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ABSTRACT

Ensemble methods achieve state-of-the-art performance in
many real-world regression problems while enjoying struc-
tural compatibility for modern decentralized computing archi-
tectures. However, the implementation of ensemble regres-
sion on distributed systems may compromise its cutting-edge
performance due to computing and communication reliability
issues. This paper introduces robust ensemble combining
techniques designed to integrate multiple noisy predictions
into a single reliable prediction. Experiments conducted with
synthetic and real-world datasets in various noise regimes
illustrate our robust methods’ superiority over non-robust
counterparts.

Index Terms— Ensemble learning, distributed regres-
sion, inference noise.

1. INTRODUCTION

Learning algorithms consume unprecedented amounts of
computing and storage resources [1]. The pursuit for bet-
ter model performance, realized by ever-growing hardware
demands, fuels the race toward denser and more efficient
hardware devices. However, hardware scaling rates cannot
meet the exponentially growing requirements of state-of-
the-art learning algorithms [1]]. This situation has ignited
a renewed interest in ensemble learning algorithms. Such
algorithms allow distributing computation and storage loads
between multiple sub-systems while maintaining high-end
performance [2]. Moreover, ensemble learning algorithms
exhibit natural error tolerance [3]], which is a desired property
for reliable operation over distributed architectures that are
typically faulty.

Recent attempts to implement learning ensembles on ef-
ficient hardware devices have encountered serious reliability
issues [4 15, 16]. In [4]], for example, an ensemble of convolu-
tional neural networks (CNN), used for image classification
and implemented on FPGA accelerators, suffered from per-
formance degradation due to errors induced by radiated noise.
In [S)] and [6], neural network ensembles were deployed on
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wireless sensor networks for localization and navigation pur-
poses. The network comprised low-precision edge devices
that produced unreliable individual predictions, resulting
in degraded overall prediction performance. In all those
cases, it was shown that the performance of ensemble learn-
ers is severely compromised by various fault mechanisms.
Yet, only ad-hoc solutions were proposed: from increasing
the ensemble size [6], to heuristically re-weighting [5]], and
even completely ignoring [4], specific ensemble predictions.
Therefore, it is clear that the robustness of the ensemble to
certain implementation faults is a key issue that needs ad-
dressing toward implementation on next-generation devices.

Extending a recent work on robust ensemble classifi-
cation [, we focus in this work on ensemble regression.
Regression is the task of fitting a functional model to the
relationship between a dependent variable and one or more
independent variables. A regression model is usually in-
ferred from realizations of independent variables and the
corresponding, possibly inaccurate, values of a dependent
variable. Ensemble regression is a powerful and elegant tech-
nique for constructing regression models that play a key role
in a wide range of real-world problems and applications [8]]:
from big-data analysis (e.g., time-series forecasting [9], out-
lier detection [[10]]) to estimation problems (e.g., source local-
ization [3[], image alignment [[11]]) and beyond.

The robustness of regression models (and specifically
ensemble regressors) was previously addressed mainly for
adverse training data [12] (e.g., model mixture contamina-
tion [13]], or outlying samples [[14]). Over the years, exten-
sive research efforts were invested toward devising robust
ensemble training procedures, such as (variants of) Bag-
ging [15], Stacking [16] and Boosting [[17]. Additionally,
various methods for combining the individual predictions of
ensemble members were proposed and analyzed in terms
of generalization performance and robustness. The most
notable and prevalent techniques are the basic/generalized
ensemble methods (BEM/GEM) [[18]] and the linear regressor
(LR) [19} 20]. Yet, robust training of the model does not
necessarily guarantee good performance when the prediction
process is unreliable.

This paper introduces novel ensemble combining tech-
niques for robust regression, which are optimal in terms of



their mean-squared error (MSE). First, we define an MSE
criterion that incorporates both generalization error and pre-
diction noise, thereby capturing the expected performance
of noisy ensemble regression. Then, robust versions of the
basic ensemble method (BEM) and the generalized ensemble
method (GEM) are developed. Within the class of normalized
linear combining methods, we prove that robust GEM is the
optimal combining approach and that robust BEM is the op-
timal data-independent combining approach in the sense of
expected MSE. We also develop a robust version of the linear
regressor (LR), which optimizes the empricial MSE, thereby
discarding the need in generalization error statistics (as re-
quired, e.g., by GEM). We compare our suggested robust
methods (BEM, GEM, and LR) with their non-robust coun-
terparts using three synthetic and three real-world datasets.
Our robust methods achieve significantly lower MSE over
a wide range of signal-to-noise ratios (SNRs) for all exam-
ined datasets. For low SNR, the test error achieved by robust
methods is up to 12 dB lower than that obtained by non-robust
methods, depending on the specific method and dataset.

