
Aspect-Oriented Model Development at
Different Levels of Abstraction

Mauricio Alférez1, Nuno Amálio2, Selim Ciraci3, Franck Fleurey4, Jörg
Kienzle5, Jacques Klein2, Max Kramer6, Sebastien Mosser7, Gunter

Mussbacher8, Ella Roubtsova9, and Gefei Zhang10

1 Universidade Nova de Lisboa, Portugal, mauricio.alferez@di.fct.unl.pt
2 University of Luxembourg, {nuno.amalio,jacques.klein}@uni.lu
3 University of Twente, the Netherlands, ciracis@ewi.utwente.nl

4 SINTEF IKT, Norway, Franck.Fleurey@sintef.no
5 McGill University, Canada, Joerg.Kienzle@mcgill.ca

6 Karlsruhe Institute of Technology, Germany, max.kramer@student.kit.edu
7 INRIA Lille - Nord Europe, sebastien.mosser@inria.fr

8 SCE, Carleton University, Canada, gunter@sce.carleton.ca
9 Open University of the Netherlands and Munich University of Applied Sciences,

Germany, ella.roubtsova@ou.nl,ella.roubtsova@hm.edu
10 Ludwig-Maximilians-Universität München and arvato systems, Germany,

gefei.zhang@pst.ifi.lmu.de

Abstract. The last decade has seen the development of diverse aspect-
oriented modeling (AOM) approaches. This paper presents eight different
AOM approaches that produce models at different level of abstraction.
The approaches are different with respect to the phases of the devel-
opment lifecycle they target, and the support they provide for model
composition and verification. The approaches are illustrated by mod-
els of the same concern from a case study to enable comparing of their
expressive means. Understanding common elements and differences of
approaches clarifies the role of aspect-orientation in the software devel-
opment process.
Key words: Aspect-oriented modeling, localization of concerns, compo-
sition, verification, localization of reasoning

1 Introduction

Separation of concerns is a key software engineering principle that helps to re-
duce complexity, improve reusability, and simplify evolution. Aspect-oriented
software development (AOSD) takes traditional support for separating concerns
a step further by allowing developers to modularize their descriptions along more
than one dimension [14].

Drawing inspiration from aspect-oriented programming research, AOM brings
the aspect-orientation to design, analysis and requirements phases of software
development. Aspect-oriented modeling (AOM) approaches, in particular, aim
to provide means for

2 Mauricio Alférez at al.

- localizing of crosscutting concerns at the level of models to guarantee traceabil-
ity of concerns across the software development lifecycle and reuse of different
realizations of a concern within and across software models;
- verification of models with crosscutting concerns;
- localizing of reasoning on models of concerns about the behaviour of the whole
model.

This paper surveys a set of AOM approaches working at different levels of
abstraction. The aim is to compare the techniques of localization of aspects and
the techniques of reasoning on aspect models and identify research challenges in
AOM. Section 2 identifies the abstraction level of each of eight different AOM
approaches and illustrates each of the approaches with a model of the same con-
cern. All chosen approaches have demonstrated their scalability by taking the
challenge of modelling the case study of a crisis management system (CMS) [8].
Section 3 discusses the approaches and identifies future directions for AOM re-
search.

2 AOM at Different Levels of Abstraction

2.1 Authentication Concern

The description of the authentication concern is taken from the requirements
for a Crisis Management System [8]. This concern is modelled and used for
correctness analyses in all compared AOM approaches.

The system authenticates users on the basis of the access policies when they first access
any components or information. If a user remains idle for 30 minutes or longer, the system
shall require them to re-authenticate.

Use Case: AuthenticateUser
Scope: Car Crash Crisis Management System
Primary Actor: None
Secondary Actor: CMSEmployee
Intention: The intention of the System is to authenticate the CMSEmployee to allow access.

Main Success Scenario:
1. System prompts CMSEmployee for login id and password.
2. CMSEmployee enters login id and password into System.
3. System validates the login information. Use case ends in success.

Extensions:
2a. CMSEmployee cancels the authentication process. Use case ends in failure.
3a. System fails to authenticate the CMSEmployee.
3a.1 Use case continues at step 1.
3a.1a CMSEmployee performed three consecutive failed attempts.

Use case ends in failure.

2.2 Feature Abstractions

In Variability Modelling Language for Requirements (VML4RE) [1] the Authen-
tication concern is localized as one reusable feature identified by its name “Au-
thentication”(Figure 1). Feature model visualizes the dependencies between the
Authentication feature and the Session Handling and Administration features.

