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ABSTRACT

Optimization of a microphone array geometry has an important im-
pact on the beamforming performance. Though the environment set-
tings may change in time, microphone locations are typically pre-
served. Thus, the selected locations are of significant importance.
Moreover, if the source of interest emits a broadband signal from a
location that varies in time, finding the optimal geometry becomes a
challenging task. This paper introduces an efficient algorithm to find
the optimal placements of microphones in a nonuniform linear array
for broadband high directivity beamforming. The proposed method
maintains high white noise gain (WNG) for sufficient robustness and
considers several look directions in a region-of-interest (ROI) for a
moving source. Compared to standard designs, our design achieves
higher directivity toward any look direction in the ROI.

Index Terms— Array processing, microphone array optimiza-
tion, robust superdirective beamforming.

1. INTRODUCTION

Sensor array beamforming is a widely-used method for spatial fil-
tering [1–3]. Two factors impact the performance: the array ge-
ometry and the filter coefficients. Concerning the array geometry,
typical microphone arrays use simple symmetric geometries such as
uniform linear arrays (ULAs), uniform circular arrays (UCAs), and
uniform concentric circular arrays (UCCAs). Recently, more efforts
were made to find optimal geometries for several tasks [4–12]. Such
methods optimize the sensor locations, usually with a genetic algo-
rithm [4–9] or with a greedy-based approach [10–12]. These meth-
ods may converge to an undesired local optimum, and some works
consider narrowband signals only [4–6].

Several works have investigated region-based [13–21] and
constant-beamwidth [22–24] beamformers directed toward a re-
gion of interest (ROI). These designs are practical when several
angles of arrival are considered. Such a scenario is encountered
when the source is distributed, moving, or there is some uncertainty
in the source direction. Inspired by these works, we revisit the prob-
lem of array geometry optimization for region-based beamforming.
A similar study was conducted in [4] but did not consider broadband
signals.

This work introduces an algorithm that finds a nonuniform lin-
ear array geometry that enables high directivity beamforming toward
a ROI. The array is chosen so that a robust beamformer with high
directivity may be designed toward any possible look direction in
the ROI. As opposed to genetic algorithms and greedy-based ap-
proaches, our method can find the global optimum geometry via
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convex optimization methods. We show that the proposed method
yields higher directivity than a ULA geometry and a dense differen-
tial microphone array (DMA) geometry.

2. SIGNAL MODEL AND PROBLEM FORMULATION

Consider a system with M omnidirectional microphones placed
nonuniformly across a linear aperture A. Assuming a source of in-
terest in the far-field emitting a signal toward the array, the observed
signal in the frequency domain is given by the vector

y (ω)
∆
= [Y1 (ω) , Y2 (ω) , ..., YM (ω)]T

= d (x, ω, θ)S (ω) + v (ω) (1)

where the superscript T is the transpose operator, Ym (ω) is the sig-
nal captured by the m-th microphone, S (ω) is the propagated signal,
v (ω) is the additive noise vector, and

d (x, ω, θ) =
[

e−ȷω

c
x1 cos θ, e−ȷω

c
x2 cos θ, ..., e−ȷω

c
xM cos θ

]T

(2)

is the array steering vector, where x
∆
= [x1, x2, ..., xM ]T is the mi-

crophone position vector, θ is the signal incidence angle with respect
to the endfire direction, ω = 2πf is the angular frequency, f is the
temporal frequency, ȷ is the imaginary unit, and c is the speed of
sound, i.e., 340[m/s].

Utilizing all sensors in the array, we may design a beamforming
filter

h (x, ω, θ)
∆
= [H1 (x, ω, θ) , H2 (x, ω, θ) , ..., HM (x, ω, θ)]T (3)

where Hm (x, ω, θ) can be used to estimate the source signal of in-
terest at angle θ by

Ŝ (ω) = h
H (x, ω, θ)y (ω) , (4)

where the superscript H is the complex conjugate operator.

The beampattern is then defined by

B
[

h
(

x, ω, θ̃
)

, θ
]

= d
H (x, ω, θ)h

(

x, ω, θ̃
)

(5)

=
M
∑

m=1

Hm

(

x, ω, θ̃
)

eȷ
ω

c
xm cos θ

which measures the response of the beamformer directed toward θ̃
at an angle of arrival θ.
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A good measure of beamformer robustness in the presence of
white noise is white noise gain (WNG):

W [h (x, ω, θ)]
∆
=

∣

∣dH (x, ω, θ)h (x, ω, θ)
∣

∣

2

hH (x, ω, θ)h (x, ω, θ)
. (6)

As the look direction amplification increases with respect to noise
amplification, the WNG increases.