The rest of the paper is organized as follows. In Section 2}
we define the noisy ensemble regression problem and review
prior work on ensemble combining techniques. Based on this
framework, we design in Section [3] the robust regression en-
semble combining methods. Section [4] includes simulation
results of synthetic and real-world datasets. Finally, the paper
is concluded in Section[3

2. MODEL FORMULATION

Consider an unknown (deterministic) target function f(-) :
X? — R that is to be estimated given a set of data samples
S = {(zi,y:)} Y, where &, € X% d € Nand y; € R.
The values y; are assumed to obey a probability rule, which
represents additive measurement error or training noise (i.e.,
yi = f(x) + € where usually ¢ ~ N(0,02)). A regressor
(or a predictor) f(-) : X% — R is an estimator of f(-) that
is generated based on S. Focusing on ensemble regression,
the predictor f (+) is formulated by fusing the predictions of
multiple base-functions { f;(-)}7_,.

Definition 1 (regression ensemble). Define a regression en-
semble as the set of functions { fi(-)}1_, where f; : X* - R
andT € N.

Due to their effectiveness and prevalence, we limit the dis-
cussion to linear ensemble integration methods, in which

f(x)=a'p(x), (1)

R R T
where p(x) = (fl(:v), . .,fT(w)> and a € RT. The
simplest normalized linear combining technique is the basic
ensemble method (BEM) [18]]. BEM calculates the arithmetic
mean of individual ensemble predictions by setting c in (TJ)

to 1
aBpM = fl’ 2)
where 1 = (1,...,1)T. In other words, BEM weights all

base functions uniformly, with no consideration regarding the
data or individual generalization errors of ensemble members.
The main advantages of BEM are its universality and numer-
ical stability.

The generalized ensemble method (GEM) is a related yet
more complex technique [[18]. In GEM, the covariance matrix
of the individual base-predictor errors, denoted here as &, is
used to determine the weights
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Formally, £ is defined as the covariance of

N T
c@) 2 (fi@) ~ f(@),.... Jr(@) — f@) . &

In practice, inverting £ may be computationally unstable,
hence agrps is set to the eigenvector of € whose corre-
sponding eigenvalue is the minimal eigenvalue of £, normal-
ized such that the sum of its elements equals 1. To simplify
notations in the sequel, for a (non-zero) positive semi-definite
matrix A € RT*T we define v to be the i-th eigenvector
of A, where the eigenvectors are ordered such that their cor-
responding eigenvalues are non-decreasing. For example, v{!
is the eigenvector that corresponds to the minimal eigenvalue
of A.

Although GEM is theoretically superior over BEM in
terms of MSE, it is much less stable since it commonly re-
quires estimating and/or inverting covariance matrices. These
disadvantages can be circumvented by minimizing the em-
pirical MSE over the training (and/or validation) set(s). The
most prominent methods of this kind are the interpolating
predictor [16], which constrains o to be component-wise
non-negative, and the linear regressor (LR) [[19], which does
not impose any constraints on c. The LR regressor is defined
as

arp = (FTF)"'FTy, ®)
where y = (y1,...,yn,)" and
F = (p(x1),...,(xn,))"

is the the empirical prediction matrix. It was proved [19] that
a gy, minimizes the empirical MSE || Fa — y||3.

Our model considers the aggregation of ensemble predic-
tions corrupted by additive noise.

Definition 2 (noisy prediction). Denote n = (nq, ... ,nT)T
where E [n] = 0 and its covariance matrix is X. For a data
sample x € X%, define the noisy prediction as

f(@) = a' @(x), where p(z) = p(x) +n.  (6)



An important and widely-used performance evaluation
criterion for regression is the mean squared error (MSE).