AOMD at Different Levels of Abstraction 3

Fig. 1. VML4RE model

Authentication requires the UserAdministration feature because the system au-
thenticates users on the basis of access policies associated to them. Feature model
also identifies Authentication as an optional feature.

The VML4RE specification is a good starting point for concern modelling.
Different requirements models can be created to describe the features, using
notations of UML2.0 or approaches presented in this overview. For example,
if the Authentication feature is selected for a specific product according to the
VML4RE specification in Figure 1, the requirements specification will include
the specification concern called “Authentication” in the chosen specification no-
tation (e.g. a use case specification or a sequence diagram). Also, according to
combinations of more than one feature it is possible to apply concerns that mod-
ify or add new parts in the requirements specifications. Features do not specify
system internals, they only capture requirements for a system, so the verification
of the system’s behaviour and any reasoning about it are not applicable at the
level of feature modelling.

2.3 Use cases

At the level of use case modelling the Authentication use case is described step by
step. As it is recognized as a reusable unit, it should contain pointcut designators
(instructing where, when, and how to invoke the advice) and join points (defining
places in the model where an advice should be inserted) [13]. Such concepts do
not exist in conventional use case notations.

Aspect-oriented User Requirements Notation (AoURN) [12] supports conven-
tional concepts of use case and workflow modelling techniques but also enables
localizing of aspects. The primary goal of AoURN is to model any functional or
non-functional concern of the system under development that can be expressed
with scenarios.

Fig. 2 depicts the AoURN scenario model for the Authentication concern. The
authentication scenario starts at the authenticate start point and ends either at
the authenticated or fail end point. Various conditions are checked: the User
may have to enter credentials, and the System may authenticate or block the
User. The pointcut stub RequiresAuthentication represents all locations where

4 Mauricio Alférez at al.

Fig. 2. AoURN model

the Authentication concern is to be applied. At one glance, it is apparent that
the concern is to be applied before these locations since the concern-specific be-
haviour occurs before the pointcut stub. In this case, a simple sequential compo-
sition is desired, but AoURN scenario models can be composed in many different
ways (e.g., as alternatives, optionally, in parallel, in loops, or in an interleaved
way). The composition rules are exhaustive in that their expressiveness is only
restricted by the AoURN scenario language itself.

Patterns define the actual locations where the concern is to be applied: in
this case, each time there is an interaction between an actor and the System as
shown in the two sub-models above the User component. The variable $User
defined in the patterns allows the concern to reuse the matched component.

AoURN models involve neither detailed data nor message exchanges. This
makes them well suited for the early stages of the software development pro-
cess. AoURN scenario definitions can be analyzed, enabling regression-testing
of the scenario model. AoURN combines aspect-oriented modeling with goal-
oriented modelling allowing to model the reasons for choosing a concern using
goal models.

Use cases identify abstract actions coming from the environment and abstract
responses of the system, driving the system from one state to another, but do not
capture system local storage and the internal behavior. While it is possible to
validate use case models, system verification and local reasoning on aspects about
the whole system behaviour are not applicable at the level of use cases. Further
system specification involves choices. Actions may become operations, messages,
or events recognized by objects and aspects. Depending on these choices, different
modelling techniques may be used.

AOMD at Different Levels of Abstraction 5

2.4 Classes and Sequence Diagrams

Fig. 3. RAM model

Reusable Aspect Models (RAM) [7] describes the structure and behaviour of a
concern using class, state and sequence diagrams. Fig. 3 shows how the structural
view of the Authentication concern associates Session objects with |Authentica-
table objects.

The Authentication behavior is described in state views and message views.
State views detail the method invocation protocol of objects using state dia-
grams. Message views specify the message passing between objects using se-
quence diagrams. For example, the login message view in Fig. 3 shows how a
session object is instantiated upon a successful login attempt. The requireLogin
message view demonstrates how method invocations of |methodRequiringLogin of
an |Authenticatable object are disallowed if no session is currently established. To
apply the authentication aspect, the mandatory instantiation parameters must
be mapped to model elements of the base model. For instance, to enable user

6 Mauricio Alférez at al.

authentication, the mapping |Authenticatable → User, |methodRequiringLogin
→ * *(..) would ensure that no public method of a User object can be invoked
before the user authentication.

