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What is Anomaly Detection?

Objective

Image anomaly detection is the process of distilling a small number
of clustered pixels, which differ from the images general
characteristics

Main Stages

Selection of an appropriate feature space

Selection of a statistical model for the feature space
representing the image clutter

Selection of a detection algorithm

Amir Noiboar October 2006



Introduction
N-D GARCH

Anomaly Detection
Experimental Results

Summary

What is Anomaly Detection?

Objective

Image anomaly detection is the process of distilling a small number
of clustered pixels, which differ from the images general
characteristics

Main Stages

Selection of an appropriate feature space

Selection of a statistical model for the feature space
representing the image clutter

Selection of a detection algorithm

Amir Noiboar October 2006



Introduction
N-D GARCH

Anomaly Detection
Experimental Results

Summary

Feature Space

The detection process is generally performed with respect to an
appropriate feature space in which a clear segregation between the
anomalous elements and the rest of the background clutter in the
scene is possible

The feature space is often derived using

Single resolution spatial analysis

Multi-resolution analysis

Integration of both
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Motivation for a Multiresolution Feature Space

(Yu et.al. 1992)

Features of interest are generally present in different sizes

Allows processing of different scales and orientations in parallel

(Strickland et.al. 1997)

Objects in imagery create a response over several scales in a
multiresolution representation of an image, and therefor the
wavelet transform can server as a means for computing a feature
set for input to a detector
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Motivation for a Multiresolution Feature Space (Cont.)

(Goldman and Cohen 2005)

Allows capturing of periodical patterns of various period length
which often appear in natural clutter images

(Laine et.al. 1994)

Orientation and scale selectivity of the wavelet transform are
related to biological mechanisms of the human visual system
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Statistical Models

The Gaussian distribution is a common basis for feature space
statistical models due to its mathematical tractability

Most random field models are based on the spatial interaction
of pixels in local neighborhoods

The value of each pixel is predicted based on its neighboring
pixels
The prediction error is the innovations process
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Statistical Models (cont.)

Spatial Interaction of Pixels

y(s) =
�

k∈Ωneighbor

α(k)y(s + k) + ε(s)

ε(s) ∼ N(0, ρ
2)

Gauss Markov Random Field (GMRF)(Woods, 1972)

E {ε(s)ε(s + k)} =

�� � ρ
2
, if k = (0, 0)

−α(k)ρ2
, if k ∈ Ωneighbor

0, otherwise
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Statistical Models (cont.)

Spatial Interaction of Pixels

y(s) =
�

k∈Ωneighbor

α(k)y(s + k) + ε(s)

ε(s) ∼ N(0, ρ
2)

Gauss Markov Random Field (GMRF)(Woods, 1972)

E {ε(s)ε(s + k)} =

�� � ρ
2
, if k = (0, 0)

−α(k)ρ2
, if k ∈ Ωneighbor
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Detection Algorithms

Hypothesis Testing

H0 - Target absent (clutter only)
H1 - Target Present

Detectors

Single Hypothesis Test (SHT)

Matched Filter Detector

Matched Subspace Detector (MSD)
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Single Hypothesis Test SHT

Solves the problem of an undefined anomaly

Measurs the distance from the clutter mean

d2 = (y(s) − µy)TΣ−1
y (y(s) − µy)

H1

>

<

H0

ηd

H0 : y ∼ N(µy, Σy)

H1 : y ∼ N(µ?, Σ?)

Drawbacks

As the dimension of the data increases, the error of the SHT increases
significantly

If information about the anomalies is made available a priory it cannot be
incorporated into the detection scheme
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Matched Filter Detector

When a typical signature of the target is available

H0 : y ∼ N(µy,Σy)

H1 : y ∼ N(µt,Σt)

L =
Py(y(s)|H1)

Py(y(s)|H0)

H1

>

<

H0

ηd

The log likelihood ratio detector is given by the ratio of the
conditional probability density functions of the two hypothesis:

L = 1
2(y −µy)TΣ−1

y (y − µy) − 1
2 (y − µt)

T Σ−1
t (y − µt)

Compares the Mahalanobis distances of the observed feature vector
y from the centers of the two classes (Manolakis and Show, 2002)
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Matched Filter Detector (Cont.)

