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Abstract

Web services have become a key technology for bioinformatics, since life science
databases are globally decentralized and the exponential increase in the amount
of available data demands for efficient systems without the need to transfer entire
databases for every step of an analysis. However, various incompatibilities among
database resources and analysis services make it difficult to connect and integrate
these into interoperable workflows. To resolve this situation, we invited domain
specialists from web service providers, client software developers, Open Bio* pro-
jects, the BioMoby project and researchers of emerging areas where a standard
exchange data format is not well established, for an intensive collaboration
entitled the BioHackathon 2008. The meeting was hosted by the Database Center
for Life Science (DBCLS) and Computational Biology Research Center (CBRC) and
was held in Tokyo from February 11th to 15th, 2008. In this report we highlight
the work accomplished and the common issues arisen from this event, including
the standardization of data exchange formats and services in the emerging fields
of glycoinformatics, biological interaction networks, text mining, and phyloinfor-
matics. In addition, common shared object development based on BioSQL, as well
as technical challenges in large data management, asynchronous services, and
security are discussed. Consequently, we improved interoperability of web services
in several fields, however, further cooperation among major database centers and
continued collaborative efforts between service providers and software developers
are still necessary for an effective advance in bioinformatics web service
technologies.
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Introduction
Web services are software systems designed to be manipulated remotely over a net-

work, often through web-based application programming interfaces (APIs). Through

web services, users can take advantage of the latest maintained data and computational

resources of remote service providers via a thin client. Web services are increasingly

being adopted in the field of bioinformatics as an effective means for data and software

access, especially in light of the rapid accumulation of large amounts of information for

the life sciences [1]. Most of the major bioinformatics centers, including the National

Center for Biotechnology Information (NCBI) in the US [2], the European Bioinfor-

matics Institute (EBI) in the UK [3], and the DNA Data Bank of Japan (DDBJ) [4]/

Kyoto Encyclopedia of Genes and Genomes (KEGG) [5]/Protein Data Bank Japan

(PDBj) [6] in Japan, provide web service interfaces to their databases and computa-

tional resources. Since the web service model is based on open standards, these ser-

vices are designed and expected to be interoperable [7]. However, many of the services

currently available use their own data type definitions and naming conventions, result-

ing in a lack of interoperability that makes it harder for end users and developers to

utilize these services for the creation of biological analysis workflows [8]. Moreover,

these services are often not easily usable from programs written in specific computer

languages, despite the language-independent specification of web services themselves.

Some of the main reasons for that are the use of functionality not supported in a parti-

cular web service software implementation, and the lack of compliance with the SOAP/

WSDL specification in a programming language’s web service libraries.

To overcome this situation and to assure interoperability between web services for

biology, standardization of exchangeable data types and adoption of compatible inter-

faces to each service are essential. As a pilot study, the BioMoby project has tried to

solve these problems by defining ontologies for data types and methods used in its ser-

vices, and by providing a centralized repository for service discovery. Additionally,

Moby client software exists to allow interconnections of multiple web services [9,10].

However, there are still many major service providers that are not yet covered by the

BioMoby framework and the Open Bio* libraries such as BioPerl [11], BioPython [12],

BioRuby [13], and BioJava [14] have independently implemented access modules for

some of these services [15].

To address these issues, we organized the BioHackathon 2008 [16], an international

workshop sponsored by two Japanese bioinformatics centers, the Database Center for

Life Science (DBCLS) [17] and the Computational Biology Research Center (CBRC)

[18], focusing on the standardization and interoperability of web services. The meeting

consisted of two parts: the first day was dedicated to keynote presentations and “open

space” style discussions to identify current problems and to decide on strategies for

possible solutions in each subgroup. The remaining four days were allotted for an

intensive software coding event. Standardization and interoperability of web services

were discussed by experts invited from four different domains: 1) web service provi-

ders, 2) Open Bio* developers, 3) workflow client developers, and 4) BioMoby project

developers. Providers of independent web services were encouraged to address standar-

dization and service integration, and were also asked to implement (and hence increase

the number of) SOAP-compliant services for analysis tools and databases. Open Bio*

developers focused on the utilization of as many bioinformatics web services as
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possible in four major computer languages (Perl, Python, Ruby, and Java), and collabo-

rated to create compatible data models for common biological objects such as

sequences and phylogenetic trees within the Open Bio* libraries. Workflow client

developers were challenged to create and execute bioinformatics workflows combining

various web service resources, and BioMoby project developers explored the best solu-

tion to define standard objects and ontologies in bioinformatics web services. In the

following sections, we review the outcomes of standardization and interoperability dis-

cussions as well as the future challenges and directions of web services for bioinfor-

matics that were highlighted in this workshop.

