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ABSTRACT

In this work, a shifted wavelet packet (SWP) library, con-
taining all the time shifted wavelet packet bases, is defined.
A corresponding shift-invariant wavelet packet decomposi-
tion (STWPD) search algorithm for a “best basis” is intro-
duced. The search algorithm is representable by a binary
tree, in which a node symbolizes an appropriate subspace of
the original signal. We prove that the resultant “best basis”
is orthonormal and the associated expansion, characterized
by the lowest “information cost”, is shift-invariant. The
shift-invariance stems from an additional degree of freedom,
generated at the decomposition stage, and incorporated into
the search algorithm. We prove that for any subspace it
suffices to consider one of two alternative decompositions,
made feasible by the SWP library. The computational com-
plexity of STWPD may be controlled at the expense of the
attained information cost, to an extent of O(Nlogo V).

1. INTRODUCTION

Wavelet packets (WP) were first introduced by Coifman
and Meyer [1] as a library of orthogonal bases for L?(R).
Implementation of a “best-basis” selection procedure for a
prescribed signal (or a family of signals) requires the intro-
duction of an acceptable “cost function” which translates
“best” into a minimization process [2]. The cost function
selection is intimately related to the specific nature of the
application at hand. Entropy, for example, may constitute
a reasonable choice if signal compression, identification or
classification are the applications of interest. Statistical
analysis of the “best basis” coefficients may be used as a
signature, representing the original signal. A major defi-
ciency of such an approach has to do with the badly lacking
property of shift-invariance. Both, the wavelet packet de-
composition (WPD) of Coifman and Wickerhauser as well
as the extended algorithm proposed by Herley et al. [3], are
sensitive to the signal location with respect to the chosen
time origin.

Shift-invariant multiresolution representations exist.
However, these methods either entail high oversampling
rates [4] or alternatively, the resulting representations are
non-unique [5]. Mallat and Zhang [6] have suggested an
adaptive “matching pursuit” algorithm. Under this ap-
proach the retainment of shift-invariance, necessitates an
oversized library containing the basis functions and all their
shifted versions. The obvious drawbacks of “matching pur-
suit” are the rather high complexity level as well as the
non-orthogonality of the expansion. In another approach
[7], shift-invariance is achieved by an adaptive translation

of subbands. This translation, merely determined by one
level decomposition, leads to a sub-optimal representation,
which is a special case in the context of the present work.

In this work we generate a shifted wavelet packet library
and introduce a shift invariant wavelet packet decomposi-
tion (SIWPD) algorithm for a “best basis” selection with
respect to an additive cost function (e.g., entropy). We
prove that the proposed algorithm leads to a “best basis”
representation that is both shift-invariant and orthogonal.
To demonstrate the shift invariant properties of SIWPD,
compared to WPD which lacks this feature, we refer to the
expansions of the signals depicted in Figs. 1a, 2a (the signals
at hand are identical to within a time-shift). For definite-
ness, we choose D> [8] to serve as the “scaling function” and
entropy as the cost function. Figs. 1b, 2b and Figs. 1c, 2c
depict the “best basis” expansion of the respective signals
under the WPD and the SIWPD algorithms. A comparison
of Fig. 1 and Fig. 2 readily reveals the sensitivity of WPD
to temporal shifts while the “best basis” STWPD represen-
tation is indeed shift-invariant.

Tt should be mentioned that under SIWPD and in con-
trast to WPD, the “best basis” expansion is also character-
ized by the invariance of the “information cost”. This fea-
ture is significant as it facilitates a meaningful quantitative
comparison between alternative shifted WP libraries. Usu-
ally such a comparison between alternative libraries lacks
meaning for WP as demonstrated by the example, summa-
rized in Table 1. Here, the entropies of the signals g1 and
g2 (Figs. la and 2a, respectively) are compared. The ex-
pansions are on the “best bases” stemming from both the
WPD and SIWPD algorithms and for D, and C (Coiﬂet
with two vanishing moments [9]) scaling functions. We can
readily observe the shift-invariance under SIWPD and the
fact that the selection of C4 is consistently advantageous
over Dy. Just as obvious, is the futility of attempting a
comparison between the C; and D: based libraries under
WPD. D5 is better for g1 while C is advantageous in rep-
resenting g> (which, as we recall, is just a shifted version of

g1).

WPD SIWPD
g | g g | g
Dy | 1.77 | 2.15 1.67 | 1.67
Ch7 | 2.30 | 1.80 1.55 | 1.55

Table 1: Entropies of g1 and g2 represented on “best bases”
obtained via WPD and STWPD using libraries derived from

(4 and Ds scaling functions.



