionally uncorrelated. Unconditionally, these vector elements are correl-

ated, such that correlation within and between layers plays a role in our detection

algorithm. Define PS`
as the projection into the subspace spanned by the columns of

S`, and define PH`S`
as the projection into the subspace spanned by the columns of

the concatenated matrix [H`S`], that is:

PS`
= S`(S

T
` S`)

−1ST
`

PH`S`
= [H`S`]

(

[H`S`]
T [H`S`]

)−1
[H`S`]

T . (4.2)
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From (4.1) and (4.2) we find the GARCH innovations field under any one of the

hypotheses:

H0 : ε0(`, s) = y(`, s) − u(`, s) − S`φ(`, s) =

= (I − PS`
)[y(`, s) − u(`, s)] (4.3)

H1 : ε1(`, s) = y(`, s) − u(`, s) − S`φ(`, s) −H`ψ(`, s) =

= (I − PH`S`
)[y(`, s) − u(`, s)] . (4.4)

The conditional likelihood function of ε under any one of the hypotheses is:

H0 : `0(`, s) = (2π)−L`
1
L`

2
L`

3
/2 | Σ(`, s) |−1/2

× exp

[

−1

2
ε0(`, s)

TΣ(`, s)−1ε0(`, s)

]

(4.5)

H1 : `1(`, s) = (2π)−L`
1
L`

2
L`

3
/2 | Σ(`, s) |−1/2

× exp

[

−1

2
ε1(`, s)

TΣ(`, s)−1ε1(`, s)

]

,

where | Σ(`, s) | denotes the determinant of Σ(`, s).

The GLR is defined as:

L(`, s) = 2 log

(

`1(`, s)

`0(`, s)

)

, (4.6)

Substituting (4.5) into (4.6) yields:

L(`, s) = ε0(`, s)
T Σ(`, s)−1ε0(`, s) − ε1(`, s)T Σ(`, s)−1ε1(`, s) =

= [(PH`S`
− PS`

)(y(`, s) − u(`, s))]T Σ(`, s)−1

× [(PH`S`
− PS`

)(y(`, s) − u(`, s))]

=
[

Σ(`, s)−1/2(y(`, s) − u(`, s))
]T

(PH`S`
− PS`

)

×
[

Σ(`, s)−1/2(y(`, s) − u(`, s))
]

. (4.7)
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The SNR is the ratio between the signal and the noise in terms of intensity. We

define the point SNR as the ratio between the energy of the signal which does not

lie in the interference subspace [(H`ψ(`, s))(I − PS`
)]T [(H`ψ(`, s))(I − PS`

)] and the

innovations’ conditional variance Σ(`, s), such that:

SNR(`, s) = [(H`ψ(`, s))(I − PS`
)]T Σ(`, s)−1 [(H`ψ(`, s))(I − PS`

)] . (4.8)

The GLR is a sum of squared conditionally independent normally distributed

variables and therefore is conditionally chi-square distributed with µ` = rank(H`)

degrees of freedom, as follows:

H0 : L(`, s) ∼ χ2
µ`

(0)

H1 : L(`, s) ∼ χ2
µ`

(SNR(`, s)) . (4.9)

Under hypothesis H1, the non-centrality parameters of the chi-square distributions of

L(`, s) is equal to the SNR.

The GLR is a 3D lattice. Our goal is to unify the detection results for mul-

tiple layers into a single 2D detection image corresponding to the original image in

size. Since not all layers of the feature space usually contribute the same amount

of information to the detection process it may be beneficial to use only a subset of

the layers. Criteria for selecting the subset of layers is application dependent. This

selection can be made a priory thus reducing the computational complexity of the

proposed method, or it can be made based on in-process data such as layers with

highest average SNR, highest point SNR, etc, in which case the decision can only be

made after some calculations have been made. Define the selected subset of layers as:

Ω ⊂ {1, 2, . . . , K3} such that the final detection image is:
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D(i1, i2) =
∑

k∈Ω

L(i1, i2, k); ∀i1, i2 . (4.10)

The elements summed in (4.10) are in general statistically dependent. This is

due to the 3D neighborhood used to create y(`, s). However, under certain condi-

tions, these elements are conditionally statistically independent. We discuss two such

private cases of the general case in (4.10). In the first case layer ` of the GLR is

selected and used as the detection image, that is Ω = {`} such that:

D(i1, i2) = L(i1, i2, `); ∀i1, i2 . (4.11)

Depending on the application and available a priori information, different se-

lections of ` may be appropriate. For example, if L3 = K3 such that the anomaly

subspace and the feature space have the same depth dimension, it may be appropriate

to select ` =
⌊

K3

2

⌋

+ 1 where
⌊

·

·

⌋

stands for integer division.

In the second case Ω consists of p layers, which are mutually further apart than

the corresponding depth dimension of the 3D neighborhoods L`
3, ` ∈ Ω. If p = 1 this

reduces to the first case. For example, consider K3 = 7 and {L`
3 = 3, ∀`}. Choosing

Ω = {2, 6} would yield conditionally independent layers in (4.10).

Detection is performed by applying a threshold η to D(i1, i2) yielding:

D(i1, i2)
H1

>
<
H0

η , (4.12)

The threshold is determined by the tradeoff between the desired conditional de-

tection and false alarm rates. For the case where independent layers are used, these

rates can be calculated by:

PFA = 1 − P

[

χ2�
k∈Ω

µk
(0) ≤ η

]

(4.13)
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PD = 1 − P

[

χ2�
k∈Ω

µk

(

∑

k∈Ω

SNRk

)

≤ η

]

. (4.14)

These rates cannot be easily found for the general case due to the conditional stat-

istical dependence of the elements summed in (4.10). However, computer simulations

can present receiver operating characteristics (ROC) curves for the general case as we

present next, when discussing the performance of the proposed detection approach.