To reuse structure and behavior of low-level aspect models in models that
provide more complex functionality, the RAM approach supports the creation
of complex aspect dependency chains. Blocking authentication and timed au-
thentication are modeled by reusing the aspects Authentication, Blockable and
Timing (see bottom of Fig. 3).

Fig. 4. GrACE:Sequence diagrams

Fig. 5. GrACE:DSM Authenticate

AOMD at Different Levels of Abstraction 7

!"

!#

!$

!$

%&'()*+,-.

/+01*2*134(-!+*'56&47645(8591:;*'1<!*6;*6.

'*/1-.

%64=>4&'?4&'1-.

!"#$%&'((#)%*+

/+01*2*134(-@*%46*A';4B*<C013*'1&+51*D9*6.

!E
+4'(&1&4'-F5,6*5(GH4II*(A'.

!#

!#

/+01*2*134(-,4I&'D9*6<H4I&'25'5I*6.

,'(*+%"-..#""

Fig. 6. GrACE:Execution tree

GrACE (Graph-based Adaptation, Configuration and Evolution) approach ex-
presses the base and concerns models as class and sequence diagrams. The speci-
fication also contains an activator action and the execution constraint, a sequence
of method invocations, expressed with Computational Tree Logic (CTL). With
this input, GrACE simulates the execution and the composition of the input
diagrams starting from the activator action. The end result of this is the execu-
tion tree where each branch is a possible composition showing all the methods
invoked in it [5]. Then, a verification algorithm verifies whether the input execu-
tion constraints is violated or not. In case it is violated, a feedback is provided
to the user. In this way, the user can verify the behavior of the concerns in the
composed model. For simulation, GrACE specializes graph-based model checking
by defining a model called Design Configuration Model (DCM) for representing
UML based AOMs with graphs, and modeling OO- and AspectJ-like execution
semantics with graph-transformation rules over this model.

GrACE uses the mapping from Theme/UML [6] to a Domain Specific Lan-
guage. Hence, the concerns are modeled as “themes” in Theme/UML. Fig. 4
presents an excerpt from the sequence diagram of the theme Authenticate, which
defines a pointcut to the template method fireStart. The advice for this point-
cut is defined in the method beforeInvoke(), which checks if the user is already
authenticated.

The themes are converted to DCMs for verification. GrACE toolset includes
a prototype tool which automates the conversion from Theme/UML to DCM.
Fig. 5 shows the graph-based DCM of the theme Authenticate. The node labeled

8 Mauricio Alférez at al.

Authenticate Authenticate [3]

[0]

f3 =
Credentials

Enter
«before»

«pointcut»«history»

«aspect»
ThreeFails

[f3>=1]
/ fail goto Final

[else]«advice»

«whilst»
{trigger = wrong}

Authenticate

Credentials
Enter

/ authenticated
ok

goto EnterCredentials

«aspect»
CredentialsWrong

«pointcut»

«advice»

Fig. 7. HiLA model

AspectType with the attribute name AuthenticateUser represents the template
class AuthenticateUser. The node with the attribute toMethod set to fireStart
that is connected to the aspect type node represents the template parameter of
the theme Authenticate.

To illustrate composition of aspects, Fig. 6 presents an excerpt of the ex-
ecution tree generated from the simulation of the base model and the theme
Authenticate shown in Fig 4. At state S5, this excerpt starts with the dispatch
of the method Server.ScenarioBroadCastEvent(). In the activation bar of this
method, the first action is a call action. Hence, the transformation rule findDecl
matches at state S6 and identifies ScenarioOutSideEvent.fireStart() as the re-
ceiver of the call. Because the aspect AuthenticateUser defines a pointcut to
this method, the transformation rule formBeforeJoinPoint matches and gives
the execution to the advice.

2.5 Classes and State Machines

A UML Behaviour State Machine (BSM) usually presents behaviour of one clas-
sifier. Aspects extend the behaviour specified for classifiers. HiLA modifies the se-
mantics of BSM allowing classifiers to apply additional or alternative behaviour.
The High-Level Aspects (HiLA) approach [15] introduces AspectJ-like constructs
into UML state machines. The basic static structure usually contains one or more
classes. Each base state machine is attached to one of these classes and specifies
its behavior. HiLA offers two kinds of aspects to modify such a model. Static
aspects directly specify a model transformation of the basic static structure of
the base state machines. Dynamic (high-level) aspects only apply to state ma-
chines and specify additional or alternative behaviour to be executed at certain
“appropriate” points of time in the base machines execution.