Another important measure is the directivity factor (DF), which
measures beamformer performance in the presence of a diffuse noise
field:

D [h (x, ω, θ)]
∆
=

∣

∣dH (x, ω, θ)h (x, ω, θ)
∣

∣

2

hH (x, ω, θ)Γ (x, ω)h (x, ω, θ)
(7)

where

Γi,j (x, ω) =
sin (ω (xi − xj) /c)

ω (xi − xj) /c
, 1 ≤ i, j ≤ M. (8)

This narrowband measurement may also be extended to the broad-
band case. We define the broadband directivity index over frequen-
cies ωL ≤ ω ≤ ωH by

DI [ωL,ωH ] [h (x, ω, θ)]
∆
=

∫ ωH

ωL

∣

∣dH (x, ω, θ)h (x, ω, θ)
∣

∣

2
dω

∫ ωH

ωL

hH (x, ω, θ)Γ (x, ω)h (x, ω, θ) dω
. (9)

We also denote ωL = 2πfL and ωH = 2πfH .
Our objective is to find the optimal array geometry x, that max-

imizes the worst-case directivity index, as in (9), in a ROI around
the endfire direction |θ| ≤ θH . Each beamformer, directed toward
θ, must admit to the distortionless constraint, have sufficient WNG,
and maintain a minimal distance between two microphones. This
problem can be expressed mathematically as

x
∗ = argmax

x

min
θ∈Θ

DI [ωL,ωH ] [h (x, ω, θ)]

s.t. B [h (x, ω, θ) , θ] = 1 ∀θ ∈ Θ, ∀ω ∈ Ω

W [h (x, ω, θ)] ≥ δ ∀θ ∈ Θ, ∀ω ∈ Ω

|xi − xj | ≥ dc ∀i, j ∈ [1,M ] , i ̸= j

0 ≤ xm ≤ A ∀m ∈ [1,M ]
(10)

where δ is the minimal WNG, dc is the minimal distance between
two adjacent microphones (half of microphone physical space), Ω =
{ω : ωL ≤ ω ≤ ωH} marks the frequency range, Θ = {θ : |θ| ≤
θH} marks the ROI, and x∗ is the optimal array geometry.

3. OPTIMAL ARRAY DESIGN

To find x∗, we formulate the problem as a convex one. First, we
present the constraints, then the target function.

3.1. Constraints

We start by sampling our search space. Consider a grid of N possible
microphone locations [0 : ∆x : A], where

∆x =
A

N − 1
. (11)

We define a selection vector optimization variable

s = [S1, ..., SN−1, 1]
T

(12)

which consists of binary values. Each element Si is 1 if a micro-
phone is placed at distance (i− 1)∆x with respect to the rightmost
placement, and is 0 otherwise. Note that, without loss of generality,
the leftmost coordinate is always occupied, i.e., SN = 1. This is
done to increase the search grid of the array effectively. To guaran-
tee the existence of only M microphones, we should constrain s to
C1:

C1 [s] : s
H
iN = M (13)

where iN is a column vector of length N consisting of ones.
To guarantee minimal distances, we must ensure that all adjacent

selected placements will be separated by at least dc. This means that
there are restricted areas where no more than a single microphone
can be present. All elements of S that correspond to such an area are
summed and constrained to be no more than 1. Mathematically, this
is described by C2:

C2 [s] : s
HU ≤ i

T
G (14)

where G = N − ⌊ dc
∆x

⌋ is the number of restricted areas, U is a
matrix of dimensions N ×G, whose i-th column is of the form

ui =
[

0
T
i−1, i

T
N+1−G,0

T
G−i

]T

, (15)

and 0i is a column vector consisting zeros of length i.
Now, in addition to the variable s, we must take into account the

coefficient variables. To this end, we denote by

htot (ω, θ) = [Htot,1 (ω, θ) , Htot,2 (ω, θ) , ..., Htot,N (ω, θ)]T (16)

a vector that corresponds to a beamformer directed toward θ
that utilizes all N potential sensor placements. Sampling in fre-
quency space and angle space, we consider several frequencies
[ωL : ∆ω : ωH ] where

∆ω =
ωH − ωL

Q− 1
, ωq = ωL + (q − 1)∆ω, q ∈ [1, Q] (17)

and several look directions [0 : ∆θ : θH ] where

∆θ −
θH

P − 1
, θp = (p− 1)∆θ, p ∈ [1, P ] . (18)

Thus, we can sample the coefficients htot (ω, θ) on several values of
ω and θ, overall involving N × Q × P coefficient variables in our
optimization. Note that only positive values of θ are taken into ac-
count due to the performance symmetry of linear arrays with respect
to the endfire direction.