Web service technologies
Bioinformatics web services can be categorized into two major functional groups: data

access and analysis. Access to public database repositories is obviously fundamental to

bioinformatics research, and various systems have been developed for this purpose,

such as Entrez at NCBI, Sequence Retrieval System (SRS) and EB-eye at EBI [19], Dis-

tributed Annotation System (DAS) [20], All-round Retrieval for Sequence and Annota-

tion (ARSA) and getentry at DDBJ [21], DBGET at KEGG [22], and XML-based

Protein Structure Search Service (xPSSS) at PDBj [6]. These services provide program-

mable means for text-based keyword search and entry retrieval from their backend

databases, which mostly consist of static entries written either in semi-structured text

or XML. As each entry has a unique identifier it is generally assignable to a URI (Uni-

form Resource Identifiers).

The other group of services provides a variety of methods that require a certain

amount of computation by implementing various algorithms, and they sometimes have

complex input or output data structures. A typical example is a BLAST search, which

needs a nucleic or amino acid sequence, as well as numerous optional arguments in

order to find homologous sequences from a specified database using a dynamic pro-

gramming algorithm. Services in this group sometimes require a large amount of com-

putation time, including those providing certain functionalities of the European

Molecular Biology Open Software Suite (EMBOSS) [23], 3 D structural analysis of pro-

teins, and data mapping on biochemical pathways.

Historically, the term web services was associated with SOAP (Simple Object Access

Protocol), a protocol that transfers messages in a SOAP XML envelope between a ser-

ver and a client, usually over the Hypertext Transfer Protocol, HTTP [24]. SOAP ser-

vices have several accessibility advantages, including an open standard that is

independent from computer programming languages, and the use of the HTTP proto-

col which is usually not filtered by firewalls (SOAP services can therefore be accessed

even from institutions having very strict security policies for Internet access). Since all

SOAP messages are XML documents and the format of the messages are known in

advance from the service description (see below), it is possible to use XML binding to

seamlessly convert the messages to language-specific objects and thus avoid any cus-

tom-programmed parsing. XML binding is often leveraged by SOAP libraries to pro-

vide a programmatic interface to a web service similar to an object oriented API.

Operations provided by SOAP services can consume several arguments, thus a service

that requires a number of parameters can easily be utilized as an API, as if the method

were a function call for a local library of a given programming language.
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For the purpose of service description, SOAP services usually come with a Web Ser-

vices Description Language (WSDL) [25] file. A WSDL file is an XML formatted docu-

ment that is consumed by a SOAP/WSDL library to allow automatic construction of a

set of functions for the client program. In addition to the list of methods, WSDL con-

tains descriptions for each method, including the types and numbers of input argu-

ments as well as those of output data. WSDL is also capable of describing complex

data models that combine basic data types into nested data objects. In this way, SOAP

services can accept various kinds of complex biological objects, such as a protein

sequence entry accompanied by several annotation properties like the identifier,

description, and source organism.

Recently, another kind of web service model named REST (Representational State

Transfer) has rapidly gained popularity as an effective alternative approach to SOAP-

based web services [1]. REST is an approach whereby an online service is decomposed

into uniquely identifiable, stateless resources that can be called as a URL and return

the relevant data in any format. Typically, many bioinformatics database services return

entries in a text-based flatfile format upon REST calls. The strength of REST is in its

simplicity. Since REST is built on top of HTTP requests, there is no need for support-

ing libraries, unlike SOAP/WSDL services. RESTful URLs are also highly suitable for

permanent resource mapping, such as that between a database entry and a unique

URI; therefore, biological web services that provide data access should ideally be

exposed as simple REST services. On the other hand, REST is less appropriate for

services that require complex input with multiple numbers of parameters, or for time-

consuming and therefore asynchronous and stateful services. For those, SOAP/WSDL-

based services are still more suitable.

WSDL description per se is not enough for the immediate construction of biological

workflows as multiple cascading web services, because of inconsistent data types

defined by each service provider, sometimes even for essentially identical objects.

Therefore, in most cases output of one service cannot be passed to another service as

its input without appropriate conversion of data types or formats. Furthermore, ser-

vices should also be discoverable by the object models they share so they can be linked

in the construction of workflows. To this end, a centralized registry to discover appro-

priate services according to a given set of data types has become essential for web ser-

vice interoperability. The BioMoby project has pioneered this task by providing

MobyCentral, which serves as a central repository for BioMoby compatible web ser-

vices [9]. Service developers are encouraged to register their own service to the reposi-

tory with a description of the service using the BioMoby ontologies that classify the

semantic attributes of the method including the input and output data types. Metadata

and ontologies for service description and discovery discussed during the BioHacka-

thon are listed in Table 1.

To date, several applications that utilize BioMoby services have been developed, such

as Taverna [26], Seahawk [27], MOWserv [8], and G-language Genome Analysis Envir-

onment (G-language GAE) [28]. Taverna is a software tool developed under the

myGrid project [29], written in Java and equipped with a graphical user interface

(GUI) for the construction of workflows by interconnecting existing web services.