Definition 3 (mean squared error, MSE). Given a target func-
tion f(-) and a data sample x € X%, define the mean squared
error (MSE) of the predictor f(x) as

si@) =5 (1@ - i@) ]

where the expectation is over realizations of the model f.

Usually, the model f is realized through the data sam-
ples. Hence the expectation is performed over x, assuming
that model realizations and different data samples are inter-
changeable. Therefore, the MSE of the predictor f is defined
as J(f) = o J(f(2))p(x)de. Standard ensemble train-
ing and integration techniques usually seek minimal MSE.

For noisy prediction, however, ensemble integration
should be optimized such that the expected MSE over both
model realizations and noise realizations is minimized. In
other words, the noisy setup requires not only low general-
ization error, but also robustness to prediction noise. The
objective of this paper is, therefore, to minimize the “doubly”
expected MSE

_ 2
E, ; [(f(w) - f@)) ] | ®)
under different assumptions on the coefficient vector cx.

3. ROBUST ENSEMBLE INTEGRATION

In this section, we propose new and robust versions of the
aforementioned linear ensemble integration methods: BEM,
GEM, and LR. Toward this goal, we start with an analytic
derivation of the expected MSE as a figure of merit for robust
regression.

3.1. Expected MSE for robust prediction

The expected MSE, described in (B]), can be derived analyt-
ically for additive noise independent of the base functions

{fe Y

Theorem 1. Let { ft(~)}gﬂ:1~ be a regression ensemble that

produces a noisy prediction f = a" (¢ +n) , where E[n] =

0 and cov[n| = X. Then, the expected MSE of f is
J(f)=J(f)+a"Sa. ©)

Proof. The expected MSE of f is

1= [ B (@) - 1(@) | @iz, a0

where p(x) is the probability of . For every « € X 4 the
expected MSE of f(x) is

5. (0~ 7@)"] = 5. [ (160 o) - a"n)'

~ (f@) - f@) + @ En [nn"] o

=J (f(a:)) +a'Za.
(1)
The proof is completed by taking the expectation over x in

(). O

The resulting expression of the expected MSE provides
insight into the structure of prediction errors. The total error
comprises two components: the first relates to model gen-
eralization (training-oriented), while the second is associated
with the aggregated noise (prediction-oriented). In the sequel,
we refer to the former as the generalization error and the lat-
ter as prediction error. Robust ensemble integration methods
seek to minimize both quantities.

3.2. Robust normalized linear combining

We now harness the expected MSE from Theorem [I] toward
deriving robust versions of BEM and GEM.

3.2.1. Robust BEM

Following the design principles of BEM, we derive robust
BEM as a coefficient assignment that is universal over the
model and/or generalization error, thus providing numerical
stability and computational simplicity. Since the generaliza-
tion error in @]} is model dependent, the robust BEM co-
efficients are designed to minimize the remaining prediction
error, i.e., &' Sex. In the following theorem we derive the
robust BEM and prove its optimality.

Theorem 2. Let 3 be the noise covariance (positive semi-
definite) matrix. Then, the robust BEM coefficients, given by

vf

QrBEM = my (12)
1

minimize the prediction error o' Soc among the set of nor-
malized coefficient vectors {v € RT : 1Tv = 1}.

Proof. The form of o, p s being a normalized minimizer of
a " o is a known property, which can be proved by substi-

tuting o = % into the objective function, and minimizing
. . . . T
the resulting generalized Rayleigh quotient _% E?a. O

However, to balance the two terms of @I), it may be ben-
eficial to incorporate into o« subsequent eigenvectors as well,
thus reducing the generalization variance at the cost of po-
tentially increasing the prediction error. We, therefore, define



a hyper-parameter M € N, which describes the number of
eigenvectors included in the calculation of the robust BEM
coefficients. Selecting M = 1 naturally guarantees mini-
mal prediction error, but choosing M > 1 is also justified
by virtue of ensemble diversity toward producing low gener-
alization error [21]]. For any 1 < M < T, we set the robust
BEM coefficients to be the arithmetic mean of the selected
eigenvectors, as follows,

1 &L o2
QBEM = — m_. 13
BEM = 77 mzz:l 1% (13)

