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SUMMARY

We consider the problem of recovering the underlying re-
flectivity signal from its seismic trace, taking into accoun

the attenuation and dispersion propagation effects of ¢he r
flected waves in noisy environments. We introduce an efficien
method to perform seismic time-variant deconvolution dase

In this paper, which summarizes some of the results in Pereg
and Cohen (2017), we introduce a robust algorithm for recov-
ery of the underlying reflectivity signal from the seismidala
without a pre-processing stage of inverse Q filtering. The re
covery is conducted by solving a convex optimization projle
which takes into consideration a time-variant signal mottel
addition we discuss the following questions: To what accyra

on the earth Q-model. We present theoretical bounds on thecan we recover each reflectivity spike? How does this accu-

recovery error, and on the localization error. It is showat th
the solution consists of recovered spikes, which are veligti
close to spikes in the true reflectivity signal. In additiany
redundant spike in the solution, which is far from the carrec

racy depend on the noise level, the amplitude of the spilkee, th
medium Q constant and the wavelet? We show that the re-
covery error is proportional to the noise level. Experina¢nt
results for synthetic and real seismic data demonstratigrthe

support, has a small energy. The proposed method is demon{proved performance of the proposed method.

strated using synthetic and real data examples.

INTRODUCTION

Sparse seismic deconvolution has attracted much research r
cently. Previous works tried to solve the seismic decortiaiu

problem by separating the seismic 2D image into independent

vertical one-dimensional (1D) deconvolution problems.eTh
wavelet is modeled as a 1D time-invariant signal in both hor-
izontal and vertical directions. Each reflectivity chanesll-
umn) appears in the vertical direction as a sparse spike trai

SIGNAL MODEL

Reflectivity model

We assume the earth structure is stratified, so that refiectio
are generated at the boundaries between different impedanc
layers. Therefore, each 1D channel (column) in the unknown
2D reflectivity signal can be formulated as a sparse spike tra

X[ = cmd[k— k, 1)

where each spike is a reflector that corresponds to a boundaryvhere Sk denotes the Kronecker delta function and

between two layers in the ground. Then, each reflectivitpeha
nel is estimated from the corresponding seismic trace vaser
tion apart from the other channels (Berkhout, 1986; Ulrych,
1971; Taylor et al., 1979; Riel and Berkhout, 1985; Nguyen

and Castagna, 2010; Zhang and Castagna, 2011; Gholami and

Sacchi, 2012).

Utilization of sparse seismic deconvolution methods based
¢1 minimization can yield stable reflectivity solutions (Résid
Berkhout, 1985; Nguyen and Castagna, 2010; Gholami and

> mlem| < o (Ricker, 1940). The set of delays= {km} and
the real amplitudegcm} are unknown. In noisy environments
we consider a discrete seismic trace of the form

YK = > cnGomlk—kn 0K, (N1 <3, (2)

where{go m} is a known set of kernels (pulses) for a possible
set of time delayX = {km}, and a known scaling parameter
o > 0, andn[K is additive noise with|n||1 = >, [n[k]| < .
Our objective is to estimate the true suppért {km} and the

Sacchi, 2012; Pham et al., 2014; Repetti et al., 2015). Thesespikes’ amplitudegcn} from the observed seismic tragi.

{1-type methods and their resolution limits are studied thor-
oughly in Signal Processing and Statistics (Duval and &eyr”
2015; Donoho, 1992; Dossal and Mallat, 2005; Fernandez-

Earth Q model
We assume a source wavefosi) defined as the real-valued

Granda, 2013; Candeés and Fernandez-Granda, 2013a,b; BenRicker wavelet

dory et al., 2016b,a; Tibshirani, 2013; Efron et al., 2004).