Fig. 7 presents the scenario of the Authentication concern. Modeling with
HiLA is a top-down process. The main success scenario of a (behavioral) con-
cern is modeled in the base machine: first the user enters his credentials (Enter-
Credentials), which are then validated (in stateAuthenticate). The extension for
authentication failures is modeled with the pattern whilst (stereotype whilst).
State Authenticate is active. If the current event is wrong (tagged value “trigger

AOMD at Different Levels of Abstraction 9

= wrong”, then the advice is executed, which forces the base machine to go to
state EnterCredentials, where the user can try again.

The history-based extension, which allows the system to accept at most three
trials to log in is modeled in Three Trials. The history property f3 counts how
often its pattern, which specifies continuous sequences containing three and no)
final state occurrences, are contained in the execution history so far. The pointcut
selects the points of time just before state EnterCredentials gets active. If f3 = 1 ,
is satisfied, which means that the user has already tried to log in three times
unsuccessfully and now tries to authenticate again, the advice takes the base
machine to the final state (label goto Final), and ends in failure (signal fail).
Otherwise the advice does not do anything.

Aspects are composed together by the weaving process. Additional behaviors
defined by whilst aspects are woven as additional transitions. History-awareness
is achieved by entry actions to keep track of states activation; before (and after)
aspects are woven into transitions selected by the pointcut.

HiLA uses formal methods of model validation. The application of aspects to
BSM results in another UML state machine which is analyzed using the model
checking component of Hugo/RTmodel checking tools. Hugo/RT translates the
state machine and the assertions into the input language of a back-end model
checker SPIN. SPIN then verifies the given properties presented in Linear Tem-
poral Logic.

2.6 Services

The Adore framework1 is an approach to support aspect-oriented business pro-
cesses modeling, using the orchestration of services paradigm.

Fig. 8. Orchestration:cms:authUser

Models describing business–driven processes (abbreviated as orchestrations,
defined as a set of partially ordered activities) are composed with process frag-
ments (defined using the same formalism) to produce a larger process. Fragments

1 http://www.adore-design.org

10 Mauricio Alférez at al.

Fig. 9. Authentication concern in an Adore model

realize models with little behavior and describe different aspects of a complex
business process. Adore allows a business expert to model these concerns sep-
arately, and use automated algorithms to compose them.

Using Adore, designers can define composition units (abbreviated as com-
position) to describe the way fragments should be composed with orchestrations.
The merge algorithm used to support the composition mechanism[11] computes
the set of actions to be performed on the orchestration to automatically produce
the composed process. When the engine detects shared join points, an automatic
merge algorithm is triggered to build a composed concern. Adore also provides
a set of logical rules to detect conflicts inside orchestrations and fragments (e.g.,
non-deterministic access to a variable, interface mismatch, lack of response under
a given condition set).

We represent in Fig.8 the initial orchestration dealing with the authentication
concern. It represents the base success scenario, as described in the requirements.
To model blocking the user after 3 failed attempts, we use the fragment depicted
in Fig.9. The composition algorithm produces the final behavior by integrating
the fragment into the legacy orchestration.

2.7 Mixins

A Protocol Model [10] of a system is a set of protocol machines (PMs) that are
composed to model the behavior of the system. Fig. 10 shows a protocol model
of the security concern composed from PMs Employee Main, Clock, Singleton,
Password Handler and Want Time Out.

AOMD at Different Levels of Abstraction 11

The specification of a PM is described in a textual file as it is shown below
for machine Employee Main.

BEHAVIOUR Employee Main
ATTRIBUTES Employee Name: String, !Employee Status: String,

(Security Password: String), Max Tries: Integer
STATES created, deleted
TRANSITIONS @new*!Create Employee=created,

created*Session Event=created,
created*!Set Password=created,
created*Log In=created, created*Log Out=created,
created*Time Out=created, created*Reset=created,
created*Delete Employee=deleted

EVENT Create Employee
ATTRIBUTES Employee: Employee Main,

Employee Name: String,Security Password: String,
Max Tries: Integer

EVENT Delete Employee
ATTRIBUTES Employee: Employee Main

EVENT Set Password
ATTRIBUTES Employee: Employee Main,
Security Password: String, Max Tries: Integer

EVENT Log In
ATTRIBUTES Employee:: Employee Main, Password:String

EVENT Log Out
ATTRIBUTES Employee: Employee Main

EVENT Time Out
ATTRIBUTES Employee: Employee Main

GENERIC OUT
MATCHES Time Out, Log Out

The graphical presentation is a secondary artefact; it does not contain all the
elements of the specification. The specification of a PM includes its local storage
and the alphabet of event types. The local storage is represented as a set of its
attributes. For example, attribute Password Handler.Tries for the PM Employee
Main. Each event type is specified by metadata. For example, event Set Password
contains attribute Security Password: String.

