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Abstract

Image anomaly detection is the process of distilling a small number of clustered
pixels, which differ from the image’s general characteristics. The type of image,
its characteristics and the type of anomalies depend on the application at hand.
Common applications include detection of targets in images, detection of defects in
silicon wafers, detection of mine features in side-scan sonar and detection of tumorous
areas in medical imaging. Anomaly detection algorithms generally consist of three
stages: selection of an appropriate feature space in which the distinction between the
anomaly and the general clutter is possible; selection of a statistical model for the
feature space representing the image clutter and selection of a detection algorithm.
This last stage implies a selection of an anomaly model, which defines the type of
anomaly or anomalies relevant for the application. This work focuses on the latter
two stages.

The Gaussian distribution is a common basis for feature space statistical models
due to its mathematical tractability. A major drawback of using the Gaussian distri-
bution lays in its inability to appropriately model two common phenomena of often
used feature spaces: heavy tails of the probability density function of the features
(known as excess kurtosis) and volatility clustering (a property of many heteros-

cedastic stochastic processes, which means that large changes tend to follow large
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changes and small changes tend to follow small changes). Detection algorithms based
on Gaussian models may result in high false alarm rates when applied to such feature
spaces, due to the inadequacy between the model and the data. In particular, it
was observed that the wavelet transform, which is often used as a feature space in
applications dealing with natural images, yields wavelet coefficients that show excess
kurtosis. It is also observed that spatial and scale-to-scale statistical dependencies of
wavelet coefficients exist. That is, coefficients of large magnitudes tend to appear at
close spatial locations and at adjacent scales and orientations. These characteristics
of a commonly used feature spaces cannot be appropriately modeled by a Gaussian
distribution and therefore call for an alternative multi-dimensional statistical model.

We thus introduce an N dimensional generalized autoregressive conditional het-
eroscedasticity (GARCH) model. The 1D GARCH model is widely used for modeling
financial time series. Extending the GARCH model into NV dimensions yields a novel
clutter model which is capable of taking into account important characteristics of
commonly used feature spaces, namely heavy-tailed distributions and innovations
clustering as well as spatial and depth correlations. In this work we utilize an un-
decimated wavelet transform and present a 3D wavelet-based feature space. The
undecimated wavelet transform has the property of translation invariance, which is
important in the context of anomaly detection. A 3D GARCH model is used as the
underlying statistics of this feature space.

Once statistical modeling is accomplished, we are faced with the challenge of devel-
oping an appropriate detection approach. In practice it often happens that the class
of anomalies to be detected is not well defined. Algorithms, which assume a specific
anomaly pattern, such as the matched signal detector are therefore inapplicable. Fur-

thermore, algorithms such as the single hypothesis test, which assume that a priory
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information about the anomalies is not available, are also not sufficient, since some
examples of typical anomalies are often available. In this work we develop two de-
tectors, each is comprised of a set of multiscale Matched Subspace Detectors (MSDs).
The MSD was originally developed for the detection of signal in subspace interference
and additive white Gaussian noise. Our MSDs operate in additive colored Gaussian
noise (corresponding to a 2-D Gauss Markov Random Field (GMRF) model) and
in additive GARCH noise. For every feature space layer (for example, every scale
and orientation in the wavelet domain may be considered a feature space layer) a
separate anomaly subspace is used, thus allowing for better incorporation of a priory
information into the process. When a large training set of anomalies is available a
priory, we utilize a procedure known as eigen-pictures to create an anomaly subspace
of a desired rank. Our approach takes into consideration the fact that not all feature
space layers contribute uniformly to the detection process and allows for selection of
the most relevant layers, where the relevance criterion is application dependent.

We demonstrate the performance of the set of MSDs operating in GMRF noise
by applying it to the detection of defects in wafer images and to detection of faults
in 3D seismic data. These images are 3-D in nature and the image data itself is used
as a feature space. Although the potential of the proposed method is demonstrated
on these examples, applying GMRF based detection methods when the underlying
statistics is characterized by excess kurtosis and innovation’s clustering produces poor
results. This is due to the fact that the image clutter cannot be well modeled using
a Gaussian distribution. For such environments we propose using a GARCH based
detection approach. We demonstrate it using synthetic and real sea-mine side-scan

sonar images. For the sonar images, a wavelet based feature space is created, which
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shows high kurtosis values and clustering of innovations. Our results show the po-
tential of the set of MSDs, the importance of an appropriate statistical model for the

background and the advantages of the GARCH statistical model.
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Chapter 1

Introduction

1.1 Background

Anomaly detection algorithms generally consist of some or all of the following stages:
selection of an appropriate feature space in which the distinction between the anomaly
and the general clutter is possible; selection of a statistical model for the feature
space representing the image clutter and selection of a detection algorithm. This last
stage implies a selection of an anomaly model, which defines the type of anomaly or
anomalies relevant for the application. In this section we present a short review of

published work on each of these stages.

1.1.1 Feature Spaces

A proper selection of a feature space, which allows distinction of anomalies from
the general clutter is an important part of an anomaly detection algorithm. We
next present several image pixel feature spaces, which are constructed directly from

the image pixels. We then describe commonly used transform operation. Using

12
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transforms the feature space may be created in two different manners: It may be
created by first passing the image data through the transform operation, and the
feature space is created based on the data in the transform domain (using similar
techniques to those used in the first approach). Alternatively, the feature space may
be created by passing an image pixel feature space through the transform operation.

Image pixel feature space : As the name implies this feature space is created
based on the image pixels themselves. Kazantsev et al. [20] introduced a feature
space based on two circular concentric windows W; and W, with Radius R; and Rs,
respectively, Ry < Ry. These two concentric windows act as a moving window, where
at each step the center is located on a different image pixel. The center at each
step is suspected as part of an anomaly. For each image pixel two feature sets are
created. One describing the central pixel (suspected as an anomaly) and the other
describing its surrounding neighborhood (assumed to be image clutter). The first
set is created by an arbitrary selection of pixel values from W; and the second set
is created by an arbitrary selection of pixels from W5. This method is illustrated in
Figure 1.1. A similar approach is taken by Schweizer and Moura [40]. We describe
their approach originally created for hyperspectral 3D data for the 2D case. Two
concentric rectangles serve as the moving window. The inner rectangle represents the
unknown or suspected area and is of size N; x N;. The outer or perimeter rectangle
represents the clutter region and is of size I x J. Each of these regions is further
divided into non-overlapping rectangles of size N; x N;. At every pixel location two
sets of feature vectors are created, one for each region. These vectors are created
by a consistent ordering of the image pixels within the N; x N; rectangles. There

_N2 . . N?
L vectors representing the clutter region, and %
i4Vj

1J
are NiN;

vectors representing the

suspected region. This method is illustrated in Figure 1.2. Cohen and Coifman [§]
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perform fault detection in 3-Dimensional (3D) seismic data by using real life seismic
data (from the Gulf of Mexico). The data is a 3D lattice. They pre-process the
data by taking a small analysis cube of size 4 x 4 x 15 that moves through every
spatial location in every data layer. At each location, the analysis cube is partitioned
into 4 sub-cubes each of size 2 x 2 x 15. The sub-cubes are arranged in a consistent
fashion into 4 column vectors. A correlation matrix of the 4 vectors is calculated. The
lower triangle coefficients of the correlation matrix are formed into a column vector
of size 6 x 1. In this manner each data layer is turned into a 3D lattice with a depth
dimension of 6. Hazel [16] performed scene segmentation and anomaly detection in
multi and hyper spectral imagery. He viewed the 3D spectral image data as vector
observations on a 2-Dimensional (2D) lattice.

The above mentioned methods create feature vectors representing the pixel to be
tested and its surrounding area, assumed to consist of clutter only. We [32] have
used a similar technique to create a single feature vector for every pixel location by
consistent ordering of neighboring pixels. Let 2,44 be the spatial support of an
image and Let Y be a 2D image of size K; x Ks. Let y(s) represent an image pixel
at spatial location s € Qpqg.. The feature vector y(s) at location s is created by
a consistent ordering of neighboring image pixels, that is: y(s) is a column vector
created by consistent ordering of the pixels in an image chip of size L X Ly centered
around s. The methods described above can be applied in the image pixel domain or
in a transform domain (examples of which are described next) to create the feature
space used for anomaly detection.

Transform feature space : We next describe two common transforms used for
anomaly detection, namely the Karhunen-Loeve transform (KLT) and the discrete

wavelet transform (DWT).
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Outer circle pixels

Current pixel

Inner circle pixels

'
R

15

Figure 1.1: Moving window made of two concentric circles. Pixels on the inner circle
represent the suspected central pixel. Pixels on the outer circle represent clutter.

Clutter region

Current pixel

"Unknown" region /

Figure 1.2: Moving window made of two rectangle. The window is divided into two

regions: A clutter region and an unknown region
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KLT: In the context of anomaly detection the KLT serves mainly for two pur-
poses. First, the KLT is used to transform an n dimensional vector space into an m
dimensional vector space, where m < n, such that the mean-square magnitude of the
error resulting from representing the n dimensional vector y using only m dimensions
is minimum. Second, the KLT is used to remove correlation between features. Let
{;1/(1{:)},6]{:1{{2 be a set of independent identically distributed (iid) random vectors with
zero mean, and let Yq be their covariance matrix. These vectors are the feature
vectors of the K K5 image pixels. Let Y be a matrix containing these feature vectors

such that:
Y =[y(1),y(2),. .., y(KiKy)] . (1.1)
Let K denote a matrix whose columns are the top p eigen vectors of the covariance
matrix Yg. The top p eigen vectors are selected by the magnitudes of their cor-
responding eigen values. Let y®L7(k) be the KLT of y(k), then y®T(k) is given
by:
y" (k) = K'y(k). (1.2)

If p = n then the transformation preserves the feature space dimensions and eliminates

correlation between image features, however, if p < n then the resulting feature

Ki1Ko

b1 has a lower dimension as

vectors representing image pixels, that is {y*L7 (k)
well as uncorrelated features. Fukunaga [10] presents a through theoretic description
of the KLT. We have used the KLT to reduce dimensionality and correlation between
layers in 3D data as a pre-processing stage for anomaly detection [31]. Goldman and
Cohen used the KLT to reduce dimensionality by selecting layers corresponding to
the largest eigenvalues of the covariance matrix [12], and also to reduce correlation

between layers [13].

DWT: In a 1D wavelet transform a signal is split into two parts: high frequencies
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X(1) =3y
———

(J}.

Figure 1.3: One Dimensional wavelet decomposition

=]

= 2} = 500

Figure 1.4: One Dimensional wavelet reconstruction
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and low frequencies. The low frequencies part is split again into two parts of high
and low frequencies. This process is continued an arbitrary number of times, which
is usually determined by the application at hand. Furthermore, from these DWT
coefficients, the original signal can be reconstructed. This reconstruction process is
called the inverse discrete wavelet transform (IDWT). The DWT and IDWT can be
mathematically stated as follows. Let H(w) = Y hpe™* and G(w) = Y gre 7k
be a lowpass and a highpass filter, respectively, W];lich satisfy a certain conlélition for

reconstruction to be stated later. A signal, z(n) can be decomposed recursively as:
Sj—1.k = Z hn—2k3j,n (1-3)
dj—l,k = Zgn—2k5j,na (1-4>

forj=J+1,J,...,Jy, where s;41 = z(k), k € Z, J+1 is the high resolution level in-
dex and Jj is the low resolution level index. The coefficients s s, x, ., %; dso+1.ks - - - Ak
are called the DWT of signal z(n), where s, 5 is the lowest resolution part of z(n)
and d;j, are the details of x(n) at various bands of frequencies. Furthermore, the

signal z(n) can be reconstructed from its DWT coefficients recursively:

Sjn = Z h—okSj—1p + Z Gn—2kdj—1 - (1.5)
k k

The above reconstruction is called the IDWT of z(n). To ensure the above IDWT
and DWT relationship, the following orthogonality condition on the filters H(w) and
G(w) is needed:

| H(w) [ + | G(w) P=1. (1.6)

An example of such H(w) and G(w) is the Haar wavelet filters given by:

_|_

N — DN =
¢
d
g
—~
—_
\]
S~—

N =N =
o
<
g
—
—_
0
~—
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The above DWT and IDWT for a 1D signal z(n) can be described in the form
of two channel tree-structured filterbank as shown in Figures 1.3 and 1.4 respect-
ively. The DWT and IDWT for 2D images y(m,n) can be similarly defined by
implementing the 1D DWT and IDWT for each dimension m and n separately:
DWT,(DWT,,(y(m,n))), which is shown in Figure 1.5. The 2D wavelet transform
is a form of multiresolution representation introduced by Mallat [23]. In the analysis
phase of the 2D wavelet transform, each row of the input image is separately filtered
by H and G. The resulting pair of row-transformed images are likewise filtered in
the column direction yielding four subband images is the first octave level. These
four images are the lowpass subband image s7, and a set of three bandpass sub-
band images {dJLH,deIL,d;IH}, referred to as ”details” images. The details images
are termed LH (low-high), HL (high-low) and HH (high-high) and correspond to
specific, non-overlapping bands in the frequency domain. The ”smooth” or LL (low-
low) component S% 1, 1s a lowpass filtered version of the original image and is passed
through to the next octave for further subband decomposition. The wavelet trans-
form has been used for anomaly detection and enhancement. Lain et. al [22] used
a dyadic wavelet transform in mammography to emphasize mammographic features
while reducing the enhancement of noise. Strickland and Hahn [43] used an undecim-
ated wavelet transform for detection of Gaussian objects in Markov noise. We would
like to note that the presentation of the wavelet transform is based on the work by
Xia et. al. [47] who used the wavelet transform to insert an undetectable watermark
into digital imagery.