3.2.2. Robust GEM

Moving to GEM, we design robust GEM as an optimal lin-
ear normalized ensemble combining method in terms of the
expected MSE. Given Theorem [I]and [18]], and assuming the
MSE has zero mean, the expected MSE can be formulated as

J(f) —a'Ea+a'Za, (14)

where the generalization error is expressed through £, the co-
variance matrix of individual base-function errors (as in (3)).
Similarly to (T2)), we set the robust GEM coefficients to be

E+X
a,gen = 052 (15)

thus guaranteeing minimal expected MSE (as we prove in the
following theorem). Unlike robust BEM, incorporating addi-
tional eigenvectors is unnecessary in this case, since the over-
all expected MSE is minimized by 'uf"'z.

Theorem 3. Let 3 and € be the covariance matrices of n and
e, respectively. Then, the robust GEM coefficients o qGEM

minimize the expected MSE J(f).

Proof. Both £ and X are positive semi-definite, since they are
covariance matrices. Hence, their sum is also positive semi-
definite (with rank greater or equal than the individual ranks).
From this point, the arguments in the proof of Theorem [2] can
be adapted to £ + 3. O

Since £ is typically unavailable in practice, it is com-
mon to use an estimate of the covariance matrix, given by
SN e(x)e(w;) T, where
N,—1 2vi=1 i i)

R R T
e(@) = (fi(z) —y(@),. ... fr(z) — y(x)) .
We used this estimate for the simulations presented in the se-
quel.
3.3. Robust unconstrained linear combining

We proceed with a robust version of the LR. Following its for-
mulation as the minimizer of the empirical MSE of a dataset
S, for robust LR we consider the empirical expected MSE

Jemp(8) £ Eny ||| Fex = y3] (16)

where F;; 2 fi(x;) + niy and n; = (ng1,...,n; ) are
mutually independent random vectors (i.e., E [n; 1] = 0
forevery 1 < i # 7 < N, and ¢ # t') with covariance matrix
cov [n;] = X. The robust LR coefficients are derived in the
following theorem.

Theorem 4. Denote F = (o(z1), ..., p(zn.))" and N =
(n1,...,nn.) " where cov[n;] = 3 for 1 <i < N,. Then,
the robust LR coefficients

orpr = (F'F+ N, 'Fy. (17)
minimize the empirical expected MSE from (16)).

Proof. We first decompose the empirical MSE to

E[|Fa-ylf| =E[a"F Fa -2y Fa+yTyl.
(18)
Obviously, y "y does not depend on  and E {yTFTa] =

y' F'a. Since o(-) is independent of n for every x, the
remaining term in (I8)) can be manipulated to

E {aTFTIE‘a} —a (FTF+Na. (19

Using these identities and equating the derivative of the right-
hand-side of (I8)) to zero yields a1 g from (I7)), which there-
fore minimizes Jemp(S). O

4. EXPERIMENTAL RESULTS

In this section, the theoretical framework of noisy prediction
(provided in Section [2) is employed for various datasets and
several noise conditions. We experiment with our proposed
robust integration methods from Section [3|using an ensemble
of T' = 10 base functions, each of which is a depth 6 decision
tree trained individually. Based on 20% of the available ex-
amples, the ensemble is trained to predict the target function
using the Bagging [15] procedure, i.e., each decision tree is
trained individually over a randomly-selected subset of train-
ing data samples. The remaining data samples are used as a
test set for performance evaluation. During inference on the
test set, the individual predictions of the ensemble members
are added with noise before they are combined to produce the
final prediction.

We aim to exemplify the benefits of our robust methods,
compared to non-robust classical methods, by providing an
empirical comparative evaluation of the two approaches. To
conduct a consistent evaluation, we define the following SNR
measure
var(y)
Tr(X) ’

SNR = (20)

where y is a vector consisting of the training dataset target
values and X is the noise covariance.
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Fig. 1: Predictions of BEM and robust BEM for a sinusoidal
sum target function at SNR=—30 dB with two noise regimes:
10% and 90% noisy base functions.

