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Noise Estimation by Minima Controlled Recursive
Averaging for Robust Speech Enhancement

Israel Cohen, Member, IEEE,and Baruch Berdugo

Abstract—In this letter, we introduce a minima controlled
recursive averaging(MCRA) approach for noise estimation. The
noise estimate is given by averaging past spectral power values
and using a smoothing parameter that is adjusted by the signal
presence probability in subbands. Presence of speech in subbands
is determined by the ratio between the local energy of the noisy
speech and its minimum within a specified time window. The noise
estimate is computationally efficient, robust with respect to the
input signal-to-noise ratio (SNR) and type of underlying additive
noise, and characterized by the ability to quickly follow abrupt
changes in the noise spectrum.

Index Terms—Acoustic noise, signal detection, spectral analysis,
speech enhancement.

I. INTRODUCTION

A CRUCIAL component of a practical speech enhancement
system is the estimation of the noise power spectrum. A

common approach is to average the noisy signal over nonspeech
sections. A speech pause detection is either implemented on a
frame-by-frame basis [1] or estimated independently for indi-
vidual subbands usinga posteriorisignal-to-noise ratio (SNR)
[2], [3]. However, the detection reliability severely deteriorates
for week speech components and low-input SNR. Additionally,
the amount of presumable nonspeech sections in the signal may
not be sufficient, which restricts the tracking capability of the
noise estimator in case of varying noise spectrum. Alternatively,
the noise can be estimated from histograms in the power spectral
domain [3]–[5]. Unfortunately, such methods are computation-
ally expensive.

Martin [6] has proposed an algorithm for noise estimation
based on minimum statistics. The noise estimate is obtained as
the minima values of a smoothed power estimate of the noisy
signal, multiplied by a factor that compensates the bias. How-
ever, this noise estimate is sensitive to outliers [5] and its vari-
ance is about twice as large as the variance of a conventional
noise estimator [6]. Moreover, this method may occasionally
attenuate low energy phonemes, particularly if the minimum
search window is too short [7]. A computationally more effi-
cient minimum tracking scheme is presented in [8]. Its main
drawback is the very slow update rate of the noise estimate in
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case of a sudden rise in noise energy level and its tendency to
cancel the signal [9].

In this letter, we introduce aminima controlled recursive av-
eraging(MCRA) approach for noise estimation. The noise es-
timate is given by averaging past spectral power values, using
a smoothing parameter that is adjusted by the signal presence
probability in subbands. We show that presence of speech in a
given frame of a subband can be determined by the ratio be-
tween the local energy of the noisy speech and its minimum
within a specified time window. The ratio is compared to a cer-
tain threshold value, where a smaller ratio indicates absence of
speech. Subsequently, a temporal smoothing is carried out to
reduce fluctuations between speech and nonspeech segments,
thereby exploiting the strong correlation of speech presence in
neighboring frames. The resultant noise estimate is computa-
tionally efficient, robust with respect to the input SNR and type
of underlying additive noise and characterized by the ability to
quickly follow abrupt changes in the noise spectrum.

The letter is organized as follows. In Section II, we present
the noise spectrum estimation approach. In Section III, we in-
troduce a minima controlled estimator for the speech presence
probability. In Section IV, we evaluate the proposed method and
discuss experimental results, which validate its usefulness.

II. NOISE SPECTRUMESTIMATION

Let and denote speech and uncorrelated additive
noise signals, respectively, whereis a discrete-time index. The
observed signal , given by , is divided
into overlapping frames by the application of a window function
and analyzed using the short-time Fourier transform (STFT).
Specifically,

(1)

where is the frequency bin index,is the time frame index, is
an analysis window of size , and is the frame update step
in time. Given two hypotheses, and , which
indicate, respectively, speech absence and presence in theth
frame of the th subband, we have

(2)

where and represent the STFT of the clean and
noise signals, respectively. Let denote
the variance of the noise in theth subband. Then a common
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technique to obtain its estimate is to apply a temporal recursive
smoothing to the noisy measurement during periods of speech
absence. In particular,

(3)

where is a smoothing parameter and and
designate hypothetical speech absence and presence, respec-

tively. Here, we make a distinction between the hypotheses in
(2), used for estimating the clean speech and the hypotheses in
(3), which control the adaptation of the noise spectrum. Clearly,
deciding speech is absent () when speech is present ()
is more destructive when estimating the signal than when esti-
mating the noise. Hence, different decision rules are employed
and generally we tend to decide with a higher confidence
than , i.e., [7].

Let denote the conditional
signal presence probability. Then (3) implies

(4)

where

(5)

is a time-varying smoothing parameter. Accordingly, the noise
spectrum can be estimated by averaging past spectral power
values, using a smoothing parameter that is adjusted by the
signal presence probability.

III. SIGNAL PRESENCEPROBABILITY

Speech presence in a given frame of a subband is determined
by the ratio between the local energy of the noisy speech and its
minimum within a specified time window. Let the local energy
of the noisy speech be obtained by smoothing the magnitude
squared of its STFT in time and frequency. In frequency, we use
a window function whose length is

(6)

In time, the smoothing is performed by a first order recursive
averaging, given by

(7)

where is a parameter. The minimum of the
local energy, , is searched using a simplified form of
the procedure proposed in [6]. First, the minimum and a tempo-
rary variable are initialized by
and . Then, a samplewise comparison of

(a) (b)

Fig. 1. Hypothetical probability density functions,p (S jH ) andp (S jH ),
for: (a) White Gaussian noise and (b) F16 cockpit noise.

the local energy and the minimum value of the previous frame
yields the minimum value for the current frame

(8)

(9)

Whenever frames have been read, i.e.,is divisible by , the
temporary variable is employed and initialized by

(10)

(11)

and the search for the minimum continues with (8) and (9).
The parameter determines the resolution of the local minima
search. The local minimum is based on a window of at least
frames, but not more than 2frames. The length of the window
controls the bias upwards during “continuous” speech and the
bias downwards when noise level increases. According to [6]
and our own experiments with different speakers and environ-
mental conditions, a suitable window is typically 0.5–1.5 s.