Performance analysis: We shall first look into the performance of a single layer

detection. Figure 4.1(a) presents ROC curves for different values of the SNR. These

curves were generated using µl = 4 and the SNR was varied from 2 to 8 in steps of

2. The values of PFA and PD were calculated using (4.13) and (4.14) respectively.

As expected the detection rate increases with the SNR. Figure 4.1 (b) presents ROC

curves for different anomaly subspace ranks (different number of degrees of freedom)

while the SNR is preserved at a constant value. It is clearly seen that for a con-

stant SNR the detector’s performance increases with decreasing rank of the signal

subspace. This is expected since as the anomaly subspace rank increases (under the

constant SNR constraint) it is more likely for a false alarm to occur since the an-

omaly subspace covers a larger portion of the feature space. It is important to note

that usually, in real applications, increasing the signal subspace rank results in an in-

crease of the SNR. We next discuss the case of conditionally statistical independent

layers. Figure 4.1 (c) compares the ROC curve of a single layer detection (p = 1)

with those of conditionally statistical independent layers (p = 2, 3, 4). The values of

PFA and PD were calculated using (4.13) and (4.14). We assumed a constant SNR

for all layers and an identical anomaly subspace rank for all layers. It is clear that

additional independent layers improve the detector’s performance. This improvement

is due to the additional information concealed in every additional independent layer.
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ROC curves for the general case, where the sum in (4.10) contains dependent layers,

are presented in Figure 4.1 (d). These curves are generated by computer simulations

under similar assumptions to those used for generating Figure 4.1 (c) (constant SNR

and identical anomaly subspace ranks for all layer). The ROC curve for the former

case of 2 conditionally independent layers is also presented for comparison. To gen-

erate Figure 4.1 (d) we used µk = 3 ; ∀k ∈ Ω such that the ROC curve representing

two independent layers is based on information from 6 different layers. For the ROC

curve representing 2 dependent layers we chose to use information from only 5 dif-

ferent layers (Ω = 2, 4). This explains the apparent advantage of the 2 independent

layers over the 2 dependent layers. However, under certain conditions for example

K3 = 8 and L`
3 = 3 ; ∀` ∈ Ω, if we wish to choose independent layers, the maximum

value of p is 2 (6 layers are used in the detection process). Under such conditions it

appears that using a larger number of dependent layers (for example p = 6 such that

Ω = {2, 3, 4, 5, 6, 7} and 8 layers are used in the detection process) may be beneficial

as seen in the ROC curves of Figure 4.1 (d). The clear advantage of using dependent

layers with p = 6 over using independent layers with p = 2 is due to the fact that

information from more than 6 layers is used. We also note that potentially, the an-

omaly subspace used for the additional dependent layers may contribute information

to the detection process. Similarly, the ROC curve for the case of p = 7 is presented

in Figure 4.1 (d) to show that the larger the number of dependent layers the better

the detector’s performance.
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Figure 4.1: ROC curves of: (a) A single layer detector for different values of SNR;
(b) A single layer detector for different anomaly subspace ranks; (c) A single layer
detector and an independent layers detector; (d) A dependent layers detector vs.

an independent layers detector
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4.4 Experimental Results

In this section we demonstrate the performance of the proposed anomaly detection

approach on synthetic and real data.

4.4.1 Synthetic Data

We demonstrate the performance of the multiscale MSD on the synthetic data presen-

ted in Figure 1.8, which exactly matches our model assumptions, and qualitatively

investigate the detection performance for different selections of Ω. The GARCH data

in Figure 1.8 was generated using the regression and GARCH parameters shown

in Tables 4.1 and 4.2, respectively. The regression parameters are of low values so

that the GARCH behavior can be easily detected in the examples. The sum of the

GARCH parameters is 1T (α+ β) = 0.98 such that the condition stated in Theorem

1 is satisfied. The parameters values in α compared to those in β allow the neigh-

boring square field values to have a larger influence on the conditional variance than

the neighboring conditional variances. A 7 × 7 random, Gaussian shaped anomaly,

is planted to the lower left of the image center in all layers of the synthetic image as

can be seen in 1.8(f) for example. Note that the anomaly does not stand out in all

layers, specifically in Figures 1.8(d) and 1.8(g) it can hardly be noticed. As described

above, the clutter clearly contains areas of clustered variations. These areas may gen-

erate high rate of false alarms when conventional GMRF based anomaly detection

algorithms are deployed, as we have previously demonstrated for the 2D case [32].

For anomaly detection we set the anomaly size to L1 = L2 = 7, L3 = 3 and create

an anomaly subspace using 4 image chips. No interference subspace is assumed. We

perform parameter estimation as described in Section 3.3 and anomaly detection as
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Parameter b0 b110 b100 b010
value 0 0.05 0.03 0.04

Table 4.1: Regression Parameters Used for Generating Synthetic Image

detailed in Section 4.3. Figure 4.2 shows layers 2− 6 of the GLR. Layers 1 and 7 are

not considered here since they suffer from boundary effects due to the 3D nature of

the anomaly subspace. The target mark on each detection image shows the detection

result when Ω contains this layer only. Note that positive detection is achieved in

all layers, while layer 6 includes a false alarm. Figure 4.3 (a) shows detection results

when performing detection using layers 2 and 6, that is Ω = {2, 6} and L3 = 3. These

two detection layers are conditionally statistically independent and the detection im-

age is achieved using (4.10). Once again the anomaly is clearly detected. Figure 4.3

(b) presents the results where Ω includes dependent layers 2− 6 and L3 = 3. The 2D

detection result is achieved by means of (4.10). The detection of Figure 4.3 (b) seems

clearer than that of Figure 4.3 (a), which qualitatively demonstrates the potential

of using dependent layers. Figure 4.3 (c) presents the detection result for the same

synthetic data as above, only here Ω = {4} and L3 = K3 = 7, that is, we have used

a 7 layers anomaly subspace and the detection image is layer 4 of the GLR. Due to

the choice of Ω = {4} and the fact that the anomaly and feature subspaces have the

same depth dimension, information from all layers is used in the detection process.

The anomaly is clearly detected, and it seems that this detection image is clearer

than those presented earlier. For detection in real images, presented next, we use a

single layer of the GLR with L3 = K3 and Ω =
{⌊

K3

2

⌋

+ 1
}

.
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Parameter α0 α110 α100 α010 α101 α111 α011 α001

value 0.002 0.1 0.2 0.2 0.2 0.02 0.02 0.02

Parameter β110 β100 β010 β101 β111 β011 β001

value 0.1 0.02 0.02 0.02 0.02 0.02 0.02

Table 4.2: GARCH Parameters Used for Generating Synthetic Image

(a) (b) (c)

(d) (e)

Figure 4.2: Layers 2-6 of the GLR with detected anomalies marked by a dark target
sign

(a) (b) (c)

Figure 4.3: Detection using a sum of GLR layers: (a) Independent layers 2 and 6;
(b) Dependent layers 2-6; (c) Layer 4 of the GLR using a 7 layers anomaly subspace.
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4.4.2 Real Data

The following examples demonstrate the potential of the proposed anomaly detection

approach on real sea-mine sonar images. Automatic detection of sea-mines in side-

scan sonar imagery is a challenging task due to the high variability of the target and

seabottom reverberation (background). An example of this variability can be seen

in the top row of Figure 1.6, which shows 3 sea-mine sonar images. Mignotte et

al. [27] present a two phase, three-class Markovian segmentation algorithm for the

detection of sea mines in side-scan sonar. In the first phase the data is segmented

into two classes: shadow and reverberation, where the latter consists of both echo

and seabottom reverberation regions. In the second phase the reverberation class

is segmented into two classes: sea-bottom reverberation and echo. Reed et al. [35]

present a three phase procedure for detecting sea-mines in side-scan sonar data. In

the first stage suspected mine objects are detected. The shadow cast by the mine

is extracted in the second stage. In the third stage, shadow information is used to

provide classification information on the shape and dimensions of the detected object.