Once the transform domain has been created, it is regarded as the new data
space, and all the above image pixel feature space methods apply for the transform

domain. For example, Strickland and Hahn [43] used the wavelet decomposition as
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Figure 1.5: Two Dimensional wavelet decomposition

a means for computing a feature set for input to a detector. They created a feature
vector for every spatial location consisting of the deferent detail subbands of the
wavelet representation. The reverse order is also possible, that is, creating image
pixel feature vectors and transforming the resulting feature space into a new feature
space using one of the above mentioned methods. For example, Goldman and Cohen
[12] created neighborhood feature vector and used the KLT to select only the most
dominant principle components of the observation vectors. We now turn to explore

statistical models representing the feature space of the image clutter.

1.1.2 Statistical Models of Natural Clutter

Statistical models describing the natural clutter in the selected feature space domain
are usually the next step after defining the feature space in an anomaly detection
scheme. In the following we describe some of the well studied and commonly applied

statistical models in the field of anomaly detection.
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The Gaussian distribution: is a common basis for feature space statistical
models due to its mathematical tractability. In a Gaussian distribution the statistical

distribution of every pixel y(s) in a 1D feature space is:

) mm)
Py(s)—may p{ 207 } (1.9)

where o, and p,, are the standard deviation and mean of the random variable y.
In a 2D Gaussian feature space, every pixel location s is represented by a vector
of features and the multivariate Gaussian distribution applies, such that the features

vector y(s) at every location s within the image is distributed as:

Py(s) = (2m) 452 | 0y [ xcoxp § =5 0(s) = iy 55 w(s) — ) | (110

where g and My are the covariance matrix and mean of the random feature
vector y, respectively. Ashton [1] performed subpixel anomaly detection in multis-
pectral infrared imagery. A probabilistic background model is formed by using an
adaptive Bayesian classification algorithm. Ashton assumes a multivariate Gaussian
distribution of each pixel class in spectral space.

The Gaussian mixture model (GMM): The assumption of single component
embedded in the multivariate Gaussian model leads to strict requirements for the phe-
nomenon characteristics: a single basic class, which smoothly varies around the class
mean. The smooth behavior is not typically the most significant problem, but the
assumption of unimodality is. For multimodally distributed features the unimodality
assumption may cause an intolerable error to the estimated probability distribution
function (PDF). For a multimodal random variable, whose values are generated by
one of several randomly occurring independent sources instead of a single source, a

finite mixture model can be used to approximate the true PDF. If the Gaussian form
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is sufficient for single sources, then a GMM can be used in the approximation. Stein
et al [42] used a GMM for modeling hyperspectral imagery. They state that the
GMM is a method of characterizing image clutter obtained from nonhomogeneous,
multi-component scenes. This approach models each feature space vector having one
of C possible multivariate Gaussian distributions (classes). The PDF of the scene is

a Gaussian mixture distribution:

C C
Py(s) =Y 7N | pey Se); 7o 20, > me=1, (1.11)
c=1 c=1

where m. is the probability of class ¢. The GMM PDF can be interpreted as a
weighted sum of Gaussians, where 7. is the weight of the cth component. The GMM
PDF is completely defined by the parameter list: @ = {my, uy, X1, ..., 7o, pes 2o}
A review on the GMM model and its estimation can be found in the work by Paallanen
et. al. [33].

The linear mixing model (LMM): The basic premises of linear mixture mod-
eling are that within a given scene three assumptions are met: first, the surface is
dominated by a small number of materials with relatively constant spectra (endmem-
bers). Second, most of the spectral variability within the scene results from varying
proportions of the endmembers, and third, the mixing relationship is linear if the
endmembers are arranged in spatially distinct patterns. In the LMM model the spec-
trum of a mixed pixel is represented as a linear combination of components spectra
(endmembers). The weight of each endmember spectrum (abundance) is proportional
to the fraction of the pixel area covered by the endmember. If there are K3 spectral
bands, the spectrum of the pixel and the spectra of the endmembers can be repres-

ented by K3 dimensional vectors. Therefore, the general equation for mixing by area
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is given by:
M
y = > asptw=Sa+w (1.12)
k=1
S = [81,82,...,81\/[] (113)
a = |a,a9,...,ay, (1.14)

where, vy is the spectrum of the mixed pixel, s;, is the spectra of the endmembers,
ay is the abundances of the endmembers, M the number of endmembers and w an
K3 dimensional error vector accounting for lack-of-fit and noise effects. Physical

considerations dictate the following constraints:

ap >0 (nonnegativity constraint) (1.15)

M
Z ap =1 (additivity constraint), (1.16)
k=1

which can be enforced, if necessary to guarantee meaningful parameter values.
These two constraints are often ignored in order to simplify calculations as in Mano-
lakis et al. [25] where the LMM was applied for the problem of hyperspectral subpixel
target detection. Another example of using the LMM in the context of anomaly de-
tection can be found in the work by Stein at el [42] who used an LMM for detecting
anomalies in hyperspectral imagery.

The Gauss Markov random field (GMRF): is also a well known Gaussian
model, which has been extensively used in the context of texture analysis and anomaly
and object detection. The 2D GMRF has been introduced by Woods [45]. It assumes
a stationary image background where every image pixel is represented as a weighted
sum of neighboring pixels and additive colored noise (the innovation process). Let

Queighbor be a given set of indices representing the neighborhood of a pixel. We denote
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the weight coeflicient of a neighbor r € Qyeighpor by a(r) and the innovation process
by €(s). Assuming an image Y can be modeled as an GMRF, a pixel y(s) in the

image is related to its neighboring pixels as follows:

y(s) = > alk)y(s+k) +e(s) (1.17)

kEQneighbor

The innovation process is spatially correlated with covariance given by:

0, if k= (0,0)
L {€(S>€(S + k)} - _a(k)p2> if k € Qneighbor (118)
0, otherwise.

Kashyap and Chellappa [17] showed that the correlation structure imposes sym-
metry on the neighborhood set. That is, & € Qycighor implies —k € Qpeignpor and
a(k) = a(—k).

A good review of multiresolution Markov Models for signal and image processing
can be found in [44].

The 1D GARCH: Bollerslev [5] introduced the 1-Dimensional (1D) Generalized
Autoregressive Conditional Heteroscedasticity (GARCH) model, which is often used
as a statistical model for time series. It is an extension to the Autoregressive Con-
ditional Heteroscedasticity (ARCH) model introduce by Engle [9]. The 1D GARCH
has been shown to be useful in modeling different economic phenomena.

Let ¢; denote a real-valued discrete-time stochastic process, and 1; the information

set of all information through time ¢. The 1D GARCH (p, q) process is given by:

€t | ¢t ~ N(O, ht) (119)

q p
ht = Qg + Z OéiE?_i + Z 6iht—i y (120)
=1 i=1
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where

p > 0,¢>0
ag > 0,0,2>20,0=1,...,¢q

/62' Z O,Z:]_,,p

For p = 0 the process reduced to the ARCH (q) process, and for p = q = 0 ¢ is
simply white noise.

The GARCH model allows for the conditional variance to change as a function
of past squared field values (€2 ;) and past conditional variance values (h;_;). This
behavior creates a heavy tailed distribution characterized by clustering of innovations.

So far we have discussed feature spaces and statistical models. The final steps in

the anomaly detection scheme are to define an anomaly model and an appropriate

detection algorithm.

1.1.3 Anomaly Detection

The anomaly detection process can be regarded as a problem of classifying a sample
into one of two classes: image clutter or an anomaly, with the assumption of low-
probability anomalies. In practice, it happens that one class (the clutter) is well
defined while the other (the anomaly) is not. For example, if the statistical model
for the image clutter is known, its parameters can be estimated from the image
data. However, without a priory information about the anomalies, such estimation
is impossible for the anomaly class. We next present a set of detection algorithms.

These algorithms differ, among other things, in their representation of the two classes.
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Single Hypothesis Test: The single hypothesis test (SHT) have been proposed
to solve the problem of an undefined anomaly. Typically an SHT involves measuring
the distance of the sample at hand from the clutter mean (normalized by the clutter
covariance matrix), and applying a threshold to determine if it is or is not an anomaly.

That is:
H,
2 Ty—1 =
d” = (y(s) — py) By (y(s) — py) 3 d (1.21)
Hy
where Hy and H; represent target absent and target present hypotheses respectively
and 7, is the selected threshold.

Define z = Q7 (y — Hy)> where () is a whitening transformation, then the distance

d? can be written as:
L1Lo

P=2"2=) 2, (1.22)
k=1
where z;, are the elements of the vector z. Since the expected vector and covariance
matrix of z are 0 and I respectively, the z;’s are uncorrelated, E{z;} = 0 and
VAR{z,} = 1. When y is Gaussian, d* is a sum of squared independent, normally
distributed random variables and therefor is chi-square distributed with L, Lo degrees
of freedom, as follows:

d2 ~ X%le (O) ‘ (]‘23)

It is important to note, that the SHT works well when the dimension of the data
(L1Ls) is very low (such as 1 or 2). As the dimension of the data increases, the
error of the SHT increases significantly. The SHT assumes no knowledge about the
anomalies. If information about the anomalies is made available a priory it cannot

be incorporated into the detection scheme. A detailed discussion on the SHT and can
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be found in Fukunaga [10].
Matched Filter Detector: As an opposite approach to the SHT let us now

consider the detection problem specified by the following hypotheses:

Hy:y~ N(py,Xy) Anomaly absent

Hy:y~ N(pg,X¢) Anomaly present,

where the target and background classes follow multivariate normal distributions
with different mean vectors and covariance matrices. Unlike the SHT the probability
densities are completely specified under each hypothesis. The Likelihood ratio de-
tector is given by the ratio of the conditional probability density functions of the two
hypothesis:

H,

r— Py(’y(S) | anomaly present) >

. 1.24
Py(y(s) | anomaly absent) _ 11 (1.24)

H,
If £ is larger than the threshold 74, the "anomaly present” hypothesis is accepted.
Computing the natural logarithm for the above presented PDFs leads to the quadratic

detector:

L= %(y — 1y) Sy (y — py) — %(y — 1) 2y — ) (1.25)

which compares the Mahalanobis distances of the observed feature vector y from the

centers of the two classes. The required threshold 7, is determined from:

[e.e]

PFA = /P(,C | Ho)d,c = OFA, (126)

Nd

where ap, is the desired probability of false alarm. As a result of the quadratic
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mapping, the distribution of the random variable £ (detector output) is not normal,
which makes the performance evaluation of the detector difficult.

If the target and background classes have the same covariance matrix, that is,
Yy = ¢, the quadratic terms in (1.25) disappear, and the likelihood ration detector
(1.24) becomes:

L=(pg—py) Sy'y. (1.27)
This is a linear detector:
L=c"y= > cy, (1.28)
keQimage

which is specified by the coefficient vector:

c =3y (bt — py)- (1.29)
The detector output is a linear combination of normal random variables and is therefor
normally distributed. This result simplifies the evaluation of the detector and the
computation of detection thresholds using (1.26). This detector is known as Fisher’s
linear discriminant and is widely used in pattern recognition application. The same
result is well known in the the communication and signal processing literature, where
it is termed the matched filter (MF). There the MF is usually derived by maximizing

the cost function:
2

Jo)— [EALIH) —BL]H)P [ e~ py)
B var{L | Ho} B c'Yyc ’

(1.30)

which measures the distance between the means of two normal distributions in units

of the common variance. The maximum is obtained by substituting (1.29) into (1.30):

Tmaz = (1 — Py)" Sy (g — t1yy) (1.31)

which is the mahalanobis squared distance between the means of the anomaly and

clutter distributions.
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Adaptive Matched Filter Detector: The detector in (1.27) requires the mean
vector and the covariance matrix of the anomaly and clutter. In practical applic-
ations, these quantities are often unavailable. To overcome this difficulty we next
present the adaptive matched filter (AMF) [24]. The above mentioned quantities
are estimated from the available data. Omnce again, under the assumption of low-
probability anomalies, we can use the available data y(s); s € Qinage to determine
the maximum likelihood estimates of the mean vector and covariance matrix of the

clutter:

1
hy = T > yls)

SEQimage
1
Yy = s) — s) — B
y I.L Seémm(y() py)(Y(s) — py)

Unfortunately, there is usually not sufficient training data to determine the mean and
covariance of the target. Typically, a target signature t, from a library of the mean
of a small number of known target pixels observed under the same conditions is used.
The resulting AMF is given by:

Ty—1

= %_yl(:) , (1.32)
Yy

where usually the data mean is removed from the anomaly and clutter data.

If we know the "true” covariance matrix g, the output L under the ”target
absent” hypothesis, is distributed as L ~ N (uL, (tTZ,let)‘1>, where u; = E{L}.
When the required means and covariances are estimated from the data, the resulting
estimates are random quantities. If we treat them as constants, we can determine
the class-conditional distribution of the detector output as in the known statistics

case. However, the correct approach is to treat the estimated means and covariances

as random and determine the unconditional distribution of L. Unfortunately, the
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derivation of unconditional distributions is a very difficult problem even under the
most simplified assumptions. For more details on the matched filter detector and
adaptive matched filter detector we refer the reader to the work by Manolakis and
Shaw [24].