Many deconvolution methods rely on a model which does not
take into consideration time-depth variations in the waxret
However, the wave absorption effects are not always negligi
ble as the conventional assumption claims. Seismic inv@fse
filtering (Kjartansson, 1979; Gelius, 1987; Hale, 1981; @/an
2008) aims to compensate for the velocity dispersion and en-
ergy absorption which causes phase and amplitude distertio

of the propagating and reflected acoustic waves. The process

of inverse Q filtering consists of amplitude compensatioth an
phase correction which enhance the resolution and inctease
signal-to-noise ratio (SNR). Yet, this process is gengi@im-
putationally expensive and sometimes even impractical.

s(t) = (17 %wgtz) exp( - %aﬁtz),

where ay is the most energetic (dominant) radial frequency,
which is related to the scaling parameterdpy= wgl. Given

a travel timety, the reflected wave can be modeled as (Wang,
2002)
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whereS(w) is the Fourier transform of the source waveform
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a1 1
y2 Ztan ( )~ 70 (6)
andQ is the medium quallty factor, which is assumed to be fre-
quency independent (Kjartansson, 1979). Kjartansson9(197
definedQ as the portion of energy lost during each cycle or
wavelength.

Therefore, the expression of the earth Q filter consists of tw
exponential operators that express the phase effect @ayse
velocity dispersion) and the amplitude effect (caused by en
ergy absorption)
]| w |7 wtmy
U(t—tm,w):U(t,w)exp( —J‘E‘ wtm) exp(— ‘E ﬁ())
7

100,250,...,1900ms (increments of 150ms), aag = 100
(50Hz). The pulses and their derivatives are shifted to the o
gin so that it can be seen that there there are common values
of € and for all the sequence of kernefg, m(t) . The ker-
nelsgy m(t) are not symmetric, but remain flat at the origin,

i.e.,gg%(o) ~ 0. So it can be said that the kernglsm(t) are

approximately admissible kernels.

Sparse Deconvolution and Error Bound

The recovery of the seismic reflectivity could be achieved by
solving the following optimization problem: Lsat be of the
form of (2) and let{gs m} be a set of admissible kernels.Kf
satisfies the separation condition fér> 0 then the solutiox ~

Summing these plane waves, we get the time-domain seismicof

signal
u(t —tm) =

/ Ut —tmw (8)

We can now define the known set of kernels (pulser)m}
for the seismic setting by

Oo,m(t —tm) = u(t —tm 9)

Nomayt

SPARSE SEISMIC DECONVOLUTION

Admissible Kernels and Separation Constant

To be able to quantify the waves decay and concavity we recal
two definitions from previous works (Bendory et al., 2016b,a

Definition 2.1 A kernelg is admissibleif it has the following
properties:

1. g€ Risreal and even.

2. Global Property There exist constant§ > 0,1 =
0,1,2,3, such that
’g(”(t)’ < t2,Whereg< )(t) denotes thét derivative
of g.

3. Local Property There exist constants, 3 > 0 such
that

(a) g(t) >0 for all [t| < £ andg(e) > g(t) for all
t| > e.

(b) g@(t) < —pforall |t] < &.

In other words, the kernel and its first three derivativesdare
caying fast enough, and the kernel is concave near its mitpoi

Definition 2.2 A set of pointK C Z is said to satisfghe min-
imal separation condition for a kernel dependent > 0, a
given scalings > 0 and a sampling spacingill > O if

min

ki eK i ] [ki—kj| > Nvo

wherevag is the smallest time interval between two reflectors
with which we can still recover two distinct spikes, ands
called the separation constant.

Figure 1 shows an example of the attenuating wavelets(t)

and their derivativesgg%(t) and g@m(t) for Q = 125,tn =

XEr;un IX|1 subjectto ||y[K Zcmgomk kml[|1 < 6
1
(10)

satisfies 4

- P

R—x||l1 < =——0b 11

I Hl,ﬁyo (11)
where

p —max{y0 (No)2a }

0o =Maxgo,m(0), Yo =Mingo,m(0).

The dependance afon the timek is not written for simplicity.

| This result guarantees that under the separation congdiion

signal of the form of (2), can be recovered by solving fhe
optimization problem formulated in (10). Moreover, a tretor
ical analysis of the recovered solution (Pereg and Cohek¥)20
ensures that the error is bounded by a relatively small yalue
which depends mainly on the noise level and on the attenua-
tion of the wavelets and is expressed through the param@ters
andp.