An event instance comes from the environment and it is atomic. Instances
of PMs are created with happening of events. PM instances can be included
into other PMs. A PM instance behaves so that it either accepts or refuses an
event from its alphabet, depending on its state and the state of other included
machines. Events that are not in its alphabet are ignored. To evaluate the state
a machine may read, but not alter, the local storage of the included machines.

The complete system is composed using CSP parallel composition [4] ex-
tended by McNeile [10] for machines with data. This composition techniques
serves as a natural weaving algorithm for aspects. The alphabet of the com-
posed machine is the union of the alphabets of the constituent machines; and
the local storage of the composed machine is the union of the local storages of
the constituent machines. When presented with an event the composed machine
will accept it if and only if all its constituent machines, that have this event in
their alphabet, accept it. If at least one of such machines refuses the event it
is refused by the composed machine. The concept of event refusal is critical to
implement CSP composition for composition of protocol machines. This allows
for modelling of the situation when events occur and the system cannot accept
them.

12 Mauricio Alférez at al.

Clock

Create Clock

Increment time

created

TimeNow :=timeNow

TimeNow:=
timeNow+10

Set Password,[Security
Password],
Log In[Password] ,
Session Event, Reset,
Out

Employee Main

Password := Log In.Password;
Last Event Time := Clock..Time Now
Tries := Tries + 1;

some

Singleton

none

Create Clock

active

Want Time Out

inactive
Time Out

Password Handler

uninitialized

logged Out trying
Log InLog In

Set Password

logged Inviolation

Reset
Session Event,,
Log Out

if (Security Password = “”) return “uninitialised”;
else if (Tries = 0) return “logged Out”;
else if (Tries < 4 && Password = Security Password)
return “logged In”;
else if (Tries > 2) return “violation”;
else return “trying”;
GENERIC Out={Time Out, Log Out}

If (Clock.TmeNow – Last Event Time> 30) return “inactive;”;
else return "active “

Last Ime Event
:=timeNow

created deletedDelete
EmployeeCreate

Employee

Password
Handler.Tries:=0

If (Clock.allInstances ().number=0 return “none”;
else return “some”;

Last Event Time
:=Clock.TimeNow

Password.Handler.Tries :=0

Block Access
[Security
Password=“”]

Fig. 10. Protocol Model of the Authentication Concern

Join points are often events. Password Handler specifies join points for the
Authentication concern. A Session Event is accepted if the Password Handler is
in state logged in, when both machines Employee Main and Password Handler
may accept it.

Quantification on events is defined by generalized events, e.g. event Out =
{LogOut, T imeOut}. Quantification on states is defined as derived states. State
abstractions specified with derived states are allowed to be used in join point
specifications. For example, the state logged In is derived as “If (Tries <= 4
&& Password = Security Password)”, and as a result the generic event Out
representing events Time Out and Log Out becomes possible.

The CSP composition based algorithm is used for aspect weaving and simula-
tion. It produces system traces from parts of traces of aspects with te Modelscope
tool. This algorithm guarantees that the order of accepted events in traces of
aspects is not changed in the result of their composition (see the proof in [9]).
The aspect interference of composed aspects may block some traces of aspects,
but it will not change the order of events in them. This property of local reason-
ing [9] provided by the PM approach prevents appearance of invasive aspects
and eases the reuse and evolution of protocol models.