RX Detector: Reed and Xiaoli developed the RX detector [34]. It is a generalized
likelihood ratio test (GLRT) based detector, where the clutter model parameters are
estimated based on test and reference data. Let {v; € CT%2 | 1 < j < N4} be
a set of N,.s iid sample vectors having pdf po(-,60y). At every pixel location s a
feature vector y(s) is to be classified as arising from either PDF py(+,60;) or po(-, 6p)
(hypothesis Hy or Hy respectively). The GLRT is:

H,

max (p1(y(s),01)po ({v; [ 1 <j < Nies}, 01)
L=— : , 1.33
mas (), Gopo ({0, 112 < Ny . "

Hy

where 7, is a threshold. Reed and Yu [34] developed an GLRT for multidimensional
image data assuming that the target signal and the covariance of the clutter are

unknown. The data under the two hypotheses is modeled as:

Hy:y~ N(py,Yy) Anomaly absent

Hy:y~ N(pg,Xy) Anomaly present,
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such that gy and pg are unknown. The GLRT is:

H,y
! - =
£ — T re o o T o
(Y — py) Noy +1°Y + N T by —py) | (Y -y 3 e,
Hy
(1.34)
N Nref
_ 1 T - -
where Yy = N ]2231 (vj — py)(v; — py)" is the sample covariance matrix of the
reference data. As N,.; — 0o, £ converges to:
H,y
P -1 >
L= (y—py) [Ey] (Y —py) e (1.35)
<
Hy

Asymptotic forms, as N,.; — 00, of the probability distributions of £ ,under the H,
and H, hypotheses are given in terms of the x? and noncentral y? densities, respect-
ively. Let x2(-) denote the x* density on n degrees of freedom, and let x2(-, \) denote
the noncentral x? density on n degrees of freedom having noncentrality parameter \.

The probability distribution of £ under Hy and H; are:

2 0), under H
[ XTLILQ( ) 0 | (1.36)
Xor, s (g — Hy)TEg_Jl (ut — py)), under H,

where 7 = 1, 2 if the data are real or complex values, respectively. The probabilities

of false alarm and detection are:

Pry = 1-P [X?—Lng(O) < 775} (1.37)

Po = 1= P 21y — 1y) Sy (g — ) <me| - (1.38)
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Note that the distribution of the test statistics under Hy is independent of the un-
known parameters, and thus the test statistics has the constant false alarm rate
(CFAR) property. Chang and Chiang [7] used the RX detector for anomaly detection
in hyperspectral imagery.

Matched Subspace Detector : Scharf and Friedlander [38] extended the GLRT
to situations where the anomaly signature is unknown and assumed to be in a sub-
space. They formulated the MSD for the general problem of detecting subspace
signals in subspace interference and additive white Gaussian noise (WGN). Let (H)
denote the anomaly subspace, spanned by the columns of a matrix H and let (S) de-
note the interference subspace, spanned by the columns of a matrix S. We denote the
additive iid Gaussian noise by € where € ~ N(0, p?I). The problem is to determine
whether the sample vector y contains an anomaly signal. The anomaly signal can be
described as a linear combination of the columns of H, that is, the anomaly signal is:
H4ap, where 1 is a vector of coefficients. The interference signal is described similarly,
using the matrix S and the coefficients vector ¢. We define two hypotheses, Hy and
H, which indicate, respectively, absence and presence of the anomaly signal in the

vector y:

Hy:y = Sop+e (1.39)

Hy:y = HY+Sop+e. (1.40)
Let Pg denote the projection of a vector onto the subspace (S):
Psy(s) = S(S78)7' S y(s), (1.41)

and let Pyg denote the projection of a vector onto the subspace (HS), spanned by

the columns of the concatenated matrix [HS]. The maximum likelihood estimates
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of the additive noise vector € under Hy and under H; are denoted by ey, and €y,
respectively. These estimates are obtained by subtracting from y the components

which lie in the signal and interference subspaces as follows:

en, = (I—Ps)y (1.42)

G;ql = (I - PHS)y- (143)

The detection problem can be formulated as an GLRT between Hy and H;. The

log-likelihood ratio is given by:

L(s) = 2log {igii;:gﬁi (1.44)
exp (5 ]
— 2log GXEE:;P; (1.45)

1
= ?’yT(PHS — Ps)y . (146)

The signal to noise ratio (SNR) is the ratio between the signal and the noise in terms
of intensity. We define the SNR as the second power of the ratio between the signal

which do not lie in the interference subspace, and the standard deviation of the noise:
1
SNR = E[Hzp]T[I — Ps|[H). (1.47)

Let u denote the rank of the anomaly subspace. £ is a sum of squared independent
normally distributed variables and therefor is chi-square distributed with u degrees

of freedom:

2(0), under H

£~ " (1.48)
X2(SNR), under H,

Under hypothesis Hy, the non-centrality parameter of the chi-square distribution of £

is equal to the SNR [37]. The decision rule is based on thresholding the log-likelihood
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ratio using the threshold 7,:

L . (1.49)

The probabilities of false alarm and detection are:

Ppa = 1= P[x;(0) <ng (1.50)

Pp = 1—PN2(SNR) <. (1.51)

Kraut et al. [21]extended the MSD to the the case were the noise (clutter) covariance

matrix is unknown. The extended detector is named adaptive subspace detector

(ASD).

1.2 Motivation and Goals

The Gaussian distribution is a common basis for feature space statistical models. This
is due to the mathematical tractability of the Gaussian statistics. It is of no surprise
that anomaly detection is often applied using a Gaussian distribution. Consider as
an example the GMRF based algorithm presented by Goldman and Cohen [13]. This
algorithm is based on 2D GMRF modeling of uncorrelated layers in a multiscale
representation of the image. Correlation between layers is reduced by means of the
KLT. Anomaly detection is performed by means of an MSD followed by a threshold
operation. We next apply this algorithm to the sea-mine sonar images in the top row
of Figure 1.6. The side-scan sonar images presented in this work are from the Sonar-
5 database collected by the Naval Surface Warfare Center (NSWC) Coastal System

Station (Panama City, FL). The images are 8-bit grayscale. An elongated sea-mine
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(such as those presented in the top row of Figure 1.6) is characterized by a bright line
(the highlight or echo) corresponding to the scattering response of the mine to the
acoustic insonification and a shadow behind it, corresponding to the blocking of sonar
waves by the mine. The image background corresponds to the reverberation from the
seabed. A description of the acquisition process of side-scan sonar imagery and a
discussion on the various shapes of mine like objects in such imagery is presented by
Reed et. al. in [35, 36]. Further technical and navigational information about the
specific database used is not available. It is worth noting that the anomaly, being the
mine and its shadow, is skewed. We shall not pursue this further in this work since
our goal is to propose a novel clutter model and a corresponding detection approach
without the specifics of a certain application. However, for specific applications,
when information about the statistical characteristics of the anomaly is available a
priory, it can be accounted for in order to improve detection results. Applying the
anomaly detection algorithm described above to the sea-mine sonar images in the
top row of Figure 1.6 results in a high false alarm rate. This high false alarm rate
is demonstrated at the bottom row of Figure 1.6, where the dark target like symbol
marks locations where an anomaly has been detected. To explain this high false
alarm rate let us first look into the statistical characteristics of the feature space of
Figures 1.6 (a) and (b). The kurtosis (forth moment divided by the square second
moment) is a measure of fat tail behavior as noted by Buccigrossi and Simoncelli
[6]. The sample kurtosis of the multiresolution feature space of these two figures is
9.8 and 10.9 respectively. The expected kurtosis value for the Gaussian distribution
is 3. The high kurtosis values of the feature space for these two images implies a
distribution with much heavier tails than the Gaussian distribution. Second, let us

examine Figure 1.6 (c¢). The sample kurtosis value for the feature space of this image
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is about 4.2 meaning that the distribution is not highly leptokurtic. However, in the
areas where false alarms are detected, clustering of innovations occurs. Clustering of
innovations is a phenomena where large changes tend to follow large changes, and
small changes tend to follow small changes. In either case, the changes are typically
of unpredictable sign. Clustering of innovations is clearly seen in the image itself and
is also apparent in the layers of the multiresolution representation as demonstrated
in Figure 1.7 (¢)-(d). This phenomena is also present in Figure 1.6 (b) and in its
corresponding multiresolution layers presented in Figure 1.7 (a)-(b). We note that the
clustering of innovations phenomena demonstrated in Figure 1.7 appears at the same
spatial location in the different multiscale representation layers. This demonstrates
scale to scale dependency. These two characteristics of the feature space, namely:
heavy tailed distribution and clustering of innovations, cannot be accounted for by
the GMRF model underlying the detection algorithm of Goldman and Cohen [13]
and therefore call for an alternative statistical model. For that purpose we introduce
the multidimensional GARCH model.

The 1D GARCH model introduced by Bollerslev [5] has been used for modeling
financial time series. It is an extension to the ARCH model introduced by Engle [9].
The GARCH model was designed to capture the fat tails and volatility clustering
associated with financial time series. In a GARCH model the conditional variance at
every location is dependent on conditional variance values and squared field values
of neighboring locations yielding clustering of innovations. The notion of conditional
variance and neighboring locations is mathematically defined in Chapter 3. For details
on the 1D GARCH model we refer the reader to the work by Bollerslev [5] and to the
book by Hamilton [14].

We begin by demonstrating the heavy tails and volatility clustering properties of
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the multidimensional GARCH model. Figure 1.8 shows seven layers of a 3D synthetic
GARCH data (the anomaly planted in these layers is discussed later in Chapter 4).
The sample kurtosis of the complete data set is 26.87. The kurtosis of each of the 2D
layers in Figure 1.8 is shown in Table 1.1. The kurtosis values are much larger than
the value of 3 characterizing the Gaussian distribution, demonstrating the heavy tails
property of the GARCH model. The heavy tails of this sample data can also be viewed
from the data’s histogram shown in Figure 1.9. The volatility clustering property of
the GARCH model, which is due to the special structure of the conditional variance,
is apparent from Figure 1.8, where clustered areas of high variations in gray-scale
levels are easily noticed. To further demonstrate it Figure 1.10 shows the seven layers
of the conditional variance field based on the estimated model parameters. Darker
areas in Figure 1.10 represent areas of high conditional variance. These darker areas
appear in clusters and not as scattered pixels. The match between darker areas in
Figure 1.10 and the areas of clustered variations in Figure 1.8 is obvious.

In this work we introduce the multidimensional GARCH model. Since we assume
the multiscale feature space follows a GARCH distribution, we are faced with the
challenge of developing an appropriate detection approach. Scharf and Frienlander
[38] developed an MSD for the detection of signals in subspace interference and ad-
ditive WGN. Here we introduce a set of multiscale MSDs operating in subspace
interference and additive GARCH noise. Since the statistical model is not limited to
2 dimensions, our MSD utilizes the correlation within and between layers, meaning
that detection at each location in the feature space may be based on feature space
data from adjacent layers, and not limited to a single layer. A separate anomaly
subspace is assumed for each feature space layer, thus allowing incorporation of a

priory information into the detection process. These anomaly subspaces need not be
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Figure 1.6: Detection results in side-scan sea mine sonar images: (top row) Original
side-scan sea-mine sonar images; (bottom row) Detection Results using a GMRF
based method.

of the same size thus allowing for greater adaptivity of the anomaly subspace to the
characteristics of the feature space, namely: scale and orientation. Recognizing that
not all feature space layers contribute evenly to the detection process, our multiscale
MSD allows for a selection of the layers to use. This selection can be made a priory,
or after some processing has been performed and intermediate results of the detection

process are available.

1.3 Overview of the Thesis

The original contribution of this thesis starts from Chapter 2, where we present an
anomaly detection approach for three dimensional data. In a pre-processing stage, we

de-correlate the data layers using the KLT. After de-correlating the data layers, each
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(d)

Figure 1.7: Example of layers from an undecimated wavelet transform
representation of sea mine sonar images: (a)-(b) Two layers from the
multiresolution representation of Figure 1.6(b); (c)-(d) Two layers from the
multiresolution representation of Figure 1.6(c).

Layer | Kurtosis
1 7.81
9.57
17.44
15.91
11.94
14.59
16.28

| O U =] W DO

Table 1.1: Kurtosis Values of Each of the 2D Layers in Figure 1.8
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Figure 1.8: Seven layers of a GARCH synthetic image with a Gaussian shaped
anomaly
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Figure 1.9: Histogram of the 3D GARCH data shown in Figure 1.8. The sample
kurtosis of this data is 26.87
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-

(e) (f) ()

Figure 1.10: Seven layers of the conditional variance field of the synthetic GARCH
data presented in Figure 1.8. Darker areas represent higher conditional variance
values.

layer is modeled as a GMRF. The GMRF accounts for spatial correlation between
neighboring image pixels. We present a least squares model estimation, and present
a parametric form of the model inverse covariance matrix. The inverse covariance
matrix is later used in the anomaly detection stage, thus saving the computational
burden of covariance matrix inversion. Anomaly detection is performed by utilizing a
set of MSDs. Our MSD detects anomalies in colored Gaussian noise, and interference
subspace. We use a different MSD for each data layer. This approach allows us to
incorporate into the anomaly subspace a-priori knowledge about the sensors used to
capture the data, or a-priori information about the anomalies. Using such information
would yield better detection rates, and lower false alarm rates. However, if such
information is not available, detection is carried out based on a general subspace.

We utilize the eigen-picture technique for creating the anomaly subspace when a



CHAPTER 1. INTRODUCTION 42

large training set of anomaly examples is available. The robustness of the proposed
detection approach is demonstrated on real life data from two different applications:
detection of defects in wafer images and detection of faults in 3D seismic data.

In Chapter 3, we introduce the N-Dimensional (ND) GARCH model. The ND
GARCH model is a novel clutter model which is capable of taking into account im-
portant characteristics of a 3D feature space, namely heavy-tailed distributions and
innovations clustering as well as spatial and depth correlations. We utilize an un-
decimated wavelet transform and present a 3D wavelet-based feature space. The
undecimated wavelet transform has the property of translation invariance, which is
important in the context of anomaly detection. A 3D GARCH model is used as the
underlying statistics of the feature space.