2. THE SHIFTED WAVELET PACKET
LIBRARY

Let {»(z)} be a wavelet packet family [1], and introduce
the notation

Bl 2 {20y, 242 —m) —k] : ke Z} (1)
Ug n,m = CIOSLZ(]R) <B2n,m> * (2)

The energy density of 1,[2°(22 — m) — k] (when a proper
”scaling function” is selected) is concentrated about the
nominal point 277 (Z_Zk—km), has an effective support range
2 27%77 about this point and is roughly characterized by n
oscillations.

Definition 1 A “shifted-wavelet-packet” (SWP) library is
the collection of all the orthonormal bases for Ug,o,o which
are subsets of

{Bl o LEZ_nEZ L, 0<m<2"}.
Proposition 1 Let E = {({,n,m)} C Z_ x Z4 X Z4,
0 < m < 27*, denote a collection of indexes satisfying
(i) The segments [2'n, 2%(n + 1)) are a disjoint cover of
[0, 1).

(i1) For all ({1,n1,m1), ({2,n2,m2) € E, the relation
[2Z1n1, Zl(nl +1)) C [2 Zzpﬂzm Z2?(”2P‘|‘1)) (3)

where lop = > + 1 and nap = nadiv 2, implies 1

m1 mod 272 =ms. (4)

Then E generates an orthonormal (ON) basis for V; =
Udo0s i-e U(Z,-ﬂ,-m)EE Bj . . i an ON basis, and the set
of all F as specified above generates a SWP library.

The proof is detailed in [10]. The SWP library thus cre-
ated is larger than the WP library proposed in [1] by a
square power. The SWP library can still be cast into a
tree configuration, where each node is indexed by (£, n, m)
and represents the subspace U Condition (ii) above
is equivalent to demanding that the relative shift between
a prescribed “parent” node and all its “children” nodes is
necessarily a constant whose value is restricted to either
zero or to 27 (£, is the parent’s level). The tree configu-
ration facilitates an efficient “best basis” selection process.
However, in contrast to [2] the “best basis” is now shift-
invariant.

3. THE BEST BASIS SELECTION

Let f € Vj, let M denote an additive cost function and let
B represent a SWP library.

Definition 2 The best basis for f in B with respect to M
is B € B for which M(Bf) is minimal. Here, M(Bf) is

the information cost of representing f on the basis B € B.

12 div y denotes the integer part of the ratio x/y, and
x mod y represents its remainder.

TLet A7

7.n,m denote the “best basis” for the subspace

U g n.m- Accordingly, Aé 00 constitutes the “best basis” for
f with respect to M. Henceforth for notational simplicity,
we omit the fixed index 5. The desired “best basis” can be

determined recursively by setting

BZ,-n,-m if M(Bf,n,-mf)
1
Atnm = < Zi:o M(Ae—12ntime f)
Ae12nme B Ar—12n41,m,, else
(5)
where

my i 32 M(Ar—t2ntim )
me = S Zi:o M(AZ—1,2-n+i,-m+2—[ f) (6)

m + ‘2_[, else

The recursive sequence proceeds down to a specified level

£=—L (L <log, N), where
A—L,-n,-m = B—L,-n,-m - (7)

The stated procedure resembles that proposed by Coifman
and Wickerhauser [2] with an added degree of freedom fa-
cilitating a relative shift (i.e., m. # m) between a “par-
ent” node and its respective “children” nodes. Tt is re-
emphasized that the recursion considered herein restricts
the shift to one of two values (m. —m € {0,27¢}). Other
values are unacceptable if the orthonormality of the “best
basis” is to be preserved. As it turns out, the generated de-
gree of freedom is crucial in establishing “time-invariance”.
The recursive sequence proposed in [2] may be viewed as a
special case where m. — m is arbitrarily set to zero.

Proposition 2 The best basis stemming from the previ-
ously described recursive algorithm is shift invariant.

Proof: Let f,g € V; where f and ¢ are “identical to within
a time-shift”, ie., g(z) = f(z — ¢277). Let Ay and Ay
denote the “best bases” for f and g, respectively. It can be
shown [10] that

BZ,-n,-m C Af (8)

implies
Benm C Ag, m = (m+ ¢) mod (‘2_[) (9)

for all myn € Z4 and ¢ € Z_.
“Iidentical to within a time-shift”

Hence, Ay and A, are

a.
An alternative view of SIWPD is facilitated via filter
bank terminology [11]. Accordingly, each “parent” node is
expanded by high-pass and low-pass filters, followed by a
2:1 down-sampling. In executing WPD, down-sampling is
achieved by ignoring all even-indexed (or all odd-indexed)
terms. In contrast, when pursuing STWPD, the down sam-
pling is carried out adaptively for the prescribed signal.
That is, we retain either the odd or the even terms. The
preferred choice is always the one that minimizes the cost
function. The special case where, at any resolution level,
only low frequency nodes are further expanded corresponds
to a shift invariant wavelet transform (SIWT).