Users can start from an initial set of data pipelined to a service, where the input data

is remotely analyzed, resulting in an output of different data types. This output
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becomes the input for the subsequent analysis step, for which appropriate services that

consume this input data type can be looked up, for example, through MobyCentral.

Iteration of this procedure leads to cascading services forming a bioinformatics work-

flow, which can be repeatedly utilized with different datasets. The strength of Taverna

is in its support of many non-BioMoby services that can be utilized in concert with

BioMoby-based services, and its customizability by enabling small Java plug-ins to be

written, for example to connect two services requiring data format conversion.

Seahawk is another GUI software tool that invokes BioMoby services in a context-

dependent manner, for example, by selecting an amino acid sequence in a website to

use as input data, so that users can analyze data as they browse information on web

pages.

MOWserv [30] is a web application that provides interactive analysis in a web brow-

ser. A web interface is dynamically generated for each BioMoby object and compatible

service. MOWserv implements novel functionality to allow data persistence, user man-

agement, task scheduling and fault-tolerance capabilities. Therefore MOWserv allows

monitoring of long and CPU-intensive tasks and automating the execution of complex

workflows. Invocation of services can be traced in the web interface, including for later

reference. An interesting aspect of MOWserv is that it has extended the BioMoby

ontologies for objects and services through manual curation. This keeps ontologies

clean enough, so that it greatly simplifies interoperability between services and helps in

Table 1 Required metadata for service description and discovery

Required metadata for service description

author contact

authority identification

service version

software title or nature of algorithm (myGrid Task ontology)

software version

bandwidth and/or number of requests per minute

example input

example output and/or REGEXP to test output

some description of error-handling capacity

sync/async

nature of underlying data

organism

biological nature of data (DNA/RNA/Protein, experimental methods or platform)

input parameters and purpose of each

output parameters and purpose of each

usage/license restrictions

authentication (whether required or not)

usage statistics (as per service provider)

usage statistics (as per third party commentary)

protocol (Moby, SOAP, REST, GET, POST, etc.)

mirror servers

Ontologies that could provide the above metadata

myGrid Ontology provides many of the annotation information elements listed above

Moby Object provides an ontology of data-types

Moby Service similar to myGrid’s bioinformatics_task branch of the myGrid Ontology
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building workflows. Additionally, each service has been annotated with additional

metadata that is used to provide a consistent help system.

G-language GAE [31] is a Perl based genome analysis workbench that provides an

interactive command-line shell environment for analyses. During the BioHackathon

2008, the G-language Project team added support for BioMoby services that can be

seamlessly integrated with BioPerl and G-language GAE functions into genome analysis

workflows. Also, it became evident during the hackathon that there needs to be a stan-

dardized way to retrofit existing web services to BioMoby, and this work started on

this using the World Wide Web Consortiums’ new SAWSDL standard [32].

For many tasks custom programming is still needed, for example, to parse the results

obtained from web services for further extraction of data, and to integrate with local

analysis pipelines. One of these most time-saving ways to accomplish these tasks is by

using the Open Bio* libraries, such as BioPerl, BioPython, BioRuby and BioJava. These

libraries are being collaboratively developed as open source software by developers dis-

tributed all over the world, and they have the capability to manipulate numerous for-

mats used in bioinformatics databases and applications. The Open Bio Foundation [33]

has an important role in supporting these projects by providing hosting services for

the code repository, mailing lists, and web sites to the community.

SOAP and REST have improved accessibility of bioinformatics web services, but

standardization of metadata is required to increase their interoperability (Table 1).

Although BioMoby has been contributing to it, many major services still have not

adopted its formalities. This situation leaves end-users many cases where they have to

make a code to construct a workflow. Even though some GUI applications or libraries

of each programming language are provided to support it, there has not been a “total

solution,” yet (Table 2). Considering these circumstances, a web service to convert data

formats would be needed to alleviate the end-users’ tasks.

Standardization
Data types exchanged among bioinformatics web services should ideally follow com-

monly accepted standards in order to be interoperable without data format conversion.

However, in emerging areas of bioinformatics such as protein interaction networks,

glycoinformatics, phyloinformatics and text mining, several standard formats have been

independently developed, and in many cases data have to be merged and integrated

Table 2 Applications for bioinformatics web services

Project Description GUI Open
source

Programming
Language

BioMoby/
MobyCentral

Framework/repository of the interoperable web
services

- o Perl/Java

Taverna Workflow construction tool to connect web
services in a pipeline

o o Java (BeanShell script
to extend)

Seahawk Graphical interface to invoke appropriate BioMoby
services

o o Java

MOWserv Web application to handle BioMoby services in
the grid environment

o - -

G-language
GAE

Command line shell to access BioMoby and other
web services

- o Perl

Open Bio* Libraries including supports for bioinformatics
web services

- o Perl/Python/Ruby/Java

Katayama et al. Journal of Biomedical Semantics 2010, 1:8
http://www.jbiomedsem.com/content/1/1/8

Page 6 of 19



prior to analysis because they need to be collected from multiple repositories. More