Goldman and Cohen [13] present a competing method based on 2D GMRF modeling

of independent layers in a multiscale representation of the image. Independence of

layers is achieved by means of the KLT. Anomaly detection is performed by using an

appropriate subspace for each layer.

The proposed method has been applied to the images presented in the top row of

Figure 1.6. A 5 layers feature space is created (K3 = 5) for each image as described

in Section 3.2 in the biorthogonal spline wavelets transform domain. We note that

in our experiments, using different wavelet filters produces similar detection results.

The anomaly subspace is created from arbitrarily selected 4 real examples of sea

mines. The images used for creating the subspace are taken from a training set which
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is mutually exclusive with the images presented in the detection examples of this

work. These 4 images are presented in Figure 4.4. The spatial size of the image chip

is 7 × 7. The 4 chips in the image domain are presented in Figure 4.5. They all

consist of a portion of a sea-mine highlight and a portion of a sea-mine shadow and

thus represent the sea-mine properly. Ω = {3} is used for a single layer detection

since no special information is used for the different layers. We choose K3 = 5 such

that all layers contribute to the detection process. To create the anomaly subspace

a wavelet based feature space is created for each of the 4 images in Figure 4.4, in

a similar manner to that used for the images in Figure 1.6. Anomaly chips of size

7 × 7 × 5 are cut from the 4 feature spaces. The center of the chip is located in

layer 3 at the spatial location corresponding to the center of the image chip presented

in Figure 4.5. These 4 chips are consistently reordered into column vectors of size

245 × 1 and are set as column vectors in a matrix H`=3, which spans the anomaly

subspace. A GARCH(1,1,1;1,1,1) was chosen for modeling image clutter. For the

1-D GARCH the GARCH(1;1) is often enough to capture characteristics of financial

time series as noted by Hansen and Lunde [15]. In a similar manner, we utilize a

GARCH(1,1,1;1,1,1) since it allows demonstrating the 3-D model and its advantage

over the GMRF model, while keeping the calculations simple. Choosing a higher order

GARCH model may be more appropriate for the data, however, the results obtained

by using this simple model are very promising. We also note that the sea-mine

sonar images are noisy. Using a complex high order model may result in unreliable

parameter estimation. Detection results of the proposed approach are presented in

Figure 4.6. A black target like symbol marks the location of the detected anomaly.

Note, that the positive detection is achieved in all 3 images (emphasis is given on the

highlight region corresponding to the selected subspace). To further improve detection
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results, the proposed method can be aided by inference on the object’s shadow made

available by published algorithms such as those presented in Mignotte et al. [27] and

Reed et al. [35] and describe above. We chose to compare our results with those of

the GMRF based multiscale detection method of Goldman and Cohen [13]. Detection

results of the GMRF based method on the sea-mine sonar images presented in the

top row of Figure 1.6 are shown in the bottom row of Figure 1.6. We have used

the same multiscale image representation, subspace image chips and anomaly spatial

size for both the proposed approach and the GMRF based method. It is clearly

demonstrated by these figures that the GMRF based method may result in high false

alarm rate, while the proposed method potentially reduced the false alarm rate. The

high false alarm rate of the GMRF based method may be due to the inability of

the GMRF statistics to properly model the leptokurtic feature space of Figures 1.6

(a), (b). High kurtosis values correspond to non-gaussian distributions, therefore the

underlying GMRF model of the GMRF based method does not allow for accurate

detection. Another reason for the high false alarm of the GMRF based method is

the clustering of innovations phenomena apparent in the feature spaces of all three

images. The GMRF cannot properly model clustering of innovations. Information

on statistical values and examples of clustering of innovations in the feature spaces of

the images are presented in Section 1.2. The examples presented here demonstrate

the potential of the proposed statistical model and detection method in a variable

background. To further demonstrate the robustness of the proposed method, Figure

4.7 (a) presents a sea-mine sonar image, in which the mine object (probably a spherical

object) differs from the mine objects used to create the anomaly subspace (elongated

mines). Figure 4.7 (b) shows the detection results using the exact same wavelet

transform and anomaly subspace used in the detection process leading to Figure 4.6.
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Figure 4.4: Original sea-mine sonar images from which an image chip is cut to
create the anomaly subspace.

Figure 4.5: Image chips cut from the sea mine sonar images presented in Figure 4.4.

This demonstrate the potential of detecting mine like objects in sonar imagery using

a subspace, which does not contain exact examples of such objects. As discussed in

Section 3.2 casuality seems an unnatural model limitation. We therefor demonstrate

detection results for different image orientations. The side-scan sonar image of Figure

1.6 (c) is rotated by 900 and 1800 and the resulting images are presented in the top

row of Figure 4.8. Detection is performed using the exact same procedures as above,

only that the subspace images are rotated accordingly. Detection results are presented

in the bottom row of Figure 4.8. Although positive detection without false alarms is

achieved in all orientations (00, 900, 1800) the detection images differ. In particular,

Figure 4.8 (c) produces the best detection results, while Figure 4.8 (d) produces the

worst detection of the three images. Due to the model casuality, it may be appropriate

in some applications to consider all four possible orientations of a given image.



CHAPTER 4. MULTISCALE ANOMALY DETECTION 90

Figure 4.6: Detection results using the proposed method on the sea-mine sonar
images of Figure 1.6.