In Chapter 4 we develop a multiscale MSD operating in subspace interference and
additive GARCH noise. We show that the GARCH model is more appropriate for the
background clutter than the Gaussian model. For every scale and orientation in the
wavelet domain (referred to as feature space layers) a separate anomaly subspace is
used, thus allowing for better incorporation of a priory information into the process.
Our multiscale MSD approach takes into consideration the fact that not all feature
space layers contribute uniformly to the detection process. It allows for selection of
the most relevant layers, where the relevance criteria is application dependent and
independent of the detection algorithm. We demonstrate the potential advantages of
the proposed method on synthetic data and real life sea-mine side-scan sonar imagery.

We Conclude in Chapter 5 with a summary and discussion on future research

directions.
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1.4 Organization

The organization on this thesis is as follows. In Chapter 2, we present an anomaly
detection approach for three dimensional data, based on the GMRF statistical model
and an appropriate MSD anomaly detection scheme operating in colored noise. In
Chapter 3 we introduce the multi-dimensional GARCH statistical model. We present
a maximum likelihood model estimation. In chapter 4 we introduce an anomaly sub-
space detection approach operating in an undecimated wavelet domain, modeled using
the multidimensional GARCH model. We analyze the performance of the proposed
method and demonstrate that by using a multiscale MSD under GARCH clutter
modeling, rather than GMRF clutter modeling, a reduced false alarm rate can be
achieved without compromising the detection rate. Finally in Chapter 5 we conclude
with a summary and discussion on future research directions.

We would like to note that Chapters 2, 3 and 4 are the detailed and extended
version of our published materials. Chapter 2 is based on [30, 31}, Chapter 3 is based
on [30, 32] and Chapter 4 is based on [30].



Chapter 2

Anomaly Detection Based on

GMRF Modeling

2.1 Introduction

Anomaly detection in three dimensional data has many practical applications in-
cluding automatic target detection in multispectral and hyperspectral images, defect
detection, detecting of faults in seismic data, etc. Statistical methods in this field
assume distinct statistical models for both the background and the anomalies. Stat-
istical parameters for the background are estimated from the 3D data, while statistical
parameters for the anomalies are estimated based on some training set, such as in
the RX algorithm used by Stein et al. [42]. Other methods assume a known anomaly
pattern in a random clutter background, such as in the RX algorithm introduced
in [34], or the adaptive matched filter detector of Manolakis and Shaw [24]. Some
detection algorithms assume the anomalies are those portions of the data that have

the worst fit to the background model. Examples of those algorithm are the single

44



CHAPTER 2. ANOMALY DETECTION BASED ON GMRF MODELING 45

hypothesis tests presented by Schweizer and Moura [40] and the iterative detection
procedure of Goldman and Cohen [12]. Another example is the detector presented
by Ashton [1], in which image clustering is performed in a preprocessing stage fol-
lowed by spectral decorrelation and energy detection for each cluster. No knowledge
about the anomaly is required. In anomaly detection, Once statistical modeling is
accomplished, hypothesis testing is often used for deciding which pixels represent an
anomaly and which represent the background. For a more thorough introduction to
the field of anomaly detection we refer the reader to Chapter 1 in this thesis.

A major limitation of these methods is the inefficient statistical model for the
anomalies. In real life the anomaly has an unknown pattern and one searches for
different anomalies within a given data set. Estimating the statistical parameters for
the anomalies from a given training data set yields poor detection results when the
anomalies differ from the examples in the training set. Estimating these parameters
based on the data itself renders the estimation unstable since the anomalies are sparse
within the data and their location is unknown. Detecting anomalies based on worst
fit to the background model does not allow utilization of a-prior: information about
the anomaly, if such information is available. An additional drawback of many of
these methods is their high computational complexity. The computational cost comes
from inefficient parameter estimation techniques and from the need to find inverse
covariance matrices for the hypothesis testing stage.

In this chapter, we present an anomaly detection approach for three dimensional
data, such as multispectral and hyperspectral imagery (referred to as spectral im-
agery for convenience), seismic data and images taken from different sensors, which

are spatially registered and grouped into a 3D data format. In a pre-processing stage,
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we de-correlate the data layers using the Karhunen-Loeve transform (KLT). After de-
correlating the data layers, each layer is modeled as a GMRF. The GMRF accounts
for spatial correlation between neighboring image pixels. We present an efficient
least squares model estimation, and present a parametric form of the model inverse
covariance matrix. The inverse covariance matrix is later used in the anomaly de-
tection stage, thus saving the computational burden of covariance matrix inversion.
Anomaly detection is performed by utilizing a set of matched subspace detectors.
The MSD was originally developed by Scharf and Friedlander [38] for the detection
of signals in subspace interference and additive WGN. Our MSD detects anomalies
in colored Gaussian noise, and interference subspace. We use a different MSD for
each data layer. This approach allows us to incorporate into the anomaly subspace
a-priori knowledge about the sensors used to capture the data, or a-priori information
about the anomalies. Using such information would yield better detection rates, and
lower false alarm rates. However, if such information is not available, detection is
carried out based on a general subspace. If a large set of anomaly and interference
examples are available for creating of the anomaly and interference subspace a pro-
cedure known as eigen-faces is utilized. The robustness of the proposed detection
approach is demonstrated on real life data from two different applications: detection
of defects in wafer images and detection of faults in 3D seismic data.

It is appropriate to note that the approach presented in this chapter has some
similarities with that presented by Goldman and Cohen [11, 13], however, the two
methods differ in the following aspects: Goldman and Cohen suggested using a mul-
tiresolution representation of a given 2D image in order to create an appropriate
feature space for natural clutter images having several periodical patterns of various

period lengths. Since the GMRF model may not sufficiently describe such clutter
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image, Goldman and Cohen assumed that there exists a multiresolution represent-
ation such that the GMRF model can be appropriately applied. In contrast, this
work deals with true 3D data, such as seismic data or registered data taken from a
number of sensors and organized in a 3D data structure. In creating a subspace for
the anomalies, Goldman and Cohen overlooked the limitation of anomaly and inter-
ference subspaces ranks. If a large training set of anomaly (or interference) examples
is made available, and is to be used to improve creation of the anomaly (or interfer-
ence) subspace, Goldman and Cohen did not suggest any means to deal with it. If
all anomaly examples are to be used in the anomaly subspace creation method they
suggested, it would result in anomaly subspace, which spans the entire feature space,
thus resulting in a high false alarm rate. We utilize a procedure often used in the field
of face recognition, namely eigen-pictures, to overcome this limitation. In addition,
the MSD suggested by Goldman and Cohen suffers from the computational burden of
inverting the covariance matrix of the innovation process. We utilized a parametric
form of the inverse covariance matrix, such that no matrix inversion is required.
This chapter is organized as follows: In Section 2.2, we present the GMRF model
and present an efficient estimation method of its parameters. In Section 2.3, we
propose our anomaly and interference subspaces creation method, which is based on
the eigen-picture procedure followed by our anomaly detection approach. In Section
2.4 we demonstrate the performance of our approach by applying it to the detection
of defects in wafer images and to the detection of faults in 3D seismic data. Finally

in Section 2.5 we conclude.
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2.2 Gauss Markov Random Field

In this section we begin by performing a pre-processing layer de-correlation stage using
the KLT. We then model each transformed data layer as a GMRF, and perform an

efficient model estimation method based on least squares.

2.2.1 Clutter Modeling

A 3D data set of size K7 x K5 X K3 can be regarded as K3, 2D images stacked one on
top of the other. We assume that the layers are uncorrelated. Since this assumption
is generally incorrect, we use a KLT of the data in the depth direction to create the
uncorrelated layers. Let Y represent a 3D data set, and let Y;; be a column vector
(of size K3 x 1) representing all data layers at spatial location (7,7) in Y. Let K
denote a matrix whose columns are the eigenvectors of the covariance matrix of Y ;.

The 3D data W whose layers are independent is given by:
Wij — KTYZ'j . (21)

The KLT transform allows for dimensionality reduction by creating W from only
those layers in K7Y;; corresponding to the larger eigenvalues of the covariance matrix
of Y. Dimensionality reduction may be important for reducing the computational
complexity, reducing memory and disk space and for using only layers containing
information relevant to the problem at hand. Each independent data layer in W is
modeled as a zero mean, homogenous, first order, GMRF. The GMRF accounts for
spatial correlation between neighboring image pixels. Let w;; be an image pixel at
location (i, j). Let 55 and (3, be the minimum mean square error (MMSE) estimation

parameters of w;; from its four nearest neighbors, and let ¢;; be the estimation error.
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A first-order GMRF model is given by:

wij = [ (wi(j—l) + wi(j+1)) + (2.2)

+0y (Wi-1)j + Wasny;) + €55 -

We assume a first order GMRF with zero boundary conditions for simplicity. We
refer the interested reader to the work by Moura and Balram who investigated higher
order fields and different boundary conditions for the GMRF model [2, 28]. We now
turn to the parametric representation of the inverse covariance matrix of the GMRF
model. All pixels within an image (data layer) of size Ky x K, are row stacked into a
column vector w. The estimation error pixels ¢;; are arranged into a column vector

€ in a similar manner. Using this vector notation we can write (2.2) as:
Aw =¢. (2.3)

Schweizer and Moura [39] showed that the matrix A is structured and can be written

in Kronecker notation as:

A=1Ix, ® B+ Hg, ®C (2.4)
where
B = —pnHg, + Ik,
C = —B,Ig,. (2.5)

I, , Ik, are identity matrices of size K7, K5 respectively. Hy,, Hy, have ones on the
first upper and lower diagonals and zeros everywhere else. They also proved that the
error vector € is a colored Gaussian random vector with covariance matrix X, = 024

(where o2 is a positive constant). Using (2.3) and the fact that € is Gaussian we can
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write:

Yw = A'¥.A7?

Ew 0'214_1 y

such that the inverse covariance matrix of w is given by:
Yo = —=A. (2.6)

The three parameters 35, 3, and o2 fully represent the inverse covariance matrix of
w. These parameters are to be estimated for each data layer, based on the data at

hand as described in the following section.

2.2.2 Model Estimation

We now address the problem of model estimation. Let us note that due to the
sparse presence of anomalies and interference signal in the data, the influence of
the anomalies and interference signal on the parameter estimation is insignificant
and therefore can be neglected. Much work has been done on the subject of GMRF
model estimation. For example, Schweizer and Moura [39] explored three methods for
model estimation: Maximum likelihood, approximate maximum likelihood and lease
squares (minimizing the mean-square modeling error). The three methods differ in
their computational complexity and in the fact that the maximum likelihood based
approaches are parametric and thus take advantage of the Gaussian PDF of the clutter
background. It is shown there that the least squares approach is computationally and
statistically efficient. Schweizer and Moura performed least squares estimation based
on averaging of mutually independent Markov windows within the image. Here we

present an MMSE estimator (lease squares) applied to the entire image as a whole.
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In addition Schweizer and Moura selected to solve the least squares problem using
Kronecker products, we use a simpler notation by rearranging terms as described
below. In a first order GMRF model every pixel w;; has four neighboring pixels.

Arranging these pixels in a row vector:

Nij = | Wigj-1) + WiGi+1) W(i-1)j T W(it1); } (2.7)
and lexicographically setting these vectors as rows in a matrix: X = [ nh nl, 777]“(1 .
yields the following representation of (2.2):
w=X0+¢ (2.8)

T
where @ = [ Br B } is a vector of the unknown GMRF parameters. Our goal is
to find @ which minimizes the mean square error: €’e. The MMSE estimation of 8
is given by:

1

0=(X"X) X'w. (2.9)

The third GMRF model parameter o? can be estimated using the two correlation

coefficients, by:

1 1
2 T
— Aw = Sy — 2 — 28,Xs 2.10
a K1K2’w w Kle( Brxh — 2BuXwv) (2.10)
where
K1 K
2
Sw o= D (wy)
i=1 j=1
K1 Ko—1
Xh = DD Wit
i=1 j=1
Ki—1 Ko

Xo = Zzwijw(i+l)j~ (2.11)

i=1 j=1

This result is based on the maximum likelihood estimation presented by Schweizer

and Moura [39)].
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2.3 Anomaly Detection

In this section we present our anomaly detection method. We develop a set of MSDs
operating in a colored Gaussian noise environment for the detection of anomalies in
3D data. The MSD was originally developed by Scharf and Friedlander [38] for the
detection of signals in subspace interference and additive WGN. We use a separate
MSD for each data layer thus allowing the incorporation of a priory information about
the anomalies and the data acquisition process. If a large training set of anomalies or
subspace interference is available there is a difficulty in selecting the most appropriate
examples for creating a anomaly or interference subspace of an appropriate rank. For
that purpose we suggest using a principal component analysis (PCA) based approach,
namely eigen-faces or eigen-pictures. We utilize the parametric form of the inverse
covariance matrix presented in Chapter 2.2 thus reducing the computation burden of

inverting the covariance matrix.

2.3.1 Anomaly and Interference Subspaces

Since we deal with 3D data, the anomalies are also three dimensional with a spa-
tial size L; X Lo which is much smaller than K; x K5 but larger than the GMRF
neighborhood. The anomaly has the same depth dimension as the data (K3 layers).

We assume the anomalies lie within a known subspace spanned by G image chips
05,9 = 1,2,--- G, each of size (L; x Ly x K3). This 3D anomaly model allows us
to represent a different pattern for the anomaly in every layer. Each 3D image chip
is passed through the same KLT transform used for the 3D data. For each layer we
create a matrix Hy, whose columns span the anomaly subspace in that layer. This

is done by row stacking layer ¢ of every image chip into a column vector and setting



CHAPTER 2. ANOMALY DETECTION BASED ON GMRF MODELING 23

these vectors as columns in a matrix: Hy,/ =1,2,---, K3.

