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ABSTRACT

Microphone array geometry plays a crucial role in array signal pro-
cessing and beamforming. This paper presents an array geometry
optimization approach for near-field beamforming. Considering a
continuous region of interest, we aim to maximize the worst-case
broadband directivity of the array while ensuring sufficiently high
white noise gain. We use a near-field wave propagation analysis to
formulate a convex optimization problem and find the optimal lin-
ear array topology. We evaluate the performance of the proposed
approach for different desired signal directions and distances and
compare our results to traditional beamformers. The optimized non-
uniform geometry achieves better white noise gain and higher array
directivity than standard uniform linear arrays. Furthermore, the pro-
posed method can be used for near- and far-field sources.

Index Terms— Array signal processing, region-of-interest near-
field beamforming, array geometry optimization.

1. INTRODUCTION

Microphone arrays use optimal beamforming to enhance speech and
reduce noise [1–3], detect and localize sources [4–6], and recognize
speech [7, 8]. Traditionally, beamforming enhances signals of in-
terest while attenuating undesirable background noise by exploiting
spatial information captured by the array [9–12]. Each microphone
signal is filtered according to an assumed wave propagation model
considering the array’s geometry.

Conventional far-field signal models assume that the source is
far enough from the microphone array to approximate the acoustic
wave as a plane wave. As a result, the signals measured by each
microphone differ only by a phase shift [2]. However, this far-field
assumption is not valid when the array’s aperture is large or when
the array is close to the source, relative to the wavelength of the sig-
nal [13]. A near-field model expresses the signal’s phase and ampli-
tude in these scenarios. Such a model is standard in various fields,
including ultrasound imaging [14], opto-acoustics [15], and radar
imaging [16].

Improving beamforming performance is done by fine-tuning the
filter coefficients and optimizing the array geometry. While the co-
efficients can be adjusted in real-time, the array geometry is typi-
cally fixed after manufacturing. Thus, careful considerations need
to be made when choosing microphone placements. Naturally, with
near-field beamforming designs, uniformly spaced geometries are
employed. These geometries include, for example, uniform linear
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arrays (ULAs) [17] and uniform rectangular arrays (URAs) [18],
which are the simplest to implement, albeit very rarely provide an
optimal selection concerning any of the standard performance crite-
ria.

Array geometry optimization methods may be applied to gener-
ate customized arrays that are optimal concerning specific criteria.
In recent years, array optimization techniques were demonstrated in
the far-field [19] and near-field [20, 21] regimes. They often use
time-consuming Monte Carlo simulations [22], neural network op-
timization methods [23], or genetic algorithms [24, 25] to randomly
search for an optimal geometry. Convex optimization [26–28] pro-
vides a way to guarantee a globally optimal solution much more ef-
ficiently [29]. These optimized arrays were shown to potentially im-
prove the white noise gain (WNG) or the array directivity compared
to the traditional non-optimized designs.

This paper presents a method for designing a near-field beam-
former considering a continuous two-dimensional region of interest
(ROI) in space. First, we introduce an optimization scheme to de-
termine the optimal microphone placements for a given ROI. Then,
we calculate the beamformer coefficients for a known source posi-
tion. At some level, this work may be regarded as a generalization of
a previous study [26], which considers far-field signals. We aim to
maximize the directivity factor (DF) while maintaining an adequate
WNG and considering the array’s physical limitations. The proposed
approach is shown to outperform standard designs in terms of direc-
tivity and WNG, and may also be used for far-field sources.

The rest of the paper is organized as follows. We formulate the
signal model in Section 2. In Section 3, we present the optimization
variables and the target function, and describe the array optimization
process. Finally, in Section 4, we demonstrate the advantages of the
proposed approach compared to a dense configuration and examine
the optimized array for signals originating in the far-field.

2. SIGNAL MODEL

Consider a signal of interest X (ω) originating from rs ∈ R3 and
propagating in free space at the speed of sound c. The signal im-
pinges on a linear microphone array of M omnidirectional micro-
phones, with the i-th microphone positioned at xi ∈ R3. The free-
field Green function, describing the propagation of the signal from
the source position to the microphone position, is given by [30]:

gs,i (ω) = g (rs,xi, ω) =
e−jω∥rs−xi∥/c

4π ∥rs − xi∥
(1)

where ∥·∥ is the Euclidean norm, ω = 2πf is the angular frequency,
f is the temporal frequency and j is the imaginary unit. This func-
tion should be used when the microphone is in the near-field of the



source, which are all the points whose distance r̂ from the source
satisfies [13]:

r̂ < A2/λ (2)

where A is the aperture of the array and λ = c/f is the signal’s
wavelength.