(a) (b)

Figure 4.7: Original side-scan sonar image of a spherical object and a corresponding
detection image: (a) Original sea-mine sonar image; (b) Detection results using the

proposed method on the sea-mine sonar images.
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(a) (b)

(c) (d)

Figure 4.8: Detection results on rotated versions of the side-scan sea mine sonar
image presented in Figure 1.6 (c): (a) original image rotated by 900; (b) original
image rotated by 1800. (c) Detection Results for Figure (a) using the proposed

method; (d) Detection Results for Figure (b) using the proposed method.
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4.5 Conclusion

We have developed a multiscale anomaly subspace detection method, corresponding

to the multidimensional GARCH model introduced in chapter 3. The MSD enables

incorporation of a priory information into the detection process. A separate anomaly

subspace is assumed for each layer in the multiresolution representation. Since not all

layers contribute uniformly to the detection process we allow for a selection of only

those layers which are most significant to the detection. Layers are selected a priory

or based on intermediate results obtained for each layer. We have demonstrated the

performance of the proposed statistical model and detection approach on synthetic

images and real sea-mine side-scan sonar imagery. Automatic detection of sea-mines

in side-scan sonar imagery is a challenging task due to the high variability of the

target and sea-bottom reverberation. Compared with a GMRF based method, we

presented improved performance, i.e., a reduce false alarm rate while retaining a high

detection rate.



Chapter 5

Conclusion

5.1 Summary

A novel clutter model is introduced: the multidimensional GARCH model. This

statistical model can incorporate important characteristics of commonly used feature

spaces, namely, heavy tailed distributions and clustering of innovations. We develope

two anomaly detectors, each consists of a set of MSDs. The first detector is appro-

priate for detecting anomalies in three dimensional images, which can be properly

modeled as a stack of two dimensional GMRFs. This approach was applied to the

detection of faults is seismic data and to detection of defects in bare wafers. The

second detector is suitable for feature spaces which present non-Gaussian character-

istics, namely: excess kurtosis and clustering of innovations. To demonstrate such

a feature space we used the undecimated wavelet transform to create a 3-D feature

space for a given 2-D image. The underlying assumption is that there exists a set of

wavelet filters such that the resulting feature space can be properly modeled using a

3-D GARCH model.

93
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Our detectors operate by applying a separate MSD to each layer of the feature

space. The MSD was originally developed by Scharf and Frienlander [38] for signal

detection in subspace interference and WGN. Here, we formulated a set of multiscale

MSDs for signal detection in subspace interference and noise which follows a GMRF

model (first detector) or GARCH model (second detector). The MSDs incorporate the

available a priory information about the targets into the detection process and thus

improve the detection performance. When a large training set of anomaly examples

is available a priory we suggest using a technique known as eigen-pictures to create

an anomaly subspace of a desired rank, which can be regarded as an anomaly basis

spanning the anomaly subspace. The eigen-pictures technique is based on PCA, thus

choosing a dimensionality reducing linear projection, which maximizes the scatter of

all projected samples in the training set. Our approach takes into consideration the

fact that not all feature space layers contribute uniformly to the detection process

and allows for selection of the most relevant layers, where the relevance criteria is

application dependent and independent of the detection algorithm.

The performance of the two detectors is demonstrated on appropriate examples,

showing the potential advantage of using the detectors, the importance of selecting

an appropriate statistical model for the feature space and the ability of the GARCH

model to cope with image clutter characterized by non-Gaussian statistics.

5.2 Future Research

The approach we have proposed in this thesis opens a number of interesting topics

for future study:

1. Non-causal GARCH like models.
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The causality assumption incorporated into the ND GARCH model introduced

in Chapter 3 is unnatural for images. Developing a non-causal statistical model

characterized by a heavy tailed distribution and innovation clustering may lead

to an improvement in clutter modeling by reducing the dependency on image

orientation. As a result, such a model, may reduce the false alarm rate for a

given detection rate.

2. The multifamily likelihood ratio test.

The proposed MSD approach assumed prior knowledge about the spatial size

of the anomaly and is unable to distinguish or decide between different an-

omalies. Kay [18, 19] proposed a multifamily likelihood ratio test for multiple

signal model detection, which may be used to alleviate the limitation of an a-

priory known anomaly size. Extending Kay’s approach and applying it with the

proposed statistical model may lead to a multiple hypothesis test in which an-

omalies of different spatial sizes, and potentially of different characteristics are

combined in a single anomaly detection scheme, such that anomaly detection

and classification can be achieved in a single step.

3. Anomaly subspace detection in non-stationary clutter.

An underlying assumption of the proposed approach is that the entire image

area or region of interest (ROI) is generated by a single statistical model. This

assumption is in general inaccurate as scenes tend to include different back-

ground environments (such as grass, trees, soil, etc.). Smaller spatial areas may

obey a single stationary behavior. Performing image segmentation, such that

each segment follows a single GARCH model and performing anomaly detection

for each segment separately may improve the detector’s performance.



Appendix A

Maximum Likelihood Estimation

of φ` Under H0

We prove the ML estimation of φl under H0. The ML solution of φl,ψl under H1 is

easily proved by analogy. Under H0 we have:

d

dφl

{log [P (nl)]} =
d

dφl

[

(nl − Slφl)
T Σ−1
vl

(nl − Slφl)
]

.

Opening the parenthesis on the right side, recalling that nT
l Σ−1
vl
nl is independent of

φl and rearranging terms yields:

d

dφl

{log [P (nl)]} =
d

dφl

[

φT
l S

T
l Σ−1
vl
Slφl − 2nT

l Σ−1
vl
Slφl

]

.

Setting the derivative to zero we have:

2ST
l Σ−1
vl
Slφl − 2(nT

l Σ−1
vl
Sl)

T = 0 .

Solving for φl yields:

φl = (ST
l Σ−1
vl
Sl)

−1ST
l Σ−1
vl
nl .
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Appendix B

The Causality Constraint

For ease of notation let us explore the GARCH model in 1D, and show that there is no

way to guaranty a non-negative conditional variance without the causality constraint.

Let q, p ≥ 0 denote the order of a non-causal symmetric GARCH model, and let

Γ1 and Γ2 denote two neighborhood sets which are defined by

Γ1 = {k | −q ≤ k ≤ q, k 6= 0}

Γ2 = {k | −p ≤ k ≤ p, k 6= 0} .

Let εt represent a stochastic process, and let ht denote its variance conditioned upon

the information set ψt = {{εt−k}k∈Γ1
, {ht−k}k∈Γ2

}. Let ηt
iid∼N(0, 1) be a stochastic

process independent of hk, ∀k 6= t. The non-causal GARCH(p, q) process is defined

as:

εt =
√

ht ηt (B.1)

ht = α0 +
∑

k∈Γ1

αkε
2
t−k +

∑

k∈Γ2

βkht−k , (B.2)

and is therefore conditionally distributed as:

εt | ψt ∼ N(0, ht) . (B.3)
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In order to guarantee a non-negative conditional variance we require that

h(t) ≥ 0, ∀t (B.4)

We need to find conditions on the parameters space
{

α0, {αk}k∈Γ1
, {βk}k∈Γ2

}

such

the equation (B.4) holds. Substituting (B.1) into (B.2) yields:

ht = α0 +
∑

k∈Γ1

αkη
2
t−kht−k +

∑

k∈Γ2

βkht−k , (B.5)

This is a set of linear equations in ht. To the best of our knowledge there are no

known conditions on the parameters of a set of linear equations in order to guarantee

a non-negative solution. In addition, the equation parameters include a stochastic

process η2
t−k, which cannot be limited in any way. This means, that causality is a

necessary constraint to guarantee a non-negative conditional variance.