We model the interference subspace in a similar manner. We use T" image chips
s, t =1,2,--- T each of size (L; X Ly x K3). These image chips are passed through
the KLT transform and a matrix spanning the interference subspace of each layer

Se, 0 =1,2,---, K3 is created.

2.3.2 Dimensionality Reduction Using PCA

To generalize the discussion assume that the anomaly chip has spatial size L; X Lo
as defined above and depth dimension L3 < K3. When rank(H,) ~ L{L4LY or
rank(H,) > L{L4LY, the anomaly subspace practically spans the entire space, and
anomalies may be falsely detected everywhere within layer ¢. In this case dimension-
ality reduction is performed by means of a technique commonly used in computer
vision known as eigen-pictures or eigen-faces. This technique is based on PCA (also
known as KLT). PCA techniques choose a dimensionality reducing linear projection
that maximizes the scatter of all projected samples. For example, eigen-pictures are
used by Wu et al. [46] for classification of chromosome images, and by Belhumeur et
al. [3] for face recognition.

Let us consider the set of Gy image chips of;. Consistent ordering of these anomaly
chips into column vectors creates a set of G, column vectors of, of size L{L5L§ x 1.
We next consider a linear transformation mapping of the original L! L5 L4 dimensional
space into an M* dimensional feature space, where M*¢ < L{L{LS. The new feature

vectors o; are defined by the following linear transformation:
o =UTo" ¢g=1,2,...,Gy, (2.12)

where U is an L{L5L% x M* matrix with orthonormal columns.
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If the total scatter matrix Sp is defined as:

Gy
¢ ¢
So = Z (0 — Ho)(0; — ro)’, (2.13)
g=1
Gy
where po = Gie > of; is the mean image of all image chips, then after applying the
g=1
linear transformation U”, the scatter of the transformed feature vectors {OZ ?ﬁl is

UTSoU. In PCA, the projection U is chosen to maximize the determinant of the

total scatter matrix of the projected samples, i.e.,

U = argmax|U'SpU|
U

= [wuy- -y (2.14)

where {w;|i = 1,2,... M*} is the set of L{L5LS dimensional eigen-vectors of So cor-
responding to the M? largest eigenvalues. Since these eigenvectors have the same

dimension as the original images, they are referred to as eigen-pictures.

2.3.3 Three Dimensional MSD

Scharf and Friedlander [38] developed an MSD for the detection of subspace signals
in subspace interference and white Gaussian noise. Here, we introduce a set of MSDs
for the detection of signals in subspace interference and colored Gaussian noise.

Let y, represent layer ¢, and let y,(s) represent a pixel at spatial location s in y,.
For each pixel y,(s) we create a column vector n,(s) by row stacking an image chip
of size L X Lo centered around s.

Let v,(s) be a GMRF vector of size L1Ls X 1, and let ¢,(s), 1,(s) be the weight
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vectors for the interference and anomaly subspaces respectively. We define two hy-

pothesis:

Ho:my(s) = Sedy(s) +ve(s)

Hy:ny(s) = Hppy(s)+ Segpy(s) + ve(s).

Under the two hypothesis n, is distributed as:

HO:nZ(S) ~ N(S€¢Z(S)72Uz)

H, ’I’Lg(s) ~ N(Hﬂl’z(s) + S€¢Z(S)7 sz) .

GMRF parameter estimation (as described in Section 2.2.2) is performed for each
layer. The inverse covariance matrix of vy is calculated using the estimated GMRF
parameters. The vectors ¥,(s) and ¢,(s) are estimated from the data based on

maximum likelihood (ML) and are given by (see appendix A):

Hy @ () = PoX, *mu(s) (2.15)
Hy = [y(s)T,9,(s)T]T = Pixy*nu(s) (2.16)
where
Py = (8/Zp)80) 'S8/ Ty, (2.17)
Pyo= (1S, H) "S5 Se, Hi) ' [Se, H 'S (2.18)

Following the above notation we have:

Hy:0(s) = (I —SiPySq/*)nels) (2.19)

Hy =00 (s) = (I—[Se, HIPSg " )na(s) . (2.20)
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Since v, is a Gaussian vector with zero mean and a known structured inverse covari-

ance matrix Y, the log generalized likelihood ratio (GLR) (log GLR) is:

Lo(s) = 2In [

= (S’ ()T (B1 — Bo)(Sp. " ne(s)) (2.21)

where

B = %%, HJP, (2.22)

are the projections into the subspaces spanned by the columns of E,,_)t/ S v and E{,y 2 [Se, Hyl

respectively. Due to the fact that the layers are uncorrelated, the log GLR based on

K3 image layers is:

L(s) = Y Ls) (2.23)

L(s) is a sum of squared independent normally distributed variables. Muirhead [29]
shows that under these conditions L(s) is chi-square distributed with ¢ = Ks-rank(H)

degrees of freedom:
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where:
Ks
A= > (S PHap) (B — Bo) Sy Hep,) =
=1
K3
_ Z Sol 2Hep )T (1 — Bo) (S0 *Hetb,) - (2.24)

=1

A is the ratio between the energy of the signal which does not lie in the interference
subspace and the variance of the noise, and can therefore be regarded as a measure
of SNR. If no interference subspace is assumed, such that S = 0, then P, = 0 and
By = 0. In this case A = f (Hepo) Sy (Hepy)™ and is the ratio between the signal
energy and the noise Varial;ée.

The decision at every spatial location is performed by thresholding L£(s). The

threshold + is chosen such that it would satisfy the desired detection and false alarm

probabilities:

2.4 Experimental Results

In this section we demonstrate the performance of our anomaly detection approach
by applying it to the detection of of defects in wafer images, and to the detection of

discontinuities in 3D seismic data.

2.4.1 Defect Detection in Silicon Wafers

The wafer 3D data is composed of 3 layers. Fach layer is taken from a different

perspective (right angle, left angle, and top). The three layers are perfectly aligned.
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The 3D data is of size 128 x 128 x 3. Figures 2.1(a)-(c) show the three layers of the
wafer image. The defect size is approximately 3 x 3 pixels. We use L1 = Ly = 3.
The anomaly subspace is constructed from 3 image chips. We did not use real defects
for the anomaly image chips, but rather simple bar shape structures in each layer.
The results of the proposed anomaly detection algorithm (without thresholding) are
presented in Figure 2.1(d). Correct detection is apparent from the image (the small
target like symbol marks the detection location. To increase contrast in the detection
image, we performed gamma correction on the displayed detection image. We chose
to compare our results with those of Goldman and Cohen [13] and with those of
the RX algorithm presented in Chapter 1.1.3. In order to implement the Goldman-
Cohen algorithm we perform detection in each of the three image layers separately.
A multiresolution representation of each image layer is achieved by means of an
undecimated wavelet transform. The image chips used for detection are identical to
those used in our algorithm for anomaly subspace creation. The results for each of
the three original image layers of Figures 2.1(a)-(c) are presented in Figures 2.2(a)-
(c) respectively. The gamma correction applied to image 2.1(d) is applied here as
well to increase contrast. Detection is only achieved for Figure 2.2(a) and 2.2(c). In
Figure 2.2(a) there are also several false alarms. In Figure 2.2(b) only false alarms
are detected. Since it is not known a priory, which of the image layers would produce
accurate results, using the Goldman-Cohen algorithm creates a problem of choosing
the image to use. Heuristically trying to add the three detection images results in the
detection image presented in Figure 2.2(d). Although positive detection is achieved a
false alarm also occurs. This demonstrates the advantage of using all available input
data (in this case all three image layers) compared to using a single image layer. We

next compare our results with those of the RX algorithm presented in Chapter 1.1.3.
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Unlike the Goldman-Cohen algorithm the RX algorithm was designed to deal with
hyperspectral data, and thus is expected to produce adequate results for the multi-
layered wafer image presented here. The RX algorithm is implemented here without
a training set, such that N,y = 0 and the clutter mean and covariance matrix are
estimated from the image itself, under the assumption that the contribution of the
anomalies to the calculation is negligible. Detection results for the RX algorithm are
presented in Figure 2.3. Although positive detection is achieved, a false alarm also

occurs. The potential advantage of the proposed method is apparent.

2.4.2 Fault Detection in Seismic Data

We use real life seismic data (from the Gulf of Mexico). The data is a 3D lattice of
size 201 x 201 x 226. We pre-process the data in a similar manner to that suggested by
Cohen and Coifman [8]: A small analysis cube of size 4 x 4 x 15 moves through every
spatial location in every data layer. At each location, the analysis cube is partitioned
into 4 sub-cubes each of size 2 x 2 x 15. The sub-cubes are arranged in a consistent
fashion into 4 column vectors. A correlation matrix of the 4 vectors is calculated. The
lower triangle coefficients of the correlation matrix are formed into a column vector
of size 6 x 1. In this manner each data layer of size 201 x 201 x 1 is turned into a
201 x 201 x 6 lattice. Detection is performed independently on each such lattice. We
first perform the KLT transform described in Section 2.2.1. The 6 layers are highly
correlated, therefor after the KLT transform has been applied, we only use the layer
corresponding to the largest eigenvector, and neglect all other layers (K3 = 1). We
use the detection method described in Section 2.3 on the single layer data. The signal
subspace is constructed from a single image chip of size 1 x 5, which describes a bar

shape. Figure 2.4 shows a horizontal slice of the original data, and the results of the
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() (d)

Figure 2.1: Detection results in silicon wafers: (a)-(c) The three layers of the
original image; (d) Anomaly detection.

60
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(c) (d)

Figure 2.2: Defect detection in silicon wafers using the algorithm suggested by
Goldman and Cohen: (a)-(c) detection results for layers 1-3 respectively;
(d) Heuristic sum of detection results in all layers.
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&

Figure 2.3: Defect detection in silicon wafers using the RX algorithm.

Figure 2.4: Detection of faults in seismic data: (a) Horizontal slice of the 3D seismic
data; (b) Anomaly detection.

anomaly detection algorithm (without thresholding).

2.5 Conclusion

In this chapter, we have presented an anomaly detection approach for three dimen-
sional data. We presented a detector constructed from a set of MSDs working in a

colored noise environment modeled as a GMRF. Each MSD is utilized to perform
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anomaly detection in a single image layer. Using MSDs allows us to incorporate into
the signal subspace a-priory information about the sensors used to capture the data
and about the anomalies. We used a different MSD for each data layer, thus allowing
for maximal use of a priory information. Incorporating such information potentially
produces improved detection results. We demonstrated the proposed approach on two
applications: detection of defects in wafer images, and detection of faults in real life
seismic data. We compared our results with the RX algorithm designed for dealing
with layered data and with the Goldman-Cohen algorithm designed for single layer
data. Although our results show the potential of the proposed approach, using the
GMRF may be inappropriate for some images, specifically, images characterized by
a heavy tailed distribution cannot be statistically well modeled by a Gaussian dis-
tribution. In addition, if the images are characterized by clustering of innovations,
that is, areas (sets of clustered pixels) in which there are large changes, and areas in
which there are only minor changes may also be poorly represented by the GMRF
model. This is true for both single and multi-layered data. In the following chapter we
present a statistical model for multidimensional data, which is capable of capturing

the above mentioned phenomena.



Chapter 3

GARCH Random Field Modeling

3.1 Introduction

Two common phenomena of often used feature spaces are heavy tails of the probability
density function of the features (known as excess kurtosis) and volatility clustering (a
property of many heteroscedastic stochastic processes, which means that large changes
tend to follow large changes and small changes tend to follow small changes). In par-
ticular, the wavelet transform, which is often used as a feature space in applications
dealing with natural images, yields wavelet coefficients that show excess kurtosis.
Spatial and scale-to-scale statistical dependencies of wavelet coefficients also exist.
That is, coefficients of large magnitudes tend to appear at close spatial locations
and at adjacent scales and orientations. Srivastava [41] explains that the strongest
evidence of non-Gaussianity of image comes from the observed histograms: heavier
tails than Gaussian (implying larger kurtosis), sharp cusps at the center and higher
correlation at different scales. Willsky [44] discusses non-Gaussian models to capture

the "heavy tails” nature of a wavelet representation of imagery. Mallat [23] discusses

64
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the histogram of the detail image in the wavelet domain and presents an experiment-
ally obtained histogram model, which is not Gaussian. Buccigrossi and Simoncelly [6]
explain the non-Gaussian statistics of wavelet subband coefficients in that images typ-
ically have spatial structure consisting of smooth areas interspersed with occasional
edges or other abrupt transitions. The smooth regions lead to non-zero coefficients,
and the structures give occasional large-amplitude coefficients. Commonly used fea-
ture space statistical models, such as the GMRF presented in the previous chapter,
may not sufficiently describe the feature space. Detection algorithms based on these
models may result in high false alarm rates due to the inadequacy between the model
and the data.

Bollerslev [5] introduced the 1D GARCH ,which is often used as a statistical model
for time series. It is an extension to the ARCH model introduce by Engle [9]. The
GARCH model allows for the conditional variance to change as a function of past
squared field values and past conditional variance values. This behavior creates a
heavy tailed distribution characterized by clustering of innovations. The 1D GARCH
has been shown to be useful in modeling different economic phenomena. In this
chapter we introduce an extension of the GARCH model to the general case of ND.
This may be a more suitable statistical model for multidimensional data characterized
by the two phenomenons mentioned above. For a given 2D image we propose a
3D multiresolution feature space. This feature space will be used in Chapter 4 for
anomaly detection. We assume that our feature space follows a 3D GARCH model,
that is, the conditional variance at every location within the feature space depends on
squared field values and conditional variance values of neighboring locations, where
the neighborhood is 3D.

This chapter is organized as follows: In Section 3.2 we define the ND GARCH
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model. In Section 3.3 maximum likelihood GARCH model estimation is presented.
In order to guarantee bounded variance for an infinite GARCH lattice, conditions
for wide sense stationarity (WSS) of the GARCH model are presented. In Section
3.4 the proposed wavelet based feature space is presented and its statistical model is

discussed.