The measured signal in the frequency domain is expressed by:

y (ω) =
[
Y1 (ω) Y2 (ω) · · · YM (ω)

]T
= d (x,xref , rs, ω)X (ω) + v (ω)

(3)

where the superscript T is the transpose operator, Yi (ω) is the mea-
sured signal at the i-th microphone,

d (x,xref , rs, ω) =[
gs,1(ω)
gs,ref(ω)

gs,2(ω)
gs,ref(ω)

· · · gs,M (ω)
gs,ref(ω)

]T

(4)

is the array steering vector, x =
[
xT
1 ,x

T
2 , · · · ,xT

M

]T
is the micro-

phone positions vector of length 3M , xref is the reference micro-
phone position, and v (ω) is the additive noise vector.

3. ARRAY GEOMETRY OPTIMIZATION

3.1. Near-Field Beamforming

Given an array of microphones whose locations are specified by the
elements of x, we can construct a beamformer of length M denoted
by h (x, rs, ω). The output of the beamformer for a source signal
originating from rs is given by:

X̂ (ω) = hH (x, rs, ω)y (ω) (5)

where the superscript H is the conjugate-transpose operator.
We employ two common performance measures to evaluate the

beamformer’s sensitivity. The first performance measure, describing
the robustness of the array to spatially white noise, is the (narrow-
band) WNG:

W [h (x, rs, ω)] =

∣∣dH (x,xref , rs, ω)h (x, rs, ω)
∣∣2

hH (x, rs, ω)h (x, rs, ω)
. (6)

The second performance measure is the (narrowband) DF, which
quantifies the robustness of the array to a spatially-isotropic diffuse
noise field originating in the far-field. It is given by:

D [h (x, rs, ω)] =

∣∣dH (x,xref , rs, ω)h (x, rs, ω)
∣∣2

hH (x, rs, ω)Γ (x, ω)h (x, rs, ω)
, (7)

where Γ (x, ω) is given by:

Γi,j (x, ω) =
sin (ω (∥xi − xj∥ /c))

ω (∥xi − xj∥ /c)
. (8)

Finally, the narrowband DF may be extended to the broadband di-
rectivity index by defining the following:

DI [ωl,ωh] [h (x, rs, ω)] =∫ ωh

ωl

∣∣dH (x,xref , rs, ω)h (x, rs, ω)
∣∣2∫ ωh

ωl
hH (x, rs, ω)Γ (x, ω)h (x, rs, ω)

(9)

where ωh and ωl are the maximal and minimal frequencies in the
source spectrum, respectively.

3.2. Optimization Variables

Our objective is to find the optimal microphone layout x∗ that max-
imizes the worst-case directivity index (9) in a general ROI. The
optimization is done under the constraints of distortionless response,
sufficient WNG (6), and a minimal distance dc between adjacent
microphones. Inspired by [26], we construct a convex optimization
problem with discrete variables.

First, we define an ROI in a two-dimensional Cartesian grid us-
ing r and θ, and assume that it is bounded by r ∈ [rl, rh] and
θ ∈ [θl, θh]. The set of all possible source locations, rs,p, are lo-
cated on a discrete grid defined as:

rs,p = (rs cos θp, rs sin θp) ,

θp = θl +
θh − θl
P − 1

(p− 1) , rs = rl +
rh − rl
S − 1

(s− 1) ,

p ∈ [1, P ] , s ∈ [1, S] , (10)

where P and S are the total number of sampled grid points of θ
and r, respectively. Furthermore, the sampled frequency grid of the
band-limited signal is defined as:

ωq = ωl +
ωh − ωl

Q− 1
(q − 1) , q ∈ [1, Q] , (11)

where Q is the number of frequency grid points.
Next, we assume that the array is situated on the x-axis, e.g., the

i-th microphone is located at xi = (xi, 0), and the array’s maximum
aperture is A. We limit the number of possible microphone locations
by sampling the x axis at N , equally spaced, possible locations:

∆x =
A

N − 1
, xi = −∆x (i− 1) i ∈ [1, N ] . (12)

Using the vectors defined above and a reference posi-
tion xref chosen from (12), we calculate the steering vector
d (xref , rs, θp, ωq) for each possible source location rs,p using (4).