To admit to the distortionless constraint, the beampattern of any
beamformer at any frequency toward the look direction should be 1.
This is constrained by C3:

C3 [htot (ω, θ)] : d
H
tot (ωq, θp)htot (ωq, θp) = 1

∀p ∈ [1, P ] , ∀q ∈ [1, Q] , (19)

where

dtot (ω, θ) =
[

1, e−ȷω

c
∆x cos θ, ..., e−ȷω

c
A cos θ

]T

. (20)

When the distortionless constraint is satisfied, it is sufficient to
use C4 to maintain the desired WNG:

C4 [htot (ω, θ)] : h
H
tot (ωq, θp)htot (ωq, θp) ≤

1

δ

∀p ∈ [1, P ] , ∀q ∈ [1, Q] . (21)
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Fig. 1. Optimal array geometry for M = 6, dc = 0.5 cm, A =
17.5 cm, θH = 30◦, fL = 2 kHz, fH = 6 kHz, and δ = −10 dB.

Finally, utilizing only M microphones in practice, the following
must hold:

C5 [s,htot (ω, θ)] : |Htot,i (ωq, θp)|
2 ≤

Si

δ

∀i ∈ [1, N ] , ∀p ∈ [1, P ] , ∀q ∈ [1, Q] . (22)

Essentially, if Si = 0, then all beamformers will not utilize the i-th
microphone placement. In practice, this means that no microphone
is placed at (i− 1)∆x. However, if Si = 1, then there is indeed
a microphone placed, and all beamformers may utilize that position.
The factor 1 /δ provides an upper bound so that C5 is convex. As
long as C4 is also maintained, this factor does not restrict the coeffi-
cients further.

3.2. Target Function

Notice that when the distortionless constraint is met, the numerator
in (9) is constant:

∫ ωH

ωL

∣

∣

∣
d
H (x, ω, θ)h (x, ω, θ)

∣

∣

∣

2

dω

=

∫ ωH

ωL

|B [h (x, ω, θ) , θ]|2 dω =

∫ ωH

ωL

dω = ωH − ωL. (23)

Therefore, when maximizing the directivity index, we may focus on
minimizing the denominator of (9). When approximating the inte-
gral to a discrete sum, using our optimization variables, we get

∫ ωH

ωL

h
H (x, ω, θ)Γ (x, ω)h (x, ω, θ) dω

∝

Q
∑

q=1

h
H
tot (ωq, θ)Γtot (ωq)htot (ωq, θ) , (24)

where Γtot (ω) is of dimensions N ×N with elements

Γtot,i,j (ω) =
sin [ω (i− j)∆x/c]

ω (i− j)∆x/c
, 1 ≤ i, j ≤ N. (25)

To maximize the worst-case directivity index as in (10), the max-
imal value of (24) over θ ∈ Θ should be minimized. Thus, we should
find the minimum of

R [htot (ω, θ)]

= max
p∈[1,P ]

Q
∑

q=1

h
H
tot (ωq, θp)Γtot (ωq)htot (ωq, θp) . (26)
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Fig. 2. Directivity index as function of θ for the competing methods.

The blue, red, and yellow lines mark the proposed, ULA, and dense

geometries, respectively. M = 6, dc = 0.5 cm, A = 17.5 cm,

θH = 30◦, fL = 2 kHz, fH = 6 kHz, and δ = −10 dB.

Notice that R [htot (ω, θ)] is a convex function, since it is the maxi-
mum of convex functions [25].

Since the target function and constraints are all convex, we can
solve the mixed-integer convex optimization problem

min
s,htot(ω,θ)

R [htot (ω, θ)]

s.t. C1 [s] , C2 [s] , C3 [htot (ω, θ)] ,

C4 [htot (ω, θ)] , C5 [s,htot (ω, θ)] .

(27)

The non-zero elements of the optimal binary vector s∗ yield the opti-
mal microphone locations x∗. The non-zero elements of the optimal
coefficients h∗

tot (ω, θ) yield the optimal coefficients h∗ (x∗, ω, θ).