To motivate our model and the effectiveness of robust
methods, we start our experiments with a synthetic dataset
generated by a sinusoidal sum target function

f(z) = sin(z) + sin(6z) where 0 < z < 6. (21)
In this specific scenario, we illustrate the performance of
BEM as the integration method. We tested the final ensem-
ble prediction for a fixed SNR=—30 dB with independent
and identically distributed Gaussian noise. We selected the
fraction of noisy predictors to be either 10% or 90%, and set
the remaining predictors with noise variances equal to the
measurement noise € (062 =0.1).

The adverse effect of corrupt predictors on the final pre-
diction, when standard ensemble integration techniques are
employed, is illustrated in Fig. [Tal It can be seen that even
a small fraction of noisy predictors (e.g., 10%) can signifi-
cantly degrade the overall ensemble performance, at a given
SNR. The performance of robust integration methods, on the
other hand, is exemplified in Fig.[Tb] Comparing the two fig-
ures demonstrates the enhanced capability of robust methods
to generate an accurate final prediction from noisy individual
predictions. Furthermore, robust BEM enjoys improved per-
formance due to its noise-informed design as the fraction of
noisy predictors is reduced.

We experimented with several additional datasets to fur-
ther validate the added value of robust ensemble integration.
To the sinusoidal sum target function, we added two other
synthetic functions and three real-world datasets:

* Synthetic linear combination: f(x) = ¢’ x where = €
R?, d = 15 and —4 < ||z|¢, < 4 and ¢ is a vector of
random real numbers.

* Synthetic exponential sum: f(z) = exp(—z?) +

1.5 exp(—(x — 2)?) where 0 < = < 6.

» King County house prices: The dataset consists of d =
20 variables and Vg, = 21613 samples.

» UCI diabetes patient records [22]]: The dataset consists
of d = 10 variables and N, = 442 samples.

* White wine quality [23]]: The dataset consists of d = 11
variables and N = 4898 samples.

Each of the synthetic datasets comprised of N, = 1000 train-
ing samples, each of which generated by summing the target
function with independent and identically distributed random
Gaussian measurement noise ¢ ~ N(0,0.1).

We evaluate the performance of each of the suggested ro-
bust integration methods by calculating the gain in MSE com-
pared to its non-robust counterpart, i,e.,

E[(f(z) - 2P (2))’] )
E[(f(z) - )o@ (®))?] )

where © € {BEM, GEM, LR}.

Figure [2| presents the MSE gains Gprn, Gopn and
Grr- The gains were calculated for all six datasets over a
wide range of SNRs. While the MSE achieved by robust and
non-robust methods is similar for high SNRs, in low SNRs
(less than 0 dB) robust methods significantly outperform non-
robust ones. For some datasets and SNRs, the MSE gain
can reach up to 12 dB, i.e., an order of magnitude reduction
obtained by the robust methods. We generally find that robust
integration is highly effective for noisy prediction. Due to
their noise-informed design, robust integration methods were
able to produce accurate predictions from very noisy individ-
ual predictions, especially compared to non-robust methods.
We deduce that the poor performance of the classical tech-
niques stems from the noise-oblivious design.

(22)

Go = 10logq (

5. CONCLUSIONS

We have developed a new theoretical framework for ensem-
ble regression with noisy base functions. Inspired by classi-
cal linear ensemble integration methods, we suggested sev-
eral noise-robust generalized methods that achieve better per-
formance when tested with synthetic datasets and real-world
regression problems. This work can be extended by deriving
robust versions for additional ensemble integration methods.
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Fig. 2: Gain in prediction MSE obtained by robust methods compared to their non-robust counterparts.

Also, we concentrated on Bagging as a training procedure,
but the proposed framework can be employed for other tech-
niques (e.g., Stacking and Boosting). Finally, we conjecture
that analytical properties and guarantees on the expected MSE
may be obtained under natural assumptions regarding the pre-
diction noise’s statistical properties.

References

[1] A. Gholami, “Al and memory wall,” medium.com/riselab,
March 2021, Accessed: 23/12/2021.

[2] N. Garcia-Pedrajas, C. Hervds-Martinez, and D. Ortiz-Boyer,
“Cooperative coevolution of artificial neural network ensem-
bles for pattern classification,” [EEE Trans. on Evolutionary
Computation, vol. 9, no. 3, pp. 271-302, 2005.