The two optimization variables are the binary selection vector
and the filter coefficients vector. The selection vector is defined as:

z =
[
Z1 Z2 · · · ZN

]T
, (13)

where Zi is one if a microphone is present at xi and zero otherwise.
The filter coefficients vector, representing a beamformer di-

rected towards (r, θ) utilizing all N possible microphone place-
ments, is defined for each sampled grid point (s, p, q) as:

h (rs, θp, ωq) =[
H1 (rs, θp, ωq) H2 (rs, θp, ωq) · · · HN (rs, θp, ωq)

]T
. (14)

Subsequently, the number of coefficient variables is N×P ×Q×S.

3.3. Optimization Target Function and Constraints

The optimization objective is to minimize a target function while
maintaining desirable constraints. First, we limit the number of
placed microphones to M by defining:

C1 [z] : z
T iN = M, (15)

where iN is a column vector of length N consisting of ones. Ad-
ditionally, the minimal space between two adjacent microphones
should be dc:

C2 [z] : z
TU = iTG, (16)
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Fig. 1. Different array geometries. (a) Optimal geometry for near-
field, (b) Optimal geometry for far-field, (c) Dense geometry, (d)
ULA geometry. M = 5, dc = 1 cm, A = 15 cm.

where G = N−⌊ dc
∆x

⌋ is the number of restricted areas, U ∈ RN×G

is a matrix whose i-th column is:

ui =
[
0T
i−1 iTN+1−G 0T

G−i

]T
, (17)

and 0i−1 is a column vector consisting zeros of length i.
The subsequent constraints ensure that the beamformer utilizes

M microphones and achieves distortionless response while uphold-
ing a minimum WNG of δ:

C3 [h] : d
H (xref , rs, θp, ωq)h (rs, θp, ωq) = 1,

C4 [h] : h
H (rs, θp, ωq)h (rs, θp, ωq) ≤

1

δ
,

C5 [z,h] : |Hi (rs, θp, ωq)|2 ≤ Zi

δ
,

∀i ∈ [1, N ] ,∀p ∈ [1, P ] , ∀q ∈ [1, Q] , ∀s ∈ [1, S] . (18)

Finally, we define the target function for the near-field case. We
aim to maximize the worst-case directivity index (9). Constraint
C3 [h] renders the numerator of (9) constant, simplifying the opti-
mization process to minimizing the following convex function:

R [h] =

max
p∈[1,P ]
s∈[1,S]

Q∑
q=1

hH (rs, θp, ωq) Γ (ωq)h (rs, θp, ωq) , (19)

where

Γi,j (ω) =
sin (ω (i− j)∆x/c)

ω (i− j)∆x/c
, i, j ∈ [1, N ] . (20)

The mixed-integer optimization problem can be solved using
various solvers, yielding optimized variables z and h, whose non-
zero elements represent the optimized microphone locations and
beamformer coefficients.

3.4. Robust Beamforming

The performance of the beamformer depends on the array geometry
and the filter coefficients. While the former is given by the proposed
method, the latter needs to be calculated given the source location.
In this work, we use the robust superdirective beamformer, which
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Fig. 2. Directivity index as a function of θ for a source located at
r = 10 cm. The star, square, circle, and triangle markers represent
the optimal near-field geometry, dense geometry, optimal far-field
geometry, and ULA geometry, respectively.

maximizes the DF while maintaining an acceptable minimum value
of the WNG. This beamformer corresponds to our optimization ob-
jective and constraints and is shown to be an adequate selection in
other studies involving the near-field signal model [31, 32]. Assum-
ing the source location is known, we construct the beamformer as
in [19, 26] using the bisection method.

4. EXPERIMENTAL RESULTS

We solve the addressed optimization problem using the Python pack-
age CVXPY [33] with the MOSEK solver [34]. The simulations ap-
proximate a real-world microphone configuration suitable for use in
close proximity to the speaker and are conducted using the follow-
ing parameters: M = 5 microphones at N = 30 possible locations
over A = 15 cm, with a minimal distance between adjacent mi-
crophones dc = 1 cm and reference microphone xref = 0. The
variables grid is sampled using P = 10, Q = 10, S = 10 for
1KHz ≤ f ≤ 6KHz, |θ| ≤ 30◦, 5 cm ≤ r ≤ 15 cm and the
minimum WNG is δ = −10 dB. Using (2), the near-field extends
up to approximately 40 cm from the source. This indicates that the
near-field assumption is strictly necessary for the described scenario.