Appendix C

Proof of Theorem 1

In this appendix we prove Theorem 1 presented in Section 3.3.

Repeating substitutions of (3.1) into (3.2) yields:

hi = α0 +
∑

k∈Γ1

αkη
2
i−k
hi−k +

∑

k∈Γ2

βkhi−k

= α0 +
∑

r∈Γ1

αrη
2
i−r

×
[

α0 +
∑

k∈Γ1

αkη
2
i−r−k

hi−r−k +
∑

k∈Γ2

βkhi−r−k

]

+
∑

r∈Γ2

βr

[

α0 +
∑

k∈Γ1

αkη
2
i−r−k

hi−r−k +
∑

k∈Γ2

βkhi−r−k

]

= α0

∞
∑

g=0

M(i, g) (C.1)

where M(i, g) involves all terms of the form:

∏

k∈Γ1

αak

k

∏

k∈Γ2

βbk
k

n
∏

r=1

η2
i−sr
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for
∑

k∈Γ1

ak +
∑

k∈Γ2

bk = g

∑

k∈Γ1

ak = n

and

0 < |s1| ≤ |s2| ≤ · · · ≤ |sn|

sr ≡ (sr1
, . . . , srN

)

sr1
≤ max {gq1, (g − 1)q1 + p1}
...

srN
≤ max {gqN , (g − 1)qN + pN}

Thus,

M(i, 0) = 1

M(i, 1) =
∑

k∈Γ1

αkη
2
i−k

+
∑

k∈Γ2

βk

M(i, 2) =
∑

r∈Γ1

αrη
2
i−r

×
[

∑

k∈Γ1

αkη
2
i−r−k

+
∑

k∈Γ2

βk

]

+
∑

r∈Γ2

βr

×
[

∑

k∈Γ1

αkη
2
i−r−k

+
∑

k∈Γ2

βk

]

and in general

M(i, g + 1) =
∑

k∈Γ1

αkη
2
i−k
M(i − k, g)

+
∑

k∈Γ2

βkM(i − k, g) (C.2)
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Since ηi is i.i.d., the moments of M(i, g) are not dependent on (i), and in particular

E {M(i, g)} = E {M(k, g)} ∀ i,k, g (C.3)

from (C.2) and (C.3) we obtain

E {M(i, g + 1)} =

[

∑

k∈Γ1

αk +
∑

k∈Γ2

βk

]

E {M(i, g)}

=

[

∑

k∈Γ1

αk +
∑

k∈Γ2

βk

]g+1

E {M(i, 0)}

=

[

∑

k∈Γ1

αk +
∑

k∈Γ2

βk

]g+1

(C.4)

Finally by (3.1), (C.1) and (C.4),

E
{

ε2
i

}

= α0E

{

∞
∑

g=0

M(i, g)

}

= α0

∞
∑

g=0

E {M(i, g)}

= α0

[

1 −
∑

k∈Γ1

αk −
∑

k∈Γ2

βk

]−1

(C.5)

if and only if
∑

k∈Γ1

αk +
∑

k∈Γ2

βk < 1

and

E(εi) = 0

var(εi) = α0

[

1 −
∑

k∈Γ1

αk −
∑

k∈Γ2

βk

]−1

cov(εi, εk) = 0 for (i) 6= (k)

follows immediately.
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Ã�Ä¥ÐwÒ�À�Ä¥ÇtÐwà*ëþÏ�ÀgÁzÇzÒ�É�Ðwà�Ø�ÔÑè°ÔÑÊÕÀ�ÄÆÔÑÞSÄ¥ß�Ðwà*ç�Ä¥ÐwÞSØ.ÔÑÅIÄ¥Þ�Ø�ÔÑÅIÔÑÉ<Ø�Ê�Ø�Ô¥Ä¥ÐwÉ<ÔÑÅ�È�ÄÆÔÑÐ¬Ä¥Ù
ÞSÄ¥ÐwÉ<ÔÑÅ�ÈMÞÎÙrÔÑÒ�ÔRÞRÐwànÃ�Ä¥ÅIÄÆÄ¥ÇzÈMÉSÞjÿ ÞRÅIÔÑÉ<Ø�ÞÎÙrÔÑÒ*¾ ÞRÅIÔÑÉ<Ø�ÞÎÐwànÃ�ÄÆÄ¥ÐwÐwáxÞÎÃ�Ä¥ÅIÄÆÄ¥ÇzÈMÉSÞRÉËÃ�Ä¥ÅIÔÑà�Þ
Ðwà*ÄÆÔÑÐ¬Ä¥Ù�ÿ Ø�ÔÑÅIÔÑÉ<Ø�ÊKØ�ÔÑÁ�Ï�É�Ðwà*ÄÆÔÑÐ¬Ä¥Ù�� Ø�ÔÑÐwÐ¬ÔÑá^Ø�Ô¥Ä¥ÅIÄÆÄ¥ÇxÔÑÈ�Ø�Ô¥Ä¥èxÀ�Ä¥ÐwÇzÈj¾ ÞSÄ¥èxÀ�Ä¥ÐwÇzÈMÊ�Ã�ÄÆÄÆÔÑÐ¬Ø
Ã�Ä¥Ð¬Ô¥ÓÕÄ¥Ù�Ðwà*ÄÆÔÑÐ¬Ä¥ÙrÔSëÑÔÑÀ�Ä¥Ð¬Ä¥Ò�Ø�ÔÑÒ�Ä¥ÇzÊKÃ�Ä¥ÉSÙ@ÇKÄÆÔÑÐ¬Ä¥Ù�ÿ Ø�Ô¥Ä¥É<Ä<ÁzÅIÔÑÒ*Ø�ÔÑÅIÔÑÉ<Ø�ÊKÃ�Ä¥à�À�ÔÑÉ�Ä¥ÅIÄÆÄ¥ÇzÈMÉ