3.2 N Dimensional GARCH Model Definition

Let q = (Q17Q27---7QN)7 q; Z 07 1= 177N7 P = <p17p27"'7pN)7 Di Z 07 1=
1,..., N denote the order of an ND GARCH model, and let I'; and I's denote two

neighborhood sets, such that:

Define an ND index vector i = (iy,1s,...,iy). Let ¢ represent a random variable
on an ND lattice, and let h; denote its variance conditioned upon the information
set 5 = {{€_k}ker,, {hi—x}xer,}. Define the ND causal neighborhood of location
ias: ' =T() =4k |k; <ij,j=1,...,N} and let niéide(O, 1) be another random
variable on an ND lattice independent of {hy}, .. An ND GARCH (p;q) process is

defined as:

€ = \/Eini (3.1)
hi = ag+ Z €y + Z Bichi—x (3.2)

kel kels

and is therefore conditionally distributed as:

€i | @Di ~ N(O, hl) . (33)
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In order to guarantee a non-negative conditional variance the model parameters must

satisfy:

ag > 0
(057 2 O, kGI‘l

B > 0, kels. (3.4)

From (3.2) we see that at every location i, both the ND neighboring squared field
values and the ND neighboring conditional variances play a role in the current con-
ditional variance. This yields clustering of variations, which is an important charac-
teristic of the GARCH process.

A special case of the GARCH model is when q = p = 0. In this case ¢; is simply
WGN. Another worth noting case is when N = 1, that is: q = ¢; and p = p; in
which case the multidimensional GARCH model resorts to the 1D GARCH model
introduce by Bollerslev [5].

Note that although causality may seem an unnatural model limitation, it is a
means of guaranteeing non negativity of the conditional variance in the above model
(see Appendix B for more details). The causality of the model may lead to different
results depending on the image orientation. This is demonstrated in Section 4.4.2.
Depending on the application and on the data at hand, it may be appropriate to
consider more than one image orientation when performing anomaly detection based

on the casual GARCH model.
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3.3 Estimation of an N-D GARCH Model

In this section we find a maximum likelihood estimate for the GARCH model. We let
¢; be innovations of a linear regression on an ND lattice, where y; is the dependent
variable, x; a vector of explanatory variables and b a vector of unknown parameters,
such that:

€ = VYi — Ui, (3.5)
where u; = a:in.
Note that if ¢ in (3.5) is WGN (as described in Section 3.2) the regression model
is a casual GMREF. This is a special case of the GARCH process.
Using (3.5) we can write (3.2) as:

hi = ap+ Z o (Yiox — Ui—k)2

kel

+ Z Bichi—x - (3.6)

kel

The conditional distribution of y; is Gaussian with mean u; and variance h;,

Let 6 denote a column vector of the GARCH model parameters,

fi [, i) =

0 = [Oéo, «, /B]T
and define four neighborhood column vectors associated with location i: €;, h;, vy;,
u;. These vectors represent consistent ordering into a column vector of the random
fields elements: {6 1 }yer > 1Mk ierys 1¥i-kJker,s {%i—k}yer, respectively.
We further define
zi = [L(e))*hi]" =

— LG —u)% AT

1 1 1
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where ()2 represents squaring element by element. Using the above notation the

conditional variance in (3.6) can be written as:
hy = [z]76. (3.8)
Define the sample space {23 as an ND lattice of size K1 x Ky X -+ x Ky such
that: Q, = {i|1<i; <Kj,j=1,...,N} and let @ = [b",6”]" be a vector of the

unknown parameters. The conditional sample log likelihood is:

L(O) = Z log f(yi | @i, ¥s) =

i€Qs
1
= —5 [(Ei+ -+ Ky)log(2n) — > log([z]"8)+
IEQS
-3 zl]T(s)] (3.9)
i€Qs

Equation (3.9) together with the constraints in (3.4) may seem enough to estimate
model parameters. However, due to the structure of the conditional variance (3.2),
WSS is a necessary condition for guarantying bounded variance for an infinite lattice,
and therefore conditions for WSS should be included in the model estimation process.
Bollerslev [5] proves that a sufficient condition for WSS of the 1D GARCH process is
that the sum of all model parameters is smaller than 1. We [32] have extended this
results for the 2D GARCH process. A similar result is obtained here for the ND case

as we prove in the following theorem.

Theorem 1 The GARCH (p;q) process as defined in (3.1) and (3.2) is wide-sense

stationary with:

E(Ei) =0

var(6) = [1 — Z oy — Z 51{]

cov(e,e) = 0, Vi#k,
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if and only if

1"(a+B) <1,

where o and B are column vectors of the parameter sets {cutycp, and {Bx}yer,

respectively.

Proof: See Appendix C.

The parameter vector 6 is found by numerically solving a constrained maximiza-
tion problem on the log likelihood function with respect to the unknown parameters
(see for example the work by Berndt et al. [4]). The constraints used are those
presented in (3.4) and in Theorem 1. To solve the maximization problem, knowledge
of ¢ and h; where 71,...,1xy < 0 is required. We set these boundaries in a similar
way to that used by Bollerslev for the 1D case [5] and by us for the 2D case [32] such

that:

1
Ei:hi: N Z (yi—ui)z; Vil,...,z’NSO. (310)

KZ ke
/=1

Since GARCH model estimation requires an iterative procedure to solve the con-
strained maximization problem presented above it may be desirable to test if it is
appropriate before going into the effort of estimating it. Several tests have been pro-
posed for the 1D GARCH model (see for example Bollerslev [5] and Engle [9]). The
problem of testing for GARCH and model order estimation is beyond the scope of

the current work and may be the subject of future research.

3.4 Statistical Model in the Wavelet Domain

In this section we present the wavelet based multiresolution feature space. The sug-

gested multiresolution feature space is an example of a multidimensional feature space
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that can be statistically modeled using the proposed GARCH model. Let Y be a 2D
image of size K; x K5. We use an undecimated wavelet transform into z levels to cre-
ate a multiresolution representation of Y. The undecimated wavelet transform yields
4 subband images at every analysis level. These 4 subband images are labeled dY 5,
diyp, diy and st where the subscripts L, H stand for low and high pass filtering
respectively, d labels a detail subband, s represents the ”smooth” subband and the
superscript ¢ specifies the analysis level. The undecimated wavelet transform yields a
redundant representation. However, the same analysis and synthesis filters are used
as in the decimated wavelet transform, and since the transform preserves the spatial
dimensions, it is easy to work with. Furthermore, the undecimated wavelet transform
has an additional property, namely translation invariance, which is important in the
context of anomaly detection. Strickland [43] used the subband images of an unde-
cimated wavelet transform to create a 3D lattice Y of size K7 X Ky X (2% z+ 1) by

creating a feature vector at every spatial location (i1, 2):
1 1 1 2 2 2 z z Z z 1T
€irio = Aoy + dyp. Ay, dig + dyp dgps - dig + dig digg, SLL](il,ig) . (3.11)

Depending on the application and on the anomalies and clutter characteristics, it
may be more appropriate to use each subband image as a separate feature, yielding
a 3D lattice Y of size K7 X Ky x (3% 2+ 1). If such an approach is selected then the

following represents the vector at every spatial location (i1, s):

o 1 1 1 2 2 2 z z z z 1T
€i1,i2_[dLH’dHL’dHH>dLH’dHL’dHH>'"> LH>“HL> HH>$LL](z'1,i2)' (3'12)

The transformation from Y to Y generates a multiresolution representation with
K3 layers, where K3 =2 % z+ 1 or K3 = 3 * 2z + 1 depending on the selected feature

vector (3.11) or (3.12) respectively.
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As discussed in the introduction, it has been noted by researchers that the dis-
tribution of wavelet coefficients of natural images is characterized by heavier tails
than the often applied Gaussian distribution. It is also argued that spatial and scale-
to-scale statistical dependencies of wavelet coefficients exist. That is, coefficients of
large magnitudes tend to appear at close spatial locations and at adjacent scales and

orientations. We assume that there is a set of wavelet filters such that Y follows a

3D GARCH model.

3.5 Conclusion

The GARCH statistical model is a heavy tailed distribution characterized by cluster-
ing of innovations. It is of interest since a heavy tailed distribution and clustering of
innovations are common characteristics of image multiresolution representations, and
thus cannot be well modeled by often used Gaussian based statistical models such as
the GMREF. In this chapter we have extended the 1D GARCH model into the mul-
tidimensional case, and proposed a maximum likelihood model estimation scheme.
Conditions for WSS of the model were presented to ensure bounded conditional vari-
ance for unlimited feature space dimensions. We presented an undecimated wavelet
multiresolution representation and assumed clutter modeling can be based on a 3D
GARCH model, thus allowing for correlation between pixels of different spatial and
depth locations within the 3D data cube. An appropriate subspace anomaly detector
is developed for the proposed feature space and statistical model in the following

chapter.



Chapter 4

Multiscale Anomaly Detection

4.1 Introduction

Many anomaly detection algorithms have been developed over the years. A short
review of some of the most common anomaly detection algorithms is presented in
Chapter 1. Markou and Singh [26] published a comprehensive review of statistical
approaches to detection. There is a strong connection between the selection of fea-
ture space, clutter statistical model, anomaly model and the detection algorithm. In
this chapter we develop an anomaly detector, which is based on modeling the un-
decimated wavelet transform image feature space (presented in Section 3.4) as a 3D
causal autoregressive model with GARCH innovations. Scharf and Frienlander [38]
developed an MSD for the detection of signals in subspace interference and additive
WGN. Here we develop a set of multiscale MSDs operating in subspace interference
and additive GARCH noise. For every scale and orientation in the wavelet domain
(referred to as feature space layers) a separate anomaly subspace is used, thus allowing

for better incorporation of a priory information into the process. Our multiscale MSD

73
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approach takes into consideration the fact that not all feature space layers contribute
uniformly to the detection process. It allows for selection of the most relevant layers,
where the relevance criteria is application dependent and independent of the detection
algorithm. The potential advantages of the proposed approach are demonstrated by
synthetic and real data examples.

As an input point into the development of the proposed detector let us note the
following: we assume that the anomalies and interference signals are sparse within
the image and therefore their influence on the model estimation and on the estimated
conditional variance field is negligible. GARCH model estimation is performed as
described in Section 3.3. The conditional variance field h;, ;,, is calculated based
on the estimated model parameters using (3.2) and (3.10) and is later used in our
detection process. We next turn to present our multiscale MSD anomaly detection

approach.

4.2 Anomaly and Interference Subspaces

Our anomaly detection approach introduces a designated, best fit multiscale anomaly
subspace for each feature space layer. The anomaly subspaces for different layers can
be based on different anomaly dimensions. This results in greater adaptivity of the
anomaly subspace to the wavelet feature space and improves incorporation of a priory
information, thus potentially reducing the false alarm rate of the detection algorithm.
The anomaly subspace for layer ¢ is spanned by a training set of G, anomaly chips.
The anomaly chips are denoted: o), g =1,2,---, Gy and are each of size L{ x L§ x L§
where: L] < K, L5 < K, and L§ < K3. To create these anomaly chips we may

start with a training set of images containing anomalies at known image locations.
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These images are passed through the process of undecimated wavelet transform and
an anomaly chip of size L{ x L x L is cut out around the spatial center of the anomaly
and layer /. Alternatively we may try to create these anomaly chips synthetically by
using prior knowledge. Each anomaly chip is reshaped in a consistent order into a
column vector of size L{ L5L% x 1. The G, vectors associated with layer ¢ are arranged
as columns in a matrix Hy, such that the columns or H, span the anomaly subspace
for layer /. This procedure is performed for every layer £ =1,..., K3.

When the number of available image chips for a certain layer is high, such that
rank(H,) ~ L{L5L%, the subspace practically spans the entire space, and anomalies
may be falsely detected everywhere within layer ¢. In this case dimensionality reduc-
tion using PCA is utilized (see Section 2.3.2 for more details).

An interference subspace is modeled in a similar manner using 7, subspace chips
si,t = 1,2,--- T, each of size L] x L§ x L§. A matrix spanning the interference

subspace Sy is created accordingly.

4.3 Multiscale Matched Subspace Detection

In this section we introduce an anomaly detection approach based on an MSD and the
multidimensional GARCH statistical model presented above. Scharf and Frienlander
[38] developed an MSD for the detection of signals in subspace interference and ad-
ditive WGN. Here the underlying statistics is more appropriate for the background
clutter. We derive a modified MSD operating in subspace interference and additive
GARCH noise.

Let y(¢, s) represent a pixel at layer ¢ and spatial location s in the 3D lattice Y.

For each pixel y(¥, s) we create a column vector y(¥, s) by row stacking an image chip
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of size L{ x L5 x L% centered around (¢, s). Let €(¢, s) be a result of row stacking a
chip of a GARCH field of size L% x L4 x L§ centered around (¢, s). Similarly let u(¢, s)

be a vector representing the explanatory variable field (a:T b) in the L; X Ly X L3

11,92,13
neighborhood of (¢,s). Let ¢(¢,s), (¢, s) be vectors locating the interference and
anomaly within their subspaces < Sy >= span{S,}, < H, >= span{H,} respectively.

We define two hypotheses, Hy and Hi, which represent absence and presence of an

anomaly respectively:

Hy:y(l,s) = Sep(l,s)+u(l,s)+e(l,s)

Hy:y(l,s) = Hep(l,s)+ Sed(l,s)+u(l,s)+ €e(l,s). (4.1)

Let h(¢, s) represent a row stack of the conditional variance field h;, 4, ;, around (¢, s),
and let (¢, s) be a diagonal matrix whose main diagonal equals the elements of
h(¢,s). Under the two hypotheses the sample conditional distribution of y(¢,s) is

Gaussian with identical covariance matrices and with different means:

Hy:y(l,s) ~ N(Sep(l,s)+u(l,s),%(l,s))

Hy:y(l,s) ~ NHp, s)+ Sip(l,s)+u(l,s),X(l,s)).