AOMD at Different Levels of Abstraction 13

Authentication

Users

(a) Package Dia-
gram

HasSession →

0..11
SessionUser

HasSessionIffLoggedIn

Users

(b) Structural Diagram

UserIsLoggedIn

(c) Behaviour Diagram

IsLoggedIn

cu? : User

cu?
status

loggedIn

(d) Assertion Diagram
for IsLoggedIn

Fig. 11. VCL package Authentication, addressing the authentication concern

AuthenticationOps

Authentication

(a) Package Diagram

Login Logout

(b) Behaviour Diagram

u?

loggedOut

status

pw?
pw

u? 0
pwMisses

loginOkr!

u? : User

pw? : Password

r!: LoginResult

LogInOk Logout

u? : User

status

u?

loggedIn

status

u?

loggedOut

loggedIn

status

(c) Contract Diagrams

Fig. 12. VCL package AuthenticationOps, addressing the authentication concern

2.8 Contracts

The Visual Contract Language (VCL) [2, 3] takes an approach to behaviour mod-
elling that is based on design by contract. A VCL model is organized around pack-
ages, which are reusable units encapsulating structure and behaviour. Packages
represent either a traditional module or an aspect. VCL’s package composition
mechanisms allow larger package to be built from smaller ones.

Figure 11 presents the VCL package Authentication, which localizes part of
the authentication concern. Authentication extends package Users. State struc-
tures of a package are defined in the package’s structural diagram (SD); to-
gether they define the package’s state space. The SD of package Authentication
(Fig. 11(b)) says that a User of package Users2 is associated with a Session
through the relational-edge HasSession. In addition, the diagram includes an
invariant HasSessionIffLoggedIn, stating that each session must be associated
with a user that is logged-in [3]. Figure 11(c) gives the global behaviour diagram
of package Authentication with the global observe operation UserIsLoggedIn,
which says whether a user is logged-in or not; this is described using a VCL
assertion diagram (Fig. 11(d)).

Authentication operations (Login and Logout) are defined in VCL package
AuthenticationOps, which extends package Authentication (Fig. 12). Opera-
tions that perform state changes are defined in contract diagrams, composed of
a pre- and a post-condition. Figure 12(c) shows two contract diagrams for blob

2 A blob defines a set of objects.

14 Mauricio Alférez at al.

Authorisation

Authentication

AccessControl

(a) Package Diagram

UserLoggedInAndHasPerm

(b) Behaviour Diagram

UserLoggedInAndHasPerm

cu? : User

UserHasPerm

t? : Task

AccessControl

Authentication UserIsLoggedIn

(c) Assertion Diagram of opera-
tion UserLoggedInAndHasPerm

Fig. 13. VCL package Authorisation

CrisisWithAspects

AuthorisationCCCMSCrisisWithJI

LoggingCCCMS SessionMgmtCCCMS

(a) Package Diagram
AuthorisationOp

CrisisOp

LoggingOp

CrisisOp

All CrisisWithJI

SessionMgmtOp

Join

(b) Behaviour Diagram

↑CrisisOp

UserLoggedInAndHasPerm [t?/t!]

AuthorisationCCCMS

AuthorisationOp

cu? : User

(c) Join Contract AuthorisationOp

Fig. 14. VCL package CrisisWithAspects

User. Operation LoginOk says in the pre-condition that a login is successful if
the password given as input (pw?) matches the password of the user being au-
thenticated (u?.pw); post-condition says that the status of the user is loggedIn,
the number of passwords misses is 0, and the operation reports success (value
loginOk) to its environment (output r!). Operation Logout says that provided
the user status is logged in (pre-condition), then the user status is changed to
logged-out (post-condition).

Figure 13 presents package Authorisation, which puts two aspects together:
Authentication and AccessControl (see [3]). This package defines the observe
operation UserLoggedInAndHasPerm, which checks whether a user is logged
in and has the right permissions to execute some task; this puts together the
observe operations UserHasPerm of AccessControl and UserIsLoggedIn of
Authentication. VCL’s contracts and assertions are modules that can be com-
bined using logical operators.

AOMD at Different Levels of Abstraction 15

Aspects are composed using join extension, which is illustrated in Fig. 14.
In join extension, there is a contract that describes the joining behaviour of
an aspect (a join contract) that is composed with a group of operations placed
in a join-box. All operations of package CrisisWithJI are conjoined with join
contracts LoggingOp, SessionMgmtOp and AuthorisationOp. Join contract
AuthorisationOp specifies the extra behaviour of the Authorisation concern by
adding an extra pre-condition to all operations of package CrisisWithJI; this
specifies that the users executing operations of package CrisisWithJI must be
logged-in and have the required permissions to execute that task.

VCL is designed with a formal Z semantics and so it has the potential for
verification and global reasoning using theorem proving.