ÊµÔÑÁtÄ¥Ç0Ðw¿XÃ�Ä¥ÊÕáxÁxÔÑÉËØ�ÔÑÅIÔÑÉ<Ø�Ê^Ø�Ô¥Ä¥ÐwÉ<ÔÑÅ�È�ÄÆÔÑÐ¬Ä¥Ù@Ð>Ã�Ä¥É<Ø�Ä¥ÁxÔÑÙ@ÐwÈj¾ Ã�ÄÆÄ¥È�ÔÑÇzÁtÃ�Ä¥É<ÔÑÐwè°Ø�Ê^Ã�Ä¥ÁxÄ¥ÈMÉSÉ
ÞSÄ¥ÐwÉ<ÔÑÅ�ÈMÞËëÑÄ¥ÊÕÐG¿�À�ÁzÞËëÑÄ¥ÊKÞRÅIÌkÊÕÞRÞ�ÔÑÊÕà�Ã�Ä¥ÅIÄÆÄ¥ÇzÈMÉËÊµÌkÁzÉËÐwà�ÞRÁxÄÆÌkÊ�� Ã�Ä¥ÊÕÐwà*ÞRà�Ðwà�É

ÞRÁxÄÆÌkÊµÔ<¿�À�ÁzÞËØ�ÈjÙ@è°ÄÆÄ¥ÉSÞ�Ã�Ä¥ÅIÄÆÄ¥ÇzÈMÉSÞËÊµÌkÁzÉËÁxÔÑÊÕ¿tÄÑÏ�Ò�ÄÑÏ�Ï�Ò�Ð¬ÓÕÔÑÉ�Ðwà�ÞRÁxÄÆÌkÊÎÿ Ø�Ä¥Ázà�ÇzÈ
ÿ ÞSÄ¥ÐwÉ<ÔÑÅ�ÈMÞ�Ð¬ÓÕÔÑÉ�Ðwà�ÞRÁxÄÆÌkÊ�ÔÑá°Ô¥Ø�ÊKÐwÐ¬ÔÑá^ëÑÔÑÁxÌkÈMÞ�ÊÕÐwà�ÞË¾ Ø�Ô¥Ä¥ÐwÉ<ÔÑÅ�ÈjÄÆÔÑÐ¬Ä¥Ù@Ð8Ã�Ø�Ä¥ÁxÔÑÙ@ÐwÈ�Ðwà
ÔÑß�ÁzÀ�ÌkÉ�Ø�ÓÕÔÑÊÕ¿t¾ ÞSÄ¥èxÀ�Ä¥ÐwÇzÈMÐXÃ�ÄÆÄÑÏ�ÅIÔ¥ÔÑÐwÁzÞ�Ø�Ô¥Ä¥ÐwÉ<ÔÑÅ�ÈMÞ�ÔÑÈ�ÞSÄ¥ÐwÉ<ÔÑÅ�ÈMÞ�Ðwà�ÞRÁxÓ°Ù@Þ�ÁzÉ<ÔÑÐwá

¾ Ã�Ä¥ÅIÔÑÁxÌkÈMÞ�Ã�Ä¥ÊÕÐwà�Þ�Ä¥Å�à�Ê�Ø�ß�áxÁxØ�É
Ðwà*Ø�Ô¥Ä¥èxÀ�Ä¥ÐwÇzÈ�ÁxÔÑÊÕ¿0Ã�Ä¥ÅIÄÆÄ¥ÇzÈMÉËÊµÌkÁzÉSá�Ø�ÔÑÊÕÁtÃ�Ä¥ÉS¿�Ç^Ø�ÔÑà�ÉSà�É�ÞSÄ¥è°ÔÑÐ¬ÔÑß�ÁxÄÑÏ�Ð¬ÔÑÉ�Ø�ÔÑÙ@èxÞ

� Ø�ÔÑÊµÄ¥Ò�ÁzÇzÒ�ÉSÉ�Ø�Ô¥Ä¥ÐwÉ<ÔÑÅ�È�ÄÆÔÑÐ¬Ä¥Ù
Ø�Ô¥Ä¥è°ÔÑÐ¬ÔÑß�Á>Ø�ÊµÔÑÁzÉ�ÞRÙrÔÑè°Ø�ÊXà�ÔÑÉ<Ä¥à�¾ Ã�Ä¥Ð¬Ó°ÙZÁzÇzÒ�ÉSÊ0ÊµÔÑÁzÐ�Ã�Ä¥¿zÄ¥ÇxÔÑÉ«Ø�ÔÑÅIÔÑÉ<Ø�ÊGÃ�ÄÑÏ�À�ÄÆÄ¥ÊµÔÑÈ •¾ Ø�ÔÑÅIÔÑÉ<Ø�ÊKÔÑÐwÈMá^Ã�ÄÑÏ�À�ÄÆÄ¥ÊµÔÑÈ�Ðwà�ÞRßIÄ¥ÐwÅ�ÈMÐGÞRÊµÔ Ï.ç¬ÁxÓKÞSÔ¥ÔÑÞRÉ
� ÈMÉ�ç¬áxÊµÔ´ÞSÄ¥è°ÔÑÐ¬ÔÑß�ÁzÞ«Ø�ÔÑÉSÁGÐwàgÄ¥Ð¬Ä¥ÊÕÀ�ÉÎÓÕÔÑÊµÄ¥¿CÁzà�ÇzÈMÉeÞSÄ¥è°ÔÑÐ¬ÔÑß�ÁxÄÑÏ�Ð¬ÔÑÉ«Ø�Ù@èxÞRÊWà�ÔÑÉ<Ä¥à •¾ Ø�Ä¥Ê°Ï�Ä¥ÉËÞRÁxÔÑèxÊ�ÊµÔÑà�Ì´Ä¥É�Ä¥ÊÕÈMà�É�Ð¬ÔÑè°Ä¥ÅIÔRÁxØ�Ô¥Ä<ÞRÞSÔÑÊÕÙ�Ø�ÔÑÐ¬Ä¥¿zÄ<Ázà�Ç
à�É<Ø�à�ÞRÐ�ëÑØ�Ä¥ÅEë áCÐw¿zÔ°Ø�ÌkÈ«ÞSÄ¥è°ÔÑÐ¬ÔÑß�Á>Ø�ÉSÁzÉKÁxØ�Ô¥Ä¥Ê8ÞRÊµÔÑÙrØeÃ�Ä¥Ázè°Ô¥ÄÕÞRÅIÔÑÉ<Ø�ÊGÃ�ÄÑÏ�À�ÄÆÄ¥ÊµÔÑÈ •
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¾ Ä¥ÈMÐwÙ�Ðw¿zÔÑÇWÔ¥Ä¥Ðw¿0Ã�Ä¥ÅIÄÆÄ¥ÇzÈMÉËÊµÌkÁzÉSáKÞSÄ¥è°ÔÑÐ¬ÔÑß�ÁxÄÑÏ�Ð¬ÔÑÉ�Ø�Ù@èxÞRÊ
� Ð¬ÔÑÉ�ÊµÌkÁzÉ�¾ ÞRÅIØ�à�ÉnÁxÔÑßIÌkÉnç¬ÁxÔÑÈ�Ã�¿�Ø�Ô¥Ä¥ÁxÔÑßIÌkÉ�Ø�ÔÑ¿�ÇxÔ¥Ø�Ã�ÄÆØ�Ä¥¿�Ð�Ø�ÔÑ¿zÄ¥ÇxÔÑÉnØ�ÔÑÅIÔÑÉ<Ø�Ê •¾ ÔÑÐwÈ�Ø�ÔÑ¿�ÇxÔ¥Ø�ëÑÄÆÄ¥ÇzÈMÐGÁzà�ÇzÈMÉ�ÞSÄ¥è°ÔÑÐ¬ÔÑß�ÁxÄÑÏ
Ø�Ð¬ÔÑ¿�Ç�ë ÇxÔÑÈMÐgÃ�Ä¥ÁxÔÑà�À