The SIWPD expansion generates an ordinary binary
tree [2]. However, each generated branch is now designated
by either fine or heavy lines (Fig. 3) depending on the adap-
tive selection of the odd or the even terms, respectively. it
can be readily observed that, in contrast to WPD, STWPD
expansion leads to tree configurations that are independent
of the time-origin. Fine and heavy lines may, however, ex-
change positions. (e.g., compare Fig. le and Fig. 2e).

4. THE INFORMATION-COST COMPLEXITY
TRADEOFF

WPD lacks shift-invariance but is characterized by an at-
tractive complexity level of O(NL), where L denotes the
lowest resolution level in the expansion tree. Compara-
tively, the complexity level, O(N25+1), associated with ST-
WPD is substantially higher. In return, one may achieve a
potentially large reduction of the information cost, in addi-
tion to gaining the all important “shift-invariance”. How-
ever, whenever the STWPD complexity is viewed as intol-
erable, one may resort to a sub-optimal STWPD procedure
entailing a reduced complexity, and higher information cost
while still retaining the desirable shift-invariance.

The “best basis” for f € V; with respect to M is, once
again, obtained recursively via (5), but contrary to the pro-
cedure of Section 3, now the selection of m. does not neces-
sitate parent-node tree expansion down to the lowest level.
Let C¢ 5 m,qa denote the best basis for Uy, subject to con-
straining the decomposition to a (1 + dg)—level tree, where

d, d—L<£<0
dz:{ L+, else (10)
and
1<d<T.

m. is then determined by

m, if Z?:o M(Ci—12n4im,af)
1
— <Y ico MGy opgiomyo—t,af)

m + ‘2_[, else
(11)
For d =1 or £ = —L we obtain Cynmda = Binm, while
for £ > —L and d > 1 ¢ pnom,a is obtained recursively
according to

BZ,-ﬂ,-m
Cornm,d = Co—12n,m,d—1 DB Ce—1,2n41,m,d—1
Ce—1,2-n,-m+2—l d—1 D Ce—1,2-n+1,-m+2—l ,d—1
(12)
where Cf 1, m, q takes on that value which minimizes the cost
function M.
Since, at each level, the tree expansion is restricted to
de < d levels, the complexity is now O[N2%(I — d + 2)].
In the extreme case, d = 1, the complexity, O(2N L), is
similar to that associated with WPD, and the representa-
tion merges with that proposed in [7]. Clearly, the larger d
and I, the larger the complexity, however, the determined
“best basis” is of a higher quality; namely, characterized by
a lower “information cost”.

5. CONCLUSION

A library of orthonormal Shifted Wavelet Packets is defined
and a search algorithm leading to a Shift Invariant Wavelet
Packet Decomposition (STIWPD) is introduced. When com-
pared with the WPD algorithm proposed in [2], STWPD is
determined to be advantageous in three respects. First, it
leads to a “best basis” that is shift-invariant. Second, the
resulting decomposition is characterized by a lower informa-
tion cost function. Third, the complexity is controlled at
the expense of the information cost. These advantages may
prove crucial to signal compression, identification or classifi-
cation applications. Furthermore, the shift-invariant nature
of the information cost, renders this quantity a characteris-
tic of the signal for a prescribed wavelet packet library. Tt
should be possible now to quantify the relative efficiency of
various libraries (i.e., various “scaling function” selections)
with respect to a given cost function.
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Fig. 1: (a) g1(t). (b) A “best basis” WPD of g1. (¢) A “best Fig. 3: A “parent” node binary expansion according to

basis” STWPD of g;. (d) WPD based expansion tree SIWPD: (a) High and low-pass filtering followed by
of g1. (e) SIWPD based expansion tree of g;. a 2:1 downsampling. (b) High and low-pass filtering

Fig. 2: (a) g2(¢). (b) A “best basis” WPD of g5. (c) A “best followed by a Fime—shift (D) and subsequently by a
basis” STWPD of g-. (d) WPD based expansion tree 2:1 downsampling.

of g2. (e) SIWPD based expansion tree of g».