4. COEFFICIENT POST-PROCESSING

Once x∗ is found, the coefficients h∗ (x∗, ω, θ) are chosen so that
the worst-case directivity index in the ROI is maximized. Thus,
beamformers directed toward other directions in the ROI may not
yield the best possible directivity. To circumvent this, given x∗, a
post-processing scheme is introduced.

The post-processed coefficients must have sufficient WNG and
maximize the DF. Given the geometry x∗, this can be done by find-
ing the robust superdirective beamformer

hϵ (x
∗, ω, θ) =

Γ−1
ϵ (x∗, ω)d (x∗, ω, θ)

dH (x∗, ω, θ)Γ−1
ϵ (x∗, ω)d (x∗, ω, θ)

(28)

where
Γϵ (x

∗, ω) = Γ (x∗, ω) + ϵIM , (29)

IM is the identity matrix of dimensions M ×M , and ϵ is a tradeoff
parameter between WNG and DF.

We can decompose Γ (x∗, ω) as

Γ (x∗, ω) = Q (x∗, ω)Λ (x∗, ω)QT (x∗, ω) (30)

where Λ = diag [λ1, λ2, ..., λM ] is the eigenvalue matrix such that
λ1 ≥ λ2 ≥ ... ≥ λM , and Q is the eigenvector matrix. As in [4],
a robust superdirective beamformer that maintains sufficient WNG
can be found for some ϵ in

0 ≤ ϵ ≤
λ1 −

√

M/δλM
√

M/δ − 1
. (31)



Fig. 3. WNG and DF as function of f and θ for the competing methods: (a) ULA geometry, (b) dense geometry, and (c) proposed geometry.

M = 6, dc = 0.5 cm, A = 17.5 cm, θH = 30◦, fL = 2 kHz, fH = 6 kHz, and δ = −10 dB.

Thus, for any ω and θ, we can run a bisection search on ϵ in this range
to find the robust superdirective beamformer that yields the highest
directivity yet has sufficient WNG. Subsequently, the beamformer is
normalized so that the distortionless constraint is met.

5. SIMULATIONS

To solve the mixed-integer convex problem in (27), the MATLAB
CVX toolbox [26] is used with the MOSEK [27] solver. We search
for the optimal placement of M = 6 microphones on an aperture of
length A = 17.5 cm where microphones are separated by at least
dc = 0.5 cm. Frequencies from fL = 2 kHz to fH = 6 kHz and
look directions up to θH = 30◦ are considered. Minimum WNG
is set to δ = −10 dB. Placements, frequencies, and look directions
are sampled by N = 40, Q = 15, and P = 15, respectively. Our
results are compared with a ULA geometry spread on all A, and
the most dense feasible geometry (i.e., ULA with spacing dc). The
compared geometries also use M microphones. Theoretically, the
dense geometry has an advantage in the endfire direction [1]. Coef-
ficient post-processing, as described in Section 4 was applied to all
geometries.

Figure 1 shows the optimal geometry x∗. The resulting posi-
tions of the microphones are dense near the edges, and a large gap
is present in the middle. The reasoning is that some microphones
are placed close to each other to avoid low directivity due to spatial
aliasing in high frequencies. On the other hand, some microphones
are placed far from each other to maintain high spatial resolution for
lower frequencies.

In Figure 2, the broadband directivity index as a function of
look direction θ is shown for the competing methods. The proposed

method has the highest minimum directivity index across θ ∈ Θ.
Most importantly, superior performance is also achieved in any look
direction by itself.

Figure 3 illustrates the WNG and DF as a function of frequency
f and look direction θ for the competing methods. Using the ULA,
a high directivity is achievable for low frequencies, yet the directiv-
ity deteriorates for high frequencies. This is due to spatial aliasing;
the high WNG can no longer be exchanged for the sake of directiv-
ity. Considering the dense geometry, high directivity can be obtained
for high frequencies, yet it is still comparatively low. This happens
because the WNG is at its lowest possible value, a well-known prob-
lem associated with DMAs. The optimal geometry achieves high di-
rectivity across all frequencies, thereby maximizing the broadband
directivity index.

6. CONCLUSIONS

We have presented an algorithm that finds the optimal microphone
locations for broadband directivity in a ROI. Our method places
some microphones closely to avoid spatial aliasing in high frequen-
cies, and sets others further apart for spatial resolution in lower fre-
quencies. We have shown that our design outperforms standard de-
signs considering the worst-case look direction. Furthermore, excel-
lent performance is achieved over all possible look directions as well.
For simplicity, we have demonstrated our approach for a nonuniform
linear geometry, but it can be extended to other geometries, includ-
ing two and three-dimensional arrays.
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