In the noiseless case whede= 0, the recovery is perfect.
One would probably expect that the recovered solution would
slightly deviate from the true one, yet this is not the cadas T
result does not depend on whether the spikes amplitude are
very small or very large.

If yo = ap, we have the time-invariant case

R-xl< 22 (Noy?).

B
As expected, in the time-invariant case our result redutes i
previous work results (Bendory et al., 2016b,a). The regove
error is proportional to the noise lev@) and small values g8
(flat kernels) result in larger errors.

1
max{ P

In the time-variant setting, most cases comply wjighi 2 <
(No)?ag. Then, the recovery error is bounded by

4(No)? ag
5 % J.

A smallerQ (which corresponds to a stronger degradation) re-
sults in highemg/ yp ratio and smallef values. We will here-
after refer to the rati@o/ yo as the degradation ratio. Hence,
the bound on the error in a time-variant environment implies
that the error increases §sgets smaller, which corresponds

IR=x|[1 <
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Figure 1: Centered synthetic reflected wavelets and theivalives, Q = 125 «ypy = 100m (50Hz) (a)go m(t) ;

(©) g2m().

to a higher degradation ratio. As in the time-invariant ¢case
the error is linear with respect to the noise ledel Also, the
error is sensitive to the flatness of the kernel near the rorigi
Namely, small3 results in an erroneous recovery.

Resolution Bound

Assumex[k] > mEmd[k— km] is the solution of (10) where
= {I(.n} is the support of the recovered signal. lydve of

the form ofy[k] = " ,,Cm0a,m[K—km] +n[k], ||n||1 < &, and

let {gom} be a set of admissible kernels with two common

parameters, 3 >0, withe > & =, /cszs/m If K satisfies the
separation condition faX > 0, then the solution Satisfies:

2D30a9
Be?

|Em| < )

>

kneK:|kn—km|>Ng,VkneK

Any redundant spike i which is far from the correct
supportk will for sure have small energy.

2. For anykm € K if |cm| > Dg4, then there exisﬁm ek
such that

c . \2_ 2D3(No)2aq
o= Bl D) >
where

D4:25(2p Com

7 (o *oso0m 2 e ) )

3v2(3ypv2 — 1Cy) + 12"2(:1 (1+6V2)p
ﬂQCz)(3VoV2 2m2Cy)

D2 =
s (3ypv2 —

and B
q = mn?)Q,m7 l = Oa 13233'

This implies that for ankmn € K with sufficiently large ampli-
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EXPERIMENTAL RESULTS

Synthetic Data

We conducted various experiments in order to confirm the the-
oretical results. To solve thg minimization in (10) we used
CVX (Grant and Boyd, 2014).

We generate a synthetic reflectivity column, with a sampling
interval Ts= 4ms. The reflectivity is statistically modeled as a
zero-mean Bernoulli-Gaussian process (Kormylo and Mendel
1982). The support was drawn from a Bernoulli process with
p = 0.2 of lengthL; = 176 taps, and the amplitudes were
drawn from an i.i.d normal distribution with standard devia
tionv=10. Then, we create the synthetic seismic trace in a
noise-free environment, and try to recover the reflectitigy
solving (10).

Figure 2 presents the recovery erti&— x||; as a function of
the noise leveb for different Q values Q = «,500,200, 100.
Under the separation condition, the minimum distance be-
tween two spikes satisfies the minimal separation condition
The reflectivity is shown in Fig. 3(a). The initial wavelet sva

a Ricker wavelet withwy = 140, i.e., 70Hz.

Two seismic traces with SNR~ and SNR= 155dB, are
shown in Fig. 3(b) and Fig. 3(c), respectively. The recodere
signals from these traces are shown in Fig. 3(d) and Fig, 3(e)
respectively. As can be seen in Fig. 3, the error is lineahn wit
respect to the noise. This implies that the bound we deriwed i
reasonable. The theoretical bound is always greater ot egua
the empirical error. A§ gets smaller - which is common to

all reflected pulses - becomes significantly smaller. Hettee,
theoretical bound slope becomes significantly larger coatba
with the empirical one. It can be seen also in the experimen-
tal results that as Q gets smaller the error gets biggereThbl
presents the theoretical and practical parameters.