Fisher’s Linear Discriminant

If the target and background classes have the same covariance
matrix, that is, Σy = Σt, the quadratic terms disappear, and the
likelihood ration detector becomes:

L = (µt − µy)TΣ−1
y y

This is a linear detector:

L = cTy =
∑

k∈Ωimage

ckyk

The coefficient vector:

c = Σ−1
y (µt − µy)

The detector output is a linear combination of normal random
variables and is therefor normally distributed (Manolakis and Show, 2002)
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Matched Subspace Detector

The anomaly signature is unknown and assumed to be in a
subspace

Detecting subspace signals in subspace interference and
additive WGN

H0 : y = Sφ+ ε

H1 : y = Hψ + Sφ+ ε

ε ∼ N(0, ρ2I)

(Scharf and Friedlander, 1994)

PSy(s) = S(ST S)−1STy(s)

ˆεH0
= (I − PS)y

ˆεH1
= (I − PHS)y
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Matched Subspace Detector(Cont.)

GLRT

L(s) = 2 log

[

P(ε(s) | H1)

P(ε(s) | H0)

]

= 2 log







exp
(

[ ˆεH1
]2

2ρ2

)

exp
(

[ ˆεH0
]2

2ρ2

)







=
1

ρ2
yT (PHS − PS)y

H1

>

≤
H0

ηL

(Scharf and Friedlander, 1994)
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Matched Subspace Detector(Cont.)

SNR

We define the SNR as the second power of the ratio between the
signal which does not lie in the interference subspace, and the
standard deviation of the noise:

SNR =
1

ρ2
[Hψ]T [I − PS ][Hψ]

L ∼

{

χ2
u(0), under H0

χ2
u(SNR), under H1

PFA = 1 − P [χ2
u(0) ≤ ηL]

PD = 1 − P [χ2
u(SNR) ≤ ηL]

Under hypothesis H1, the non-centrality parameter of the
chi-square distribution of L is equal to the SNR
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Side-Scan Sonar Images

Image Acquisition

Chen et. al 1999

Examples
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Motivation for a GARCH Model

Drawbacks of Gaussian Based Statistical
Models

Not appropriate for modeling two
common phenomena of often used
feature spaces:

Heavy tails of the probability
density function of the features -
known as excess kurtosis
Volatility clustering - large changes
tend to follow large changes and
small changes tend to follow small
changes
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Motivation for a GARCH Model (Cont.)

Wavelet Based Feature Space (Willsky, 2002)

Yields wavelet coefficients that show excess kurtosis

Spatial and scale-to-scale statistical dependencies of wavelet
coefficients exist
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Motivation for a GARCH Model (Cont.)

(Goldman and Cohen 2005)

Anomaly detection algorithm for detecting regions which appear
unlikely with respect to a multi-resolution GMRF model of the
background image, using an MSD

Kurtosis 9.8 Kurtosis 10.9

The heavy tailed distribution and the
clustering of innovations, cannot be
accounted for by the GMRF model
underlying the detection algorithm

Calls for:

An alternative statistical model
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N-Dimensional GARCH Model Definition

1-D GARCH (Bollerslev, 1986)

GRACH - Generalized Autoregressive Conditional
Heteroscedasticity

Often used as a statistical model for time series

It is an extension to the ARCH model introduce by Engle 1982

Creates a heavy tailed distribution characterized by clustering
of innovations

The 1-D GARCH has been shown to be useful in modeling
different economic phenomena
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N-Dimensional GARCH Model Definition (Cont.)

Model Order:

q = (q1, q2, . . . , qN ), qi ≥ 0, i = 1, . . . ,N

p = (p1, p2, . . . , pN ), pi ≥ 0, i = 1, . . . ,N

Neighborhood:

Γ1 = {k | 0 ≤ ki ≤ qi , i = 1, . . . ,N and k 6= 0}

Γ2 = {k | 0 ≤ ki ≤ pi , i = 1, . . . ,N and k 6= 0}

Random Fields and Variables:

i = (i1, i2, . . . , iN ) is an N-D index vector

εi is a random variable on an N-D lattice

hi its variance conditioned upon the information set:

ψi = � {εi−k}k∈Γ1
, {hi−k}k∈Γ2 �

Γ = Γ(i) = � k | kj ≤ ij , j = 1, . . . ,N � is an N-D
causal neighborhood of location i

ηi
iid
∼N(0, 1) is a random variable on an N-D lattice

independent of {hk}k∈Γ

N-D GARCH(p; q) Process Definition

εi =
√

hi ηi

hi = α0 +
∑

k∈Γ1

αkε
2
i−k +

∑

k∈Γ2

βkhi−k

and is therefore conditionally distributed as:

εi | ψi ∼ N(0, hi)

Conditions for a non-negative conditional variance

α0 > 0

αk ≥ 0, k ∈ Γ1

βk ≥ 0, k ∈ Γ2
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N-Dimensional GARCH Model Definition (Cont.)

WSS is a necessary condition for guarantying bounded
variance for an infinite lattice

Theorem

The GARCH(p; q) is wide-sense stationary with:

E(εi) = 0

var(εi) = α0 �	 1 − 

k∈Γ1

αk − 

k∈Γ2

βk �� −1

cov(εi, εk) = 0, ∀i 6= k ,

if and only if

1
T

(α + β) < 1

N-D GARCH(p; q) Process Definition

εi =
√

hi ηi

hi = α0 +
∑

k∈Γ1

αkε
2
i−k +

∑

k∈Γ2

βkhi−k

and is therefore conditionally distributed as:

εi | ψi ∼ N(0, hi)

Conditions for a non-negative conditional variance

α0 > 0

αk ≥ 0, k ∈ Γ1

βk ≥ 0, k ∈ Γ2
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N-Dimensional GARCH Model Definition (Cont.)

At every location (i), both the N-D neighboring squared field
values and the N-D neighboring conditional variances play a
role in the current conditional variance

This yields clustering of variations, which is an important
characteristic of the GARCH process

Private Cases

When q = p = 0 εi is
WGN

When N = 1, that is:
q = q1 and p = p1 we
have the 1-D GARCH
model of Bollerslev 1986

N-D GARCH(p;q) Process

εi =  hi ηi

hi = α0 + 

k∈Γ1

αkε
2
i−k + 


k∈Γ2

βkhi−k
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N-D GARCH Example

Seven layers of a GARCH synthetic image with a Gaussian shaped
anomaly (Kurtosis = 26.87)

Seven layers of the conditional variance field of the synthetic GARCH
data presented above. Darker areas represent higher conditional variance
values
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Undecimated Wavelet Transform Feature Space

Let Y be a 2-D image of size K1 × K2. We use an undecimated
wavelet transform into z levels to create a multiresolution
representation of Y

Option 1

εi1,i2
= [d

1
LH , d

1
HL, d

1
HH , d

2
LH , d

2
HL, d

2
HH , . . . , d

z
LH , d

z
HL, d

z
HH , s

z
LL]

T
(i1,i2)

Option 2 (Strickland 1997)

εi1,i2
= [d

1
LH + d

1
HL, d

1
HH , d

2
LH + d

2
HL, d

2
HH , . . . , d

z
LH + d

z
HL, d

z
HH , s

z
LL]

T
(i1,i2)

Assumption

We assume there is a set of wavelet filters such that Y can be modeled
as a 3-D GARCH process
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MSD
Performance Analysis

The Need for a Modified MSD

The GAP

The matched filter detector requires a typical signature of the
targets

Single hypothesis schemes make no use of a priory available
information about the anomaly

The MSD was developed for signal detection in subspace
interference and WGN

Calls for:

A modified MSD
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MSD
Performance Analysis

Anomaly Subspace of Layer `

Start with a training set of G` images containing anomalies at
known image locations

Training images are passed through the process of
undecimated wavelet transform

Cut an anomaly chip of size L`
1 × L`

2 × L`
3 around the spatial

center of the anomaly in layer `

Alternative: Create these anomaly chips synthetically by using
prior knowledge

Reshape each anomaly chip in a consistent order into a
column vector

Arrange the G` vectors associated with layer ` as columns in a
matrix H`

the columns or H` span the anomaly subspace for layer `

Repeat the procedure for every layer `
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MSD
Performance Analysis