Note that although (¢, s) is a diagonal matrix, the vector elements in y(¢, s) are
only conditionally uncorrelated. Unconditionally, these vector elements are correl-
ated, such that correlation within and between layers plays a role in our detection
algorithm. Define Pg, as the projection into the subspace spanned by the columns of
S, and define Pp,s, as the projection into the subspace spanned by the columns of

the concatenated matrix [H,S|, that is:

Ps, = Si(S;8)7'8;

L

Pu,s, = [HeS)) ((HeS)T[HS,)) ™ [HpSdT . (4.2)
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From (4.1) and (4.2) we find the GARCH innovations field under any one of the

hypotheses:

Hy:eo(l,s) = y(l,s)—ul,s) — Sep(l,s) =
= (I —Ps)ly(l,s) —u(l,s)] (4.3)
Hy:e(l,s) = yl,s)—u(l,s)— Sep(l,s) — Hap(l,s) =

= (I = Pu,s,)y(l, s) —u(l,s)]. (4.4)
The conditional likelihood function of € under any one of the hypotheses is:

HO . fo(f, 8) - (277)_L§Lng/2 | 2(67 S) |_1/2

X exp —%eo(ﬁ, TS, 5)eo(l, 5) (4.5)

Hl Zfl(f, 8) - (277)_L§L5L§/2 | 2(67 S) |_1/2

X exp —%el(ﬁ, TN s) el s)]

where | ¥(4, s) | denotes the determinant of ¥(¢, s).

The GLR is defined as:

L(l,s) = 2log (Zg 3) , (4.6)

Substituting (4.5) into (4.6) yields:

L,s) = ell,s)"S(C,s) ety s) — er(l, $)'S(l, s) e (l, s) =
= [(Pa,s, — Ps)(y(l,s) = u(t, )] 5(L, 5)™"
% [(Pi,s, — Ps,)(y(L,5) — u(l, 5))]
=[S )P (y(t,s) —ul, s)] (Prs, — Ps,)

X [2(6,5)_1/2(?;(6, s) —u(l,s))] . (4.7)
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The SNR is the ratio between the signal and the noise in terms of intensity. We
define the point SNR as the ratio between the energy of the signal which does not
lie in the interference subspace [(Hpp((, s))(I — Ps,)]” [((Hap(4, s))(I — Ps,)] and the

innovations’ conditional variance (¢, s), such that:
SNR(L,s) = [(Hep(L, 8))(I = Ps,)|" Z(€, )" [(Hep(£,9))(I = Ps,)] . (4.8)

The GLR is a sum of squared conditionally independent normally distributed
variables and therefore is conditionally chi-square distributed with p, = rank(H,)

degrees of freedom, as follows:

HO : 'C(&S)NX;%@(O)

Hy : Ll s)~ xie(SNR(E,s)) : (4.9)

Under hypothesis Hy, the non-centrality parameters of the chi-square distributions of
L(¢, s) is equal to the SNR.

The GLR is a 3D lattice. Our goal is to unify the detection results for mul-
tiple layers into a single 2D detection image corresponding to the original image in
size. Since not all layers of the feature space usually contribute the same amount
of information to the detection process it may be beneficial to use only a subset of
the layers. Criteria for selecting the subset of layers is application dependent. This
selection can be made a priory thus reducing the computational complexity of the
proposed method, or it can be made based on in-process data such as layers with
highest average SNR, highest point SNR, etc, in which case the decision can only be
made after some calculations have been made. Define the selected subset of layers as:

QcC{1,2,..., K3} such that the final detection image is:
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D(iy, i) = Zﬁ(ilvi% k); Yiq, iy . (4.10)

keQ

The elements summed in (4.10) are in general statistically dependent. This is
due to the 3D neighborhood used to create y(¢,s). However, under certain condi-
tions, these elements are conditionally statistically independent. We discuss two such
private cases of the general case in (4.10). In the first case layer ¢ of the GLR is

selected and used as the detection image, that is Q = {¢} such that:
D(iy, iz) = L(i1, 12, 0); Viy, iz (4.11)

Depending on the application and available a prior: information, different se-
lections of ¢ may be appropriate. For example, if L3 = K3 such that the anomaly
subspace and the feature space have the same depth dimension, it may be appropriate
to select ¢ = L%J + 1 where [J stands for integer division.

In the second case €2 consists of p layers, which are mutually further apart than
the corresponding depth dimension of the 3D neighborhoods L, ¢ € Q. If p = 1 this
reduces to the first case. For example, consider K3 = 7 and {L{ = 3, V/}. Choosing
2 = {2,6} would yield conditionally independent layers in (4.10).

Detection is performed by applying a threshold 7 to D(iy,2) yielding:

D@lﬂé)%ﬂ ; (4.12)
Ho

The threshold is determined by the tradeoff between the desired conditional de-
tection and false alarm rates. For the case where independent layers are used, these
rates can be calculated by:

Ppy=1-P {;82 1, (0) < ?7] (4.13)

keQ
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Pp=1-P

X5 <Z SNRk) < 77] . (4.14)

ke keQ

These rates cannot be easily found for the general case due to the conditional stat-
istical dependence of the elements summed in (4.10). However, computer simulations
can present receiver operating characteristics (ROC) curves for the general case as we
present next, when discussing the performance of the proposed detection approach.

Performance analysis: We shall first look into the performance of a single layer
detection. Figure 4.1(a) presents ROC curves for different values of the SNR. These
curves were generated using p; = 4 and the SNR was varied from 2 to 8 in steps of
2. The values of Pry and Pp were calculated using (4.13) and (4.14) respectively.
As expected the detection rate increases with the SNR. Figure 4.1 (b) presents ROC
curves for different anomaly subspace ranks (different number of degrees of freedom)
while the SNR is preserved at a constant value. It is clearly seen that for a con-
stant SNR the detector’s performance increases with decreasing rank of the signal
subspace. This is expected since as the anomaly subspace rank increases (under the
constant SNR constraint) it is more likely for a false alarm to occur since the an-
omaly subspace covers a larger portion of the feature space. It is important to note
that usually, in real applications, increasing the signal subspace rank results in an in-
crease of the SNR. We next discuss the case of conditionally statistical independent
layers. Figure 4.1 (c¢) compares the ROC curve of a single layer detection (p = 1)
with those of conditionally statistical independent layers (p = 2,3,4). The values of
Pry and Pp were calculated using (4.13) and (4.14). We assumed a constant SNR
for all layers and an identical anomaly subspace rank for all layers. It is clear that
additional independent layers improve the detector’s performance. This improvement

is due to the additional information concealed in every additional independent layer.
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ROC curves for the general case, where the sum in (4.10) contains dependent layers,
are presented in Figure 4.1 (d). These curves are generated by computer simulations
under similar assumptions to those used for generating Figure 4.1 (c) (constant SNR
and identical anomaly subspace ranks for all layer). The ROC curve for the former
case of 2 conditionally independent layers is also presented for comparison. To gen-
erate Figure 4.1 (d) we used pu = 3;Vk € Q such that the ROC curve representing
two independent layers is based on information from 6 different layers. For the ROC
curve representing 2 dependent layers we chose to use information from only 5 dif-
ferent layers (€2 = 2,4). This explains the apparent advantage of the 2 independent
layers over the 2 dependent layers. However, under certain conditions for example
K3 =8 and L} = 3;V/ € , if we wish to choose independent layers, the maximum
value of p is 2 (6 layers are used in the detection process). Under such conditions it
appears that using a larger number of dependent layers (for example p = 6 such that
Q2 ={2,3,4,5,6,7} and 8 layers are used in the detection process) may be beneficial
as seen in the ROC curves of Figure 4.1 (d). The clear advantage of using dependent
layers with p = 6 over using independent layers with p = 2 is due to the fact that
information from more than 6 layers is used. We also note that potentially, the an-
omaly subspace used for the additional dependent layers may contribute information
to the detection process. Similarly, the ROC curve for the case of p = 7 is presented
in Figure 4.1 (d) to show that the larger the number of dependent layers the better

the detector’s performance.
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Figure 4.1: ROC curves of: (a) A single layer detector for different values of SNR;
(b) A single layer detector for different anomaly subspace ranks; (¢) A single layer
detector and an independent layers detector; (d) A dependent layers detector vs.
an independent layers detector
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4.4 Experimental Results

In this section we demonstrate the performance of the proposed anomaly detection

approach on synthetic and real data.

4.4.1 Synthetic Data

We demonstrate the performance of the multiscale MSD on the synthetic data presen-
ted in Figure 1.8, which exactly matches our model assumptions, and qualitatively
investigate the detection performance for different selections of 2. The GARCH data
in Figure 1.8 was generated using the regression and GARCH parameters shown
in Tables 4.1 and 4.2, respectively. The regression parameters are of low values so
that the GARCH behavior can be easily detected in the examples. The sum of the
GARCH parameters is 17 (a + 3) = 0.98 such that the condition stated in Theorem
1 is satisfied. The parameters values in a compared to those in 3 allow the neigh-
boring square field values to have a larger influence on the conditional variance than
the neighboring conditional variances. A 7 x 7 random, Gaussian shaped anomaly,
is planted to the lower left of the image center in all layers of the synthetic image as
can be seen in 1.8(f) for example. Note that the anomaly does not stand out in all
layers, specifically in Figures 1.8(d) and 1.8(g) it can hardly be noticed. As described
above, the clutter clearly contains areas of clustered variations. These areas may gen-
erate high rate of false alarms when conventional GMRF based anomaly detection
algorithms are deployed, as we have previously demonstrated for the 2D case [32].
For anomaly detection we set the anomaly size to L; = Ly = 7, L3 = 3 and create
an anomaly subspace using 4 image chips. No interference subspace is assumed. We

perform parameter estimation as described in Section 3.3 and anomaly detection as
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Parameter b() bllO bl()() b()l()
value 0 (0.05]0.0310.04

Table 4.1: Regression Parameters Used for Generating Synthetic Image

detailed in Section 4.3. Figure 4.2 shows layers 2 — 6 of the GLR. Layers 1 and 7 are
not considered here since they suffer from boundary effects due to the 3D nature of
the anomaly subspace. The target mark on each detection image shows the detection
result when €2 contains this layer only. Note that positive detection is achieved in
all layers, while layer 6 includes a false alarm. Figure 4.3 (a) shows detection results
when performing detection using layers 2 and 6, that is Q = {2,6} and L3 = 3. These
two detection layers are conditionally statistically independent and the detection im-
age is achieved using (4.10). Once again the anomaly is clearly detected. Figure 4.3
(b) presents the results where 2 includes dependent layers 2 —6 and L3 = 3. The 2D
detection result is achieved by means of (4.10). The detection of Figure 4.3 (b) seems
clearer than that of Figure 4.3 (a), which qualitatively demonstrates the potential
of using dependent layers. Figure 4.3 (c) presents the detection result for the same
synthetic data as above, only here 2 = {4} and L3 = K3 = 7, that is, we have used
a 7 layers anomaly subspace and the detection image is layer 4 of the GLR. Due to
the choice of 2 = {4} and the fact that the anomaly and feature subspaces have the
same depth dimension, information from all layers is used in the detection process.
The anomaly is clearly detected, and it seems that this detection image is clearer

than those presented earlier. For detection in real images, presented next, we use a

single layer of the GLR with L3 = K3 and 2 = {L%J + 1}.
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Parameter (%) Q110 | @100 | Go10 | @101 | @111 | Qo111 | (ool
value 0.002 | 0.1 0.2 | 0.2 | 0.2 |10.0210.02]0.02
Parameter | 3119 | Si00 | Boio | Bior | Biir | Boir | Boo
value 0.1 10.0210.0210.02]0.0210.02]0.02

Table 4.2: GARCH Parameters Used for Generating Synthetic Image
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Figure 4.2: Layers 2-6 of the GLR with detected anomalies marked by a dark target
sign

O

®

(b)
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(c)

(a)

Figure 4.3: Detection using a sum of GLR layers: (a) Independent layers 2 and 6;
(b) Dependent layers 2-6; (c) Layer 4 of the GLR using a 7 layers anomaly subspace.
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4.4.2 Real Data

The following examples demonstrate the potential of the proposed anomaly detection
approach on real sea-mine sonar images. Automatic detection of sea-mines in side-
scan sonar imagery is a challenging task due to the high variability of the target and
seabottom reverberation (background). An example of this variability can be seen
in the top row of Figure 1.6, which shows 3 sea-mine sonar images. Mignotte et
al. [27] present a two phase, three-class Markovian segmentation algorithm for the
detection of sea mines in side-scan sonar. In the first phase the data is segmented
into two classes: shadow and reverberation, where the latter consists of both echo
and seabottom reverberation regions. In the second phase the reverberation class
is segmented into two classes: sea-bottom reverberation and echo. Reed et al. [35]
present a three phase procedure for detecting sea-mines in side-scan sonar data. In
the first stage suspected mine objects are detected. The shadow cast by the mine
is extracted in the second stage. In the third stage, shadow information is used to
provide classification information on the shape and dimensions of the detected object.
Goldman and Cohen [13] present a competing method based on 2D GMRF modeling
of independent layers in a multiscale representation of the image. Independence of
layers is achieved by means of the KLT. Anomaly detection is performed by using an
appropriate subspace for each layer.