wavelet � Þ�ÊµÌkÁzÉ	Ðwà$ÞSÄ¥è°ÔÑÐ¬ÔÑß�ÁzÞSÔCÞSÄ¥èzÏ�ÅIÄÆÄ¥ÁxÔÑÈMÞ�Ä¥ÅIÄÆÄ¥ÇzÈMÉ •ë ÇxÔÑÈMÊnØ�Ô¥Ä¥ÐwÉ<ÔÑÅ�È�ÄÆÔÑÐ¬Ä¥ÙXÁzà�ÇzÈMÐ�Ð¬ÔÑá°Ä�Ã�ÞRÊnà�ÔÑÉ<Ä¥àAë ágÐw¿zÔ�Ø�Ä¥à�ÔÑÅ�ÈMÞ#ÞSÄ¥ÈMÁzÞ
Ø�áxÁz¿�É
¾ Ø�Ä¥à�ÔÑÅ�ÈMÞËØ�ÔÑÅ�ÅIÔÑÊµØ�ÞRÞÎØ�ÔÑ¿�èxÉSÈMÊ�¿�è°ÔÑÊÕÉSÞËÞRß�ÐGÞRÉ<Ô¥Ó

Ã�Ä¥ÅIÄÆÄ¥ÇzÈMÉSÞ�ÊµÌkÁzÉËÐwà*ÄÑÏ�Ò�ÄÑÏ�Ï�Ò�Þ�ÙrÔÑÐ¬Ä¥ÇzÞ�Ø�Ä¥èxÀ�ÅIÔÑÇzá^Ø�ÔÑÊÕÁtÃ�Ä¥ÉS¿�ÇWà�ÉSà�ÉjÄ¥Ò�ÔÑÈMÙ@Þ�ÙrÔÑÐ¬Ä¥ÇzÞ
Ðwà*Ä¥ß�áxÁzÉ�ëÑÔÑÁzÒ�ÄÆÌ«¾ Ø�Ô¥ÄÑÏ�Ä¥ÐwÅ�È�Ø�ÔÑÈMè°Ô¥Ø�ÐXÔ¥Ø�ÔÑ¿�èxÉSÈMÊK¿zÄ¥Ù@ÞRÐ0ëÑØ�Ä¥Å�ànÞSÓ°ÊµÔÑ¿�Þ�ÁxÔÑÈMÐG¿�À�ÁzÞ�Ðwà
Ðwà*Ø�Ô¥Ä¥ÅIÄ¥ÇxÔÑÈ�Ø�ÔÑ¿�ÇxÔ¥Ø�ÄÆØ�à*Ô¥Ø�ÔÑ¿�èxÉSÈMÊKÐ¬Ó°ÉSÐXØ�Ð¬ÔÑá°Ä¥Þ�ÁzÒ�Ô¥ÌkÊ��wÔÑ¿�Å�Ä¥Ò�ÔÑÈMÙ@ÞÎÙrÔÑÐ¬Ä¥ÇzÊKà�ÔÑÉ<Ä¥à�Þ
ÿ Ã�Ä¥ÅIÄÆÄ¥ÇzÈMÉSÞ�Ðwà�ÙrÔÑÐ¬Ä¥ÇzÞ�Ø�ÔÑÇxÄ¥ÇzèKØ�Ä¥èxÀ�ÅIÔÑÇ0Ðwà

heavy tails � Ã�Ä¥ÊÕ¿tØ�ÔÑÊÕÅ�ß � � Ã�Ä¥ÅIÄÆÄ¥ÇzÈMÉ�Ä¥ÊµÌkÁzÉ
clustering of � Ø�ÔÑÊµÄ¥è°Ä � Ä¥ÈjÐwà�Ã�Ä¥èxÊÕÀ�É<Ô�ÿ ÞSÔÑÊÕÙ	� kurtosis � Ò�Ä¥ßIÔ Ï�ÁxÔÑÀgç¬Áz¿tÁzÉ<ÔÑÐwáÃ�Ä¥¿zÄ¥ÇxÔÑÉËÃ�Ä¥Å®Ï�ÀgÃ�ÄÆÄÆÔÑÅIÄ¥à�Ô�ÿ Ã�Ä¥èxÊÕÀ�ÉSÊ�Ã�Ä¥¿zÄ¥ÇxÔÑÉËÃ�Ä¥Ð¬Ô¥Ó°Ù�Ã�ÄÆÄÆÔÑÅIÄ¥ànÁzÉ<ÔÑÐwá«ÿ
�

innovationsÁxÔÑÊÕ¿tÄ¥Ò�ÔÑÈMÙ@Þ�ÙrÔÑÐ¬Ä¥ÇzÞÎÐw¿tÃ�Ä¥Ò�Ò�ÔÑÊÕÉSÞËØ�Ô¥Ä¥ÐwÉ<ÔÑÅ�ÈjÄÆÔÑÐ¬Ä¥Ù@Ð8Ã�Ä¥É<Ø�Ä¥ÁxÔÑÙ@ÐwÈMÊKà�ÔÑÉ<Ä¥à�¾ Ã�Ä¥èxÊÕÀ�ÉSÊ
ÊÕÀ�¿��

false alarms � È�Ô¥ÔÑà*Ø�ÔÑÈMÁxØ�ÞÎÐwà�ÞRÐ¬Ô¥Ó°Ù�Ø�ÔÑÉSáxÐXÃ�ÁxÔÑÙ�ÞRß�ÙrÔÑÒ�ÉËÃ�Ä¥ÅIÄÆÄ¥ÇzÈMÉ�Ä¥ÊµÌkÁzÉÃ�Ä¥ÁzÀ�Ô¥Ìe¾ ¿�À�ÁzÞ�Ðwà*Ø�Ô¥ÄÑÏ�Ò�ÄÑÏ�Ï�Ò�Þ�Ø�ÔÑÅIÔÑá°Ø�Þ�ëÑÄ¥ÊÕÐGÄÑÏ�Ò�ÄÑÏ�Ï�Ò�Þ�Ð¬ÓÕÔÑÉSÞ�ëÑÄ¥Ê�ÞRÉSÈ�Ø�ÞRÞËÁzÒ�Ô¥Ì
ÿ Ã�Ä¥ÅIÄÆÄ¥ÇzÈMÉËÊµÌkÁzÉSáKÃ�Ä¥ÊÕÁWÃ�Ä¥ÁzÀ�ÉSÊ�à�ÉSà�ÉSà
ÿ

wavelet � Þ�ÊµÌkÁzÉ�ÁxÔÑÊÕ¿�à�ÔÑÈMÁzÞ�Ã�Ä¥ÅIÔÑàÁzà�À�Ã�ÄÆÄ¥Ànë áKÔÑÉSáK¾ ÞSÔÑÊÕÙ�Ò�Ä¥ßIÔ Ï�ÁxÔÑÀ�ç¬Áz¿0Ã�¿WØ�ÄÑÏ�Ò�ÄÑÏ�Ï�Ò�Ã�Ä¥Ù@Ð¬ÔÑÇzÉ
wavelet � Þ�Ä¥É<Ó°À�É¾ Ø�ÔÑÅIÔÑà�Þ�Ø�ÔÑÉSÁzÞËëÑÄ¥ÊµÔSÃ�Ä¥á°ÔÑÉSÒ�Ã�ÄÆÄ¥ÊµÌkÁzÉËÃ�Ä¥É<ÔÑÀ�Ä¥ÉSÊ

wavelet � ÞËÄ¥É<Ó°À�É�ëÑÄ¥Ê�ÄÑÏ�Ò�ÄÑÏ�Ï�ÒØ�ÔÑÉSÁzÊ�ë á°ÔZØ�Ä¥ÊµÌkÁzÉËÞRÊÕÁzÀ�Ê�ÊµÔÑÁzÐGÃ�Ä¥¿zÄ¥ÇxÔÑÉËÃ�Ä¥ÞSÔÑÊÕÙ�Ã�Ä¥áxÁz¿WÄ¥Ðw¿�ÊKÃ�Ä¥É<Ó°À�É�� ÁzÉ<ÔÑÐwá
ë á^Ðw¿zÔ<Ä¥Ò�ÔÑÈMÙ@Þ�ÙrÔÑÐ¬Ä¥ÇzÞ�Ø�ÔÑ¿�èxÉSÈMÊ�ÔÑÐwÈ�Ã�Ä¥ÅIÄÆÄ¥ÇzÈMÉËÐ¬Ó°ÉSÐXëÑØ�Ä¥Å�ÈMÐX¾ Ø�ÔÑá°ÔÑÉSÒ�Ø�Ô¥Ä¥èzÏ�ÅIÄÆÄ¥ÁxÔÑÈ�Ô

¾ Ä¥ÊµÄÑÏ�Å�Á�Ï�ÐwÈjÄÆÓ°É<Ä¥ÉËÊÕÁ^ÄÑÏ�Ò�ÄÑÏ�Ï�Ò�Ð¬ÓÕÔÑÉËØ�È�Ä¥èxÉSÊ�ç¬ÁxÔÑè^Ã�ÄÆÄ¥À
generalized autoregressive conditional

Ð¬ÓÕÔÑÉËÔÑß�ÞSÓÕÔÑÊÕ¿�ÊKÃ�Ä¥ÙrÄ¥èxÉ�ÔÑÅ�Èjç¬á^Ã�à�Ð
ë ÇxÔÑÈMÊKà�ÉSà�É�ÄÆÓ°É<Ä¥É�ÓÕÌkÞ

GARCH � ÞËÐ¬ÓÕÔÑÉË¾ ÄÆÓ°É<Ä¥ÉËÊÕÁ heteroscedasticity (GARCH)ÊÕÁWÐ¬ÓÕÔÑÉSÐGÐ¬ÓÕÔÑÉSÞ�Ø�ÊµÌkÁzÞË¾ ÞRÐwáxÐwáxÞËÃ�Ô¥Ì´Ø�Ê�ÁzÀ�Ä¥¿�Ê�ë ÉSß�Ê�Ø�ÔÑÁxÓ°Ò�Ðwà�Ø�ÔÑ¿�ÇxÔ¥Ø�Ð¬Ô¥ÓÕÄ¥ÉSÐ8ÊµÌkÁzÅ
II



ÄÆØ�à�Ø�ÈjÐ¬Ó°ÉSÐGÐ¬ÔÑá°Ä¥Þ�ÞRÅIÔÑÉ<Ø�ÊK¿�À�ÁWÐwà�Ã�Ä¥ÅIÄÆÄ¥ÇzÈMÉSÞËÊµÌkÁzÉSÐ0Ä¥ÁxÔÑÀ�É�Ð¬ÓÕÔÑÉËØ�Ázè°Ô¥ÄMÄÆÓ°É<Ä¥É
Ã�Ä¥ÅIÄÆÄ¥ÇzÈMÉSÞ�Ðwà�ÙrÔÑÐ¬Ä¥ÇzÞËØ�ÔÑÇxÄ¥Çzè^Ø�Ä¥èxÀ�ÅIÔÑÇtÐwà � Ã�Ä¥ÊÕ¿WØ�ÔÑÊÕÅ�ß � � ÞRÐw¿�ÉSÐtØ�ÔÑÁzáxßIÔÑÉSÞ�Ø�ÔÑ¿�ÇxÔ¥Ø�Þ

wavelet
ÙrÔÑÒ�ÉËÞSÄ¥è°ÔÑÐ¬ÔÑß�ÁxÄÑÏ�Ð¬ÔÑÉ�Ø�ÁzÉ<Ø�ÞRÊ�à�ÔÑÉ<Ä¥à�ÞRà�¿�Å�ÔÑß�ÞSÓÕÔÑÊÕ¿�Ê�¾ Ø�ÔÑÊµÄ¥è°Ä � Ä¥ÈjÐwà�Ã�Ä¥èxÊÕÀ�É<Ô
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