Figure 1 illustrates various potential array configurations. The
first is the suggested optimal geometry using a near-field model. In
this case, the microphones are positioned on the right side, closer to
the source. Next is the optimal geometry using the far-field model as
in [26]. In contrast to scenario (a), this arrangement also incorporates
microphones on the left side. The densely-packed configuration (c)
closely resembles (a), with each microphone placed at a distance of
dc from its neighboring microphone. Lastly, (d) represents the ULA
that spans the entire potential aperture using equidistantly spaced
microphones.

In Figure 2, the broadband directivity index (9) is showcased for
a source positioned at r = 10 cm and |θ| ≤ 60◦. Among the con-
sidered geometries, the optimal near-field arrangement attains the
highest directivity index, followed by the dense configuration. Con-
versely, the optimal far-field geometry and the ULA perform rel-
atively poorly in this context. Interestingly, the optimal near-field
geometry demonstrates superior performance across all angles, even
those beyond the optimized range.
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Fig. 3. DF and WNG as a function of r and θ for the optimized and dense geometries. (a) DF for optimized geometry, f = 1KHz, (b) DF
for optimized geometry, f = 4.5KHz, (c) WNG for optimized geometry, f = 4.5KHz, (d) DF for dense geometry, f = 1KHz, (e) DF
for dense geometry, f = 4.5KHz, (f) WNG for dense geometry, f = 4.5KHz. The WNG for f = 4.5KHz is strictly -10 dB for both
beamformers within the entire ROI.

The suggested geometry and the dense configuration exhibit the
best directivity index and share similar microphone placements. Fur-
ther comparison of the DF and WNG between the two configura-
tions is illustrated in Figure 3 for f = 1kHz and f = 4.5 kHz.
At lower frequencies, both configurations achieve the minimum al-
lowable WNG of −10 dB, but the suggested geometry outperforms
the dense configuration in terms of DF for all angles and distances.
The highest DF is attained when the source is located near the array.
This advantage extends to higher frequencies. While both configura-
tions maintain −10 dB WNG within the optimized angle range, the
WNG of the proposed geometry increases by up to 2 dB outside the
optimized angle range. Moreover, the DF of the suggested geometry
consistently offers superior DF across angles and distances. In com-
parison to f = 1kHz, at f = 4.5 kHz, the best DF is attained for
sources located farther from the array.

Further simulations were conducted to analyze the optimized ar-
ray for signals originating far from the array. We calculated the op-
timal geometry with the proposed method for far-field signals by
setting r = 25m. The resulting array matches the configuration ob-
tained using [26], which is illustrated in Figure 1(b). This implies
that our proposed approach may be regarded as a generalization of
that approach: when the desired source signal is close to the array,
it considers the near-field signal model to describe the nature of the
propagating acoustic wave more realistically; however, when the de-
sired source signal is far from the array, the two approaches yield
identical solutions.

5. CONCLUSIONS

We have presented a beamforming approach based on linear array
geometry optimization for ROI near-field beamforming. The pro-

posed method considers a continuous ROI and maximizes the worst-
case broadband directivity index while maintaining a minimal value
of the WNG to yield the optimal array geometry. Then, a post-
processing stage is employed to derive the optimal robust superdirec-
tive beamformer coefficients considering the optimal array geome-
try. We conducted comprehensive simulations comparing traditional
dense and ULA beamformers with our proposed approach. The re-
sults indicate that the latter achieves a superior broadband directiv-
ity index, and further analysis shows that the proposed approach
achieves improved WNG and higher narrowband array directivity
compared to the dense array. Moreover, we have simulated a desired
source originating in the far field and demonstrated that the proposed
approach and the existing far-field geometry optimization approach
converge when the desired source signal is far from the array. In fu-
ture research, we may refine the coefficients post-processing scheme
to a priori unknown source positions within the ROI, and expand the
proposed approach to two- and three-dimensional arrays.
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