3 Discussion and Conclusion

Abstraction Localization Verification Localization
of concerns of reasoning

Features VML4RE n.a. n.a.
Use cases AoURN n.a. n.a.
Classes, sequence diagrams RAM. GrACE + -
Classes, state machines HiLA + -
Services, orchestration Adore rule based -
Mixins Protocol Modelling + +
Contracts VCL + -

Table 1. AOM approaches at different levels of abstraction

Our overview shows how aspect-orientation is used at different levels of abstrac-
tion. All approaches achieved localization of concerns and better traceability of
requirements in models.

Each abstraction level supports its own composition technique and this tech-
nique defines the possibilities of reasoning on models. The modelling techniques
that use the same composition techniques as programs, i.e. sequential composi-
tional composition, alternative, cycle and inheritance have an execution tree as
a result of model composition and need to use verification techniques for model
analysis. The modelling techniques that use the ideas of design by contract need
to rely on theorem proving for system analysis. In general, the localization of
reasoning on aspects cannot be achieved with these composition forms as it
cannot be achieved in programs [13]. The result of composition has to be an-
alyzed to ensure correctness of behaviour. The modelling techniques with the
mixins semantics and the CSP composition (used also in some programming
languages [13]) localize reasoning on aspects and objects, and the behaviour
of aspects survives in the result of composition. So, the choice of composition
semantics is the major challenge of the AOM research.

The models in the presented approaches show that using aspects in models
always increases fragmentation of models. This simplifies model construction,
but does not simplify model understanding. However, fragmentation of complex

16 Mauricio Alférez at al.

models of real size applications is unavoidable. The experience of the presented
approaches shows that any investment into tool support, allowing for search in
sets of model fragments and model simulation, improves model understanding
and transforms the fragmentation into an advantage.

References

1. M. Alférez, J. Santos, A. Moreira, A. Garcia, U. Kulesza, J. Araújo, and V. Amaral.
Multi-View Composition Language for Software Product Line Requirements. In
2nd Int. Conference on Software Language Engineering, Denver, USA, 2009.

2. N. Amálio and P. Kelsen. Modular Design by Contract Visually and Formally
using VCL. In VL/HCC 2010, 2010.

3. N. Amálio, P. Kelsen, Q. Ma, and C. Glodt. Using VCL as an Aspect-Oriented
Approach to Requirements Modelling. TAOSD, VII:151–199, 2010.

4. C.A.R.Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
5. S. Ciraci, W. K. Havinga, M. Aksit, C. M. Bockisch, and P. M. van den Broek.

A Graph-Based Aspect Interference Detection Approach for UML-Based Aspect-
Oriented Models. Technical Report TR-CTIT-09-39, Enschede, September 2009.

6. S. Clarke and R. J. Walker. Generic Aspect-Oriented Design with Theme/UML.
In Aspect-Oriented Software Development, pages 425–458. Addison-Wesley, 2005.

7. J. Kienzle, W. A. Abed, and J. Klein. Aspect-Oriented Multi-View Modeling. In
AOSD 2009, pages 87 – 98. ACM Press, March 2009.

8. J. Kienzle, N. Guelfi, and S. Mustafiz. Crisis Management Systems: a Case Study
for Aspect-Oriented Modeling. TAOSD, 7:1–22, 2010.

9. A. McNeile and E. Roubtsova. CSP Parallel Composition of Aspect Models. In
AOM’08, pages 13–18, 2008.

10. A. McNeile and N. Simons. Protocol Modelling. A Modelling Approach that Sup-
ports Reusable Behavioural Abstractions. SoSyM, 5(1):91–107, 2006.

11. S. Mosser, M. Blay-Fornarino, and M. Riveill. Web Services Orchestration Evolu-
tion: A Merge Process For Behavioral Evolution. In 2nd European Conference on
Software Architecture (ECSA’08). Springer LNCS, Sept. 2008.

12. G. Mussbacher and D. Amyot. Extending the User Requirements Notation with
Aspect-oriented Concepts. In SDL 2009, 2009.

13. R. Filman, T. Elrad, S. Clarke, M. Akşit. Aspect-Oriented Software Development.
Addison-Wesley, 2004.

14. P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N Degrees of Separa-
tion: Multi-Dimensional Separation of Concerns. In ICSE’99, 1999.

15. G. Zhang and M. Hölzl. HiLA: High-Level Aspects for UML State Machines. In
S. Ghosh, editor, Reports & Rev. Sel. Papers Wshs. at MoDELS09, volume 6002
of LNCS, pages 104–118. Springer, 2010.