The proposed method has been applied to the images presented in the top row of
Figure 1.6. A 5 layers feature space is created (K3 = 5) for each image as described
in Section 3.2 in the biorthogonal spline wavelets transform domain. We note that
in our experiments, using different wavelet filters produces similar detection results.
The anomaly subspace is created from arbitrarily selected 4 real examples of sea

mines. The images used for creating the subspace are taken from a training set which
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is mutually exclusive with the images presented in the detection examples of this
work. These 4 images are presented in Figure 4.4. The spatial size of the image chip
is 7 x 7. The 4 chips in the image domain are presented in Figure 4.5. They all
consist of a portion of a sea-mine highlight and a portion of a sea-mine shadow and
thus represent the sea-mine properly. Q = {3} is used for a single layer detection
since no special information is used for the different layers. We choose K3 = 5 such
that all layers contribute to the detection process. To create the anomaly subspace
a wavelet based feature space is created for each of the 4 images in Figure 4.4, in
a similar manner to that used for the images in Figure 1.6. Anomaly chips of size
7 x 7 x 5 are cut from the 4 feature spaces. The center of the chip is located in
layer 3 at the spatial location corresponding to the center of the image chip presented
in Figure 4.5. These 4 chips are consistently reordered into column vectors of size
245 x 1 and are set as column vectors in a matrix Hy_3, which spans the anomaly
subspace. A GARCH(1,1,1;1,1,1) was chosen for modeling image clutter. For the
1-D GARCH the GARCH(1;1) is often enough to capture characteristics of financial
time series as noted by Hansen and Lunde [15]. In a similar manner, we utilize a
GARCH(1,1,1;1,1,1) since it allows demonstrating the 3-D model and its advantage
over the GMRF model, while keeping the calculations simple. Choosing a higher order
GARCH model may be more appropriate for the data, however, the results obtained
by using this simple model are very promising. We also note that the sea-mine
sonar images are noisy. Using a complex high order model may result in unreliable
parameter estimation. Detection results of the proposed approach are presented in
Figure 4.6. A black target like symbol marks the location of the detected anomaly.
Note, that the positive detection is achieved in all 3 images (emphasis is given on the

highlight region corresponding to the selected subspace). To further improve detection
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results, the proposed method can be aided by inference on the object’s shadow made
available by published algorithms such as those presented in Mignotte et al. [27] and
Reed et al. [35] and describe above. We chose to compare our results with those of
the GMRF based multiscale detection method of Goldman and Cohen [13]. Detection
results of the GMRF based method on the sea-mine sonar images presented in the
top row of Figure 1.6 are shown in the bottom row of Figure 1.6. We have used
the same multiscale image representation, subspace image chips and anomaly spatial
size for both the proposed approach and the GMRF based method. It is clearly
demonstrated by these figures that the GMRF based method may result in high false
alarm rate, while the proposed method potentially reduced the false alarm rate. The
high false alarm rate of the GMRF based method may be due to the inability of
the GMRF statistics to properly model the leptokurtic feature space of Figures 1.6
(a), (b). High kurtosis values correspond to non-gaussian distributions, therefore the
underlying GMRF model of the GMRF based method does not allow for accurate
detection. Another reason for the high false alarm of the GMRF based method is
the clustering of innovations phenomena apparent in the feature spaces of all three
images. The GMRF cannot properly model clustering of innovations. Information
on statistical values and examples of clustering of innovations in the feature spaces of
the images are presented in Section 1.2. The examples presented here demonstrate
the potential of the proposed statistical model and detection method in a variable
background. To further demonstrate the robustness of the proposed method, Figure
4.7 (a) presents a sea-mine sonar image, in which the mine object (probably a spherical
object) differs from the mine objects used to create the anomaly subspace (elongated
mines). Figure 4.7 (b) shows the detection results using the exact same wavelet

transform and anomaly subspace used in the detection process leading to Figure 4.6.
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Figure 4.4: Original sea-mine sonar images from which an image chip is cut to
create the anomaly subspace.

A 343

Figure 4.5: Image chips cut from the sea mine sonar images presented in Figure 4.4.

This demonstrate the potential of detecting mine like objects in sonar imagery using
a subspace, which does not contain exact examples of such objects. As discussed in
Section 3.2 casuality seems an unnatural model limitation. We therefor demonstrate
detection results for different image orientations. The side-scan sonar image of Figure
1.6 (c) is rotated by 90° and 180° and the resulting images are presented in the top
row of Figure 4.8. Detection is performed using the exact same procedures as above,
only that the subspace images are rotated accordingly. Detection results are presented
in the bottom row of Figure 4.8. Although positive detection without false alarms is
achieved in all orientations (0°, 90°, 180°) the detection images differ. In particular,
Figure 4.8 (c) produces the best detection results, while Figure 4.8 (d) produces the
worst detection of the three images. Due to the model casuality, it may be appropriate

in some applications to consider all four possible orientations of a given image.
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Figure 4.6: Detection results using the proposed method on the sea-mine sonar
images of Figure 1.6.

(a) (b)

Figure 4.7: Original side-scan sonar image of a spherical object and a corresponding
detection image: (a) Original sea-mine sonar image; (b) Detection results using the
proposed method on the sea-mine sonar images.
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() (d)

Figure 4.8: Detection results on rotated versions of the side-scan sea mine sonar

image presented in Figure 1.6 (c): (a) original image rotated by 90%; (b) original

image rotated by 180°. (c) Detection Results for Figure (a) using the proposed
method; (d) Detection Results for Figure (b) using the proposed method.
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4.5 Conclusion

We have developed a multiscale anomaly subspace detection method, corresponding
to the multidimensional GARCH model introduced in chapter 3. The MSD enables
incorporation of a priory information into the detection process. A separate anomaly
subspace is assumed for each layer in the multiresolution representation. Since not all
layers contribute uniformly to the detection process we allow for a selection of only
those layers which are most significant to the detection. Layers are selected a priory
or based on intermediate results obtained for each layer. We have demonstrated the
performance of the proposed statistical model and detection approach on synthetic
images and real sea-mine side-scan sonar imagery. Automatic detection of sea-mines
in side-scan sonar imagery is a challenging task due to the high variability of the
target and sea-bottom reverberation. Compared with a GMRF based method, we
presented improved performance, i.e., a reduce false alarm rate while retaining a high

detection rate.



Chapter 5

Conclusion

5.1 Summary

A novel clutter model is introduced: the multidimensional GARCH model. This
statistical model can incorporate important characteristics of commonly used feature
spaces, namely, heavy tailed distributions and clustering of innovations. We develope
two anomaly detectors, each consists of a set of MSDs. The first detector is appro-
priate for detecting anomalies in three dimensional images, which can be properly
modeled as a stack of two dimensional GMRFs. This approach was applied to the
detection of faults is seismic data and to detection of defects in bare wafers. The
second detector is suitable for feature spaces which present non-Gaussian character-
istics, namely: excess kurtosis and clustering of innovations. To demonstrate such
a feature space we used the undecimated wavelet transform to create a 3-D feature
space for a given 2-D image. The underlying assumption is that there exists a set of
wavelet filters such that the resulting feature space can be properly modeled using a

3-D GARCH model.
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Our detectors operate by applying a separate MSD to each layer of the feature
space. The MSD was originally developed by Scharf and Frienlander [38] for signal
detection in subspace interference and WGN. Here, we formulated a set of multiscale
MSDs for signal detection in subspace interference and noise which follows a GMRF
model (first detector) or GARCH model (second detector). The MSDs incorporate the
available a priory information about the targets into the detection process and thus
improve the detection performance. When a large training set of anomaly examples
is available a priory we suggest using a technique known as eigen-pictures to create
an anomaly subspace of a desired rank, which can be regarded as an anomaly basis
spanning the anomaly subspace. The eigen-pictures technique is based on PCA, thus
choosing a dimensionality reducing linear projection, which maximizes the scatter of
all projected samples in the training set. Our approach takes into consideration the
fact that not all feature space layers contribute uniformly to the detection process
and allows for selection of the most relevant layers, where the relevance criteria is
application dependent and independent of the detection algorithm.

The performance of the two detectors is demonstrated on appropriate examples,
showing the potential advantage of using the detectors, the importance of selecting
an appropriate statistical model for the feature space and the ability of the GARCH

model to cope with image clutter characterized by non-Gaussian statistics.

5.2 Future Research

The approach we have proposed in this thesis opens a number of interesting topics

for future study:

1. Non-causal GARCH like models.
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The causality assumption incorporated into the ND GARCH model introduced
in Chapter 3 is unnatural for images. Developing a non-causal statistical model
characterized by a heavy tailed distribution and innovation clustering may lead
to an improvement in clutter modeling by reducing the dependency on image
orientation. As a result, such a model, may reduce the false alarm rate for a

given detection rate.

2. The multifamily likelihood ratio test.

The proposed MSD approach assumed prior knowledge about the spatial size
of the anomaly and is unable to distinguish or decide between different an-
omalies. Kay [18, 19] proposed a multifamily likelihood ratio test for multiple
signal model detection, which may be used to alleviate the limitation of an a-
priory known anomaly size. Extending Kay’s approach and applying it with the
proposed statistical model may lead to a multiple hypothesis test in which an-
omalies of different spatial sizes, and potentially of different characteristics are
combined in a single anomaly detection scheme, such that anomaly detection

and classification can be achieved in a single step.

3. Anomaly subspace detection in non-stationary clutter.

An underlying assumption of the proposed approach is that the entire image
area or region of interest (ROI) is generated by a single statistical model. This
assumption is in general inaccurate as scenes tend to include different back-
ground environments (such as grass, trees, soil, etc.). Smaller spatial areas may
obey a single stationary behavior. Performing image segmentation, such that
each segment follows a single GARCH model and performing anomaly detection

for each segment separately may improve the detector’s performance.



Appendix A

Maximum Likelihood Estimation

of ¢y Under H|

We prove the ML estimation of ¢, under Hy. The ML solution of ¢;, 1, under H; is
easily proved by analogy. Under Hy we have:

d d
1, Lo [P ()]} = 70~

Opening the parenthesis on the right side, recalling that nfE{J}nl is independent of

[(r = i) B! (mi = i)

¢, and rearranging terms yields:

d d
s {log [P (n))]} = a6 (@] S/ SprSip, — 2n) Syt Sy -

Setting the derivative to zero we have:
25/ Syt Sy — 2(n/ 1 5) " =0.

Solving for ¢, yields:
¢, = (S Syl S) IS Syim
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Appendix B

The Causality Constraint

For ease of notation let us explore the GARCH model in 1D, and show that there is no
way to guaranty a non-negative conditional variance without the causality constraint.
Let ¢,p > 0 denote the order of a non-causal symmetric GARCH model, and let

I'y and I'; denote two neighborhood sets which are defined by

Iy = {k|—¢<k<gq k#0}

Iy = {k|-p<k<p k#0}.
Let ¢; represent a stochastic process, and let h; denote its variance conditioned upon
the information set v, = {{€_ktrer,, {Mi—k frer, }- Let nt%N(O, 1) be a stochastic
process independent of hy, Vk # t. The non-causal GARCH (p, q) process is defined

as:

€& = \/EWt (B.1)
ht = Qg + Z Oé]&%_k + Z 6kht—k y (B2)

kel kel
and is therefore conditionally distributed as:

€ | e ~ N(O,hy) . (B.3)
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In order to guarantee a non-negative conditional variance we require that
h(t) >0, Vt (B.4)

We need to find conditions on the parameters space {ao, {o} per, ,{ﬁk}kg2} such
the equation (B.4) holds. Substituting (B.1) into (B.2) yields:

hy = ap + Z an? phi—k + Z Brhi_r (B.5)

kely kel

This is a set of linear equations in h;. To the best of our knowledge there are no
known conditions on the parameters of a set of linear equations in order to guarantee
a non-negative solution. In addition, the equation parameters include a stochastic
process 1?_,, which cannot be limited in any way. This means, that causality is a

necessary constraint to guarantee a non-negative conditional variance.



Appendix C

Proof of Theorem 1

In this appendix we prove Theorem 1 presented in Section 3.3.

Repeating substitutions of (3.1) into (3.2) yields:

hi = oo+ > o+ Y Bihix

kel kels
2
= 040+E Qi
rel’y
2
X ao+§ oMy Pimr—k + E ﬁkhi—r—k]
kel kel

+> B

rel’s

= CW)EE:-AI(iug>
g=0

ap + Z e _ichir—x + Z Brchi—r—x

kel kels

where M (i, g) involves all terms of the form:

H ok H /513“ Hn?_s,.
r=1

kel kel
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for
S ot Yhmyg
kel kels
o
kel
and
0 < [s1] <|sgf < -0 < sy
S = (Srys--esSry)
sp, < max{gq, (g — 1)q1 +p1}
Srv < max{gqn, (9 — 1)gn + pn}
Thus,
M(G,0) = 1
M(i1) = Z g+ Z O
kel'y kel's
M@E2) = ) i,
rel’y
X [Z Oy + Z 5k]
kel kel's
+ Db
rels
X [Z Ty Z 5k]
kel kel's

and in general

M@, g+1) = > ounf ( M(i-k,g)

kel

+ Y BM(i—k,g) (C.2)

kel
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Since 7; is i.i.d., the moments of M (i, g) are not dependent on (i), and in particular

E{M(i, )} = E{M(k,g)} ¥i kg (©3)
from (C.2) and (C.3) we obtain

E{M@i,g+1)} = |D o+ > B| E{M( 9)}

= | )+ Y B E{M(G0)}
Lkely kel J
79+1

Finally by (3.1), (C.1) and (C.4),

E{¢} = mE {i M(i,g)}

= [1 — Z ax — Z ﬁk] (C5)

if and only if

and
E(Ei) =0

var(e) = ap [1 - Z Qg — Z 61{]

kel kel's

cov(e,ex) = 0 for(i) # (k)

follows immediately.
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