Real Data

tudecm, under the separation condition, the recovered support ye applied the proposed method, to real seismic data from a

Iocatlonkm €K is close to the original one. The solutigedn-
sists of a recovered spike near any spike of the true refigctiv
signal.

small land 3D survey in North America (courtesy of GeoEn-
ergy Inc., TX) of size 38k 160, shown in Fig. 4(a). The
time interval is 2ms. Assuming an initial Ricker waveletwit
o = 14017 (70Hz). We estimate® = 80 using common mid-
points (CMP) as described in Zhang and Ulrych (2002). Then,
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Figure 2: Recovery errdfk—x||1 as a function of noise level (b) (c)
& for Q = ,500,200,100. (a) Experimental results ; (b) The- ° °
oretical bounds. ° T ° T
5 -5
Q % B 4(Nﬂa )2 % estimated slope 105 100 200 300 400 500 0 100 200 300 400 500
o 1 15 0.862 0.567 (d) (e)
500 | 1.75 | 0.77 2.94 0.89 Time (ms) Time (ms)
200 | 3.8 0.36 13.67 1.71
100 | 9.44 | 0.094| 129.7 3.53 Figure 3: 1D synthetic tests of (a) True reflectivity. (b) $yn-

thetic traces with 50 Hz Ricker wavelet and SN®, 15.5 dB,
Table 1: Synthetic example. Theoretical and estimated pa- respectivelyQ = 200. (d),(e) Recovered reflectivity signals.
rameters: Q, degradation ratiaxg/ yo, 3, theoretical bound
slope 4No)?ag/ Byo computed from known parameters, i
estimated slope computed from the experimental resu
Fig. 2(a).
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using (6)-(11) we estimated all possible kernels and st
(10) using CVX (Grant and Boyd, 2014).
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The recovered reflectivity section is shown in Fig. 4(c).
sually analyzing this reflectivity section, it can be seeat T
the layer boundaries in the estimate are clear and quite vui-
tinuous and smooth. Since the ground truth is unknown, in (a) (b) (c)
order to measure the accuracy in the locations and ampditude
of the recovered reflectivity spikes, we compute the correla
tion coefficient between the reconstructed data and thengive
seismic data. In this example we hapgs = 0.967, which
indicates that the reflectivity is estimated with very higlep
cision. Figure 4(b) shows the estimated reflectivity coasid
ing a time-invariant model, using Sparse Spike Inversi@i)S
(Taylor et al., 1979). It can be seen, especially in the lower
(deeper) half of the image, that the proposed method praduce
much clearer results, since it takes into account the aitenu
ing and broadening nature of the waves as they travel further
into the ground and back. Moreover, in terms of correlation
coefficients, for SSI we havyes s = 0.89, implying that a time-
varying model indeed yields better results.

50 00 150
Trace number

50 100 150
Trace number

Trace number

Figure 4: Real data deconvolution results: (a) Real seismic
data (b) Estimated reflectivity - time-invariant model (B@)
Estimated reflectivity - time-variant model.

origin. Simulation results confirm the theoretical bounde W
also showed that under the separation condition, for arkespi
with large-enough amplitude the recovered support lonatio
close to the original one. The solution consists of a re@xer
spike near every spike of the true reflectivity signal. Any re
dundant spike in the recovered signal, which is far from the
correct support, has small energy.

CONCLUSIONS

We have presented a seismic deconvolution algorithm under
a time-variant model. The algorithm both promotes sparsity
of the solution and also takes into consideration atteopati
and dispersion of the wavelet. The deconvolution results ar
demonstrated on synthetic and real data, under sufficiently
high SNR. We derived a bound on tlig recovery error and
observed that the error increasedagets smaller. As in the
time-invariant case, the error is proportional to the ntasel.
Also, the error is sensitive to the flatness of the kernel tiear
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