Let denote the ratio between
the local energy of the noisy speech and its derived minimum.
A Bayes minimum-cost decision rule is given by

(12)

where and are thea priori probabilities for
speech absence and presence, respectively, andis the cost
for deciding when . Fig. 1 shows representative examples
of conditional probability density functions, and

, obtained experimentally for white Gaussian noise
and F16 cockpit noise, at 5 dB segmental SNR. Since the
likelihood ratio is a monotonic function,
the decision rule of (12) can be expressed as

(13)

We propose the following estimator for :

(14)

where is a smoothing parameter and
denotes an indicator function for the result in (13), i.e.,

if and otherwise. The merit of
this estimate is threefold. First, is not sensitive to the type
and intensity of environmental noise. Second, the probability of
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TABLE I
SEGMENTAL SNR IMPROVEMENT FORVARIOUS NOISE TYPES

AND LEVELS, OBTAINED USING THE WEIGHTED AVERAGE (WA) AND

MCRA NOISE ESTIMATORS

is very small when . Hence, an increase in
the estimated noise, consequent upon falsely decidingwhen

, is not significant. Third, the strong correlation of speech
presence in consecutive frames is utilized (via).

IV. EXPERIMENTAL RESULTS

The performance of the MCRA approach is evaluated and
compared to that of the weighted average technique [3]. The
evaluation is carried out within the framework of speech en-
hancement. Specifically, the MCRA and weighted average noise
estimates are combined with theoptimally modified log-spectral
amplitude(OM-LSA) estimator [7] for obtaining a clean speech
estimate in noisy environments. The assessment is based on an
objective improvement in the segmental SNR, a subjective study
of speech spectrograms and informal listening tests.

Three different noise types, taken from Noisex92 database
[10], are used in our evaluation: white Gaussian noise, car inte-
rior noise, and F16 cockpit noise. The speech data include six
different utterances, taken from the TIMIT database [11]. Half
of the utterances are from male speakers and half are from fe-
male speakers. Each speech signal is degraded by the various
noise types with segmental SNRs in the range [5, 10] dB. The
segmental SNR is defined by [12]

(15)

where represents the set of frames that contain speech and
its cardinality. The sampling frequency is 16 kHz. Accord-

ingly, the following parameters have been chosen: frame size
(32 ms); frame update step (75% over-

lapping windows); ; ; ;
(1 s minima search window); ; . The weighted
average technique is implemented with a weighting parameter

and a threshold (the parameters and method
are described in [3]).

Table I shows the average segmental SNR improvement ob-
tained for various noise types and at various noise levels. The
MCRA estimator consistently achieves a higher improvement in
the segmental SNR, than the weighted average estimator, under
all tested environmental conditions. Its advantage is more signif-
icant in nonstationary noise environments. This is attributable to
the fact that the weighted average noise estimate heavily relies
on the instantaneous ratio between the spectral magnitudes of
the degraded speech and the estimated noise. Presumably, con-
siderably higher values occur at the onset of speech. However,
in nonstationary and low-SNR noise environments, this assump-

Fig. 2. Speech spectrograms: (a) noisy speech signal (car interior noise,
defroster turned on at 0 s on full), (b) speech enhanced with the weighted
average noise estimate, and (c) speech enhanced with the MCRA noise
estimate.

tion is occasionally not valid. Under nonstationary noise condi-
tions, strong noise components are falsely considered as speech
components. This yields an underestimated noise, resulting in
high level of musical residual noise. On the other hand, low
SNR may produce an overestimated noise, due to weak speech
components that are partially processed as noise components.
Consequently, the SNR for weak speech components gets even
worse. This was confirmed by a subjective study of speech spec-
trograms and informal listening tests.

Fig. 2 demonstrates the effect of a sudden rise in the noise
energy level on the enhanced speech. Fig. 2(a) shows a noisy
speech signal, recorded in a moving car, which contains a
sudden increase in the noise level at 0 s. The increase in the
noise was generated by turning on the defroster on full. Clearly,
the speech enhanced with the weighted average noise estimate
[Fig. 2(b)] is impaired by high level of residual noise, even
as much as 12 s after the increase. By contrast, the MCRA
noise estimate is built up in less than 3 s, allowing an efficient
speech enhancement shortly after the substantial change in the
noise statistics [Fig. 2(c)]. Furthermore, since the update of the
weighted average estimate is based on relatively weak noise
componentscompared to the noise estimate, its response is
slower to greater changes in the noise statistics. On the other
hand, the update of the MCRA estimate is controlled by the
minima valueswithin a finite time window. Hence, its response
is not sensitive to the extent of noise variations.
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V. CONCLUSION

Recursive averaging is a commonly used procedure for es-
timating the noise power spectrum. However, rather than em-
ploying a voice activity detector and restricting the update of
the noise estimator to periods of speech absence and rather than
computing a weighted average based on the instantaneous spec-
tral magnitudes of the degraded speech and estimated noise, we
adapt the smoothing parameter in time and frequency according
to the speech presence probability. The speech presence prob-
ability is controlled by the minima values of a smoothed peri-
odogram of the noisy measurement. Compared to a competitive
method, the MCRA noise estimate responses more quickly to
noise variations and, when integrated into a speech enhance-
ment system, yields higher segmental SNR and a lower level of
musical residual noise.
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