Processing of a Training Image

Original Image Wavelet Domain Image
Chip

Vector
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Processing of a Single Image Chip

Original Wavelet Domain Vector h`
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Anomaly and Interference Subspaces

H` =

h`
1 h`

2 · · · h`
G`
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Subspace Detection in GARCH Noise

Binary Hypothesis Test

H0 : y`,s = S`φ`,s + u`,s + ε`,s

H1 : y`,s = H`ψ`,s + S`φ`,s + u`,s + ε`,s

Let y`,s represent a pixel at layer ` and spatial location s in the 3-D lattice Y

For each pixel y`,s we create a column vector y`,s by row stacking an image chip of size L`
1 × L`

2 × L`
3

centered around (`, s)

Let ε`,s be a result of row stacking a chip of a GARCH field of size L`
1 × L`

2 × L`
3 centered around (`, s)

Let u`,s be a vector representing an explanatory field
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Subspace Detection in GARCH Noise (Cont.)

Projections:

PS` = S`(S
T
` S`)

−1ST
`

PH`S` = [H`S`]
(

[H`S`]
T [H`S`]

)−1
[H`S`]

T

GARCH Innovations Field:

H0 : ε0`,s = y`,s − u`,s − S`φ`,s =

= (I − PS`)[y`,s − u`,s ]

H1 : ε1`,s = y`,s − u`,s − S`φ`,s − H`ψ`,s =

= (I − PH`S`)[y`,s − u`,s ]
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Single Layer Detection

Conditional Likelihood Ratio

L`,s = 2 log

[

P(ε`,s | H1)

P(ε`,s | H0)

]

= ε0
T

`,sΣ
−1
`,s ε

0
`,s − ε

1T

`,sΣ
−1
`,s ε

1
`,s =

=
[

Σ
−1/2
`,s (y`,s − u`,s)

]T

(PH`S` − PS`)

×
[

Σ
−1/2
`,s (y`,s − u`,s)

]

L`,s

H1
>
<
H0

η`
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MSD
Performance Analysis

Single Layer Detection (Cont.)

H0 : L`,s ∼ χ2
µ`

(0)

H1 : L`,s ∼ χ2
µ`

(SNR`,s)

PFA = 1 − P
[

χ2
µ`

(0) ≤ η`

]

PD = 1 − P
[

χ2
µ`

(SNR`) ≤ η
]

SNR`,s =
[

(H`ψ`,s)(I − PS`)
]T

Σ−1
`,s

[

(H`ψ`,s)(I − PS`)
]
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Multiple Layers

Define the selected subset of layers as: Ω ⊂ {1, 2, . . . ,K3} such
that the final detection image is:

Detection

Ds =
∑

k∈Ω

Lk,s

H1
>
<
H0

η

SNR

SNR =
∑

k∈Ω

SNRk

PFA and PD

PFA = 1 − P

[

χ2�
k∈Ω

µk
(0) ≤ η

]

PD = 1−P

[

χ2�
k∈Ω

µk
(SNR) ≤ η

]

independent layers
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Single Layer Detection - Performance

ROC Vs. SNR
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Multiple Layers - Performance

Independent Layers
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Synthetic
Real

Single Layer Detection

Layers 2 − 6 of the GARCH synthetic image with a Gaussian shaped anomaly

Single layer detection with L`
3 = 3
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Synthetic
Real

Multiple Layers Detection

layers 2, 6, L`
3 = 3 layers 2 − 6, L`

3 = 3 Layer 4, L`
3 = 7
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Synthetic
Real

Detection in Side-Scan Sonar Imagery

Original
Images

Goldman and
Cohen

Proposed Method
Ω = {3}, L3 = 5
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Synthetic
Real

Orientation

Original Rotated 90o Rotated 180o
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Summary

Introduced a multidimensional GARCH model characterized
by heavy tails and clustering of innovations

These characteristics are of interest since they are common in
image multiresolution representations, and cannot be well
modeled by Gaussian based statistical models

Introduced a modified MSD Operating in GARCH noise.

Demonstrated the performance of the proposed approach on
synthetic and real data

Compared with a GMRF based method, we presented
improved performance
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