[3] J. Mendes-Moreira, C. Soares, A. M. Jorge, and J. F. De Sousa,
“Ensemble approaches for regression: A survey,” ACM Com-
puting Surveys (CSUR), vol. 45, no. 1, pp. 1-40, 2012.

[4] Z. Gao, H. Zhang, Y. Yao, J. Xiao, S. Zeng, G. Ge, Y. Wang,
A. Ullah, and P. Reviriego, “Soft error tolerant convolutional
neural networks on FPGAs with ensemble learning,” I[EEE
Trans. on Very Large Scale Integration (VLSI) Systems, 2022.

[S] W. Kim, J. Park, J. Yoo, H. J. Kim, and C. G. Park, “Target lo-
calization using ensemble support vector regression in wireless
sensor networks,” IEEE Trans. on Cybernetics, vol. 43, no. 4,
pp- 1189-1198, 2012.

[6] W. He, D. Yang, H. Peng, S. Liang, and Y. Lin, “An effi-
cient ensemble binarized deep neural network on chip with
perception-control integrated,” Sensors, vol. 21, no. 10, 2021.

[7] Y.Ben-Hur, A. Goren, D. Klang, Y. Kim, and Y. Cassuto, “Mit-
igating noise in ensemble classification with real-valued base
functions,” in 2022 IEEE Intl. Symp. on Inf. Theory (ISIT).

[8] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Dis-
covery, vol. 8, no. 4, pp. €1249, 2018.

[9] X. Qiu, L. Zhang, Y. Ren, P. Suganthan, and G. Amaratunga,
“Ensemble deep learning for regression and time series fore-
casting,” in Proc. 2014 IEEE Symp. on Computational Intelli-
gence in Ensemble Learning, 2014, pp. 1-6.

[10] H. Kaneko, “Automatic outlier sample detection based on re-

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

gression analysis and repeated ensemble learning,” Chemomet-
rics and Intelligent Lab. Systems, vol. 177, pp. 74-82, 2018.
V. Kazemi and J. Sullivan, “One millisecond face alignment
with an ensemble of regression trees,” in Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition, 2014, pp.
1867-1874.

P. Cizek and S. Sadikoglu, “Robust nonparametric regression:
A review,” WIREs Computational Statistics, vol. 12, no. 3, pp.
e1492, 2020.

S. Du, Y. Wang, S. Balakrishnan, P. Ravikumar, and
A. Singh, “Robust nonparametric regression under huber’s e-
contamination model,” arXiv, math.ST, 2018.

D. Blatna, “Outliers in regression,” Trutnov, vol. 30, pp. 1-6,
2006.

L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, pp. 123-140, 1996.

L. Breiman, “Stacked regressions,” Machine Learning, vol.
24, no. 1, pp. 49-64, 1996.

Y. Freund and R. E Schapire, “A decision-theoretic gener-
alization of on-line learning and an application to boosting,”
Journal of Computer and System Sciences, vol. 55, no. 1, pp.
119-139, 1997.

M. P. Perrone, Improving Regression Estimation: Averaging
Methods for Variance Reduction with Extensions to General
Convex Measure Optimization, Ph.D. thesis, Citeseer, 1993.
M. LeBlanc and R. Tibshirani, “Combining estimates in re-
gression and classification,” Journal of the American Statisti-
cal Association, vol. 91, no. 436, pp. 1641-1650, 1996.

C. J. Merz, Classification and Regression by Combining Mod-
els, Ph.D. thesis, University of California, Irvine, 1998.

G. Zenobi and P. Cunningham, “Using diversity in preparing
ensembles of classifiers based on different feature subsets to
minimize generalization error,” in Proc. European Conf. on
Machine Learning. Springer, 2001, pp. 576-587.

D. Dua and C. Graff, “UCI machine learning repository,” 2017,
Accessed: 10/01/2022.

P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis,
“Modeling wine preferences by data mining from physico-
chemical properties,” Decision Support Systems, vol. 47, no.
4, pp. 547-553, 2009.



	 Introduction
	 Model formulation
	 Robust ensemble integration
	 Expected MSE for robust prediction
	 Robust normalized linear combining
	 Robust BEM
	 Robust GEM

	 Robust unconstrained linear combining

	 Experimental results
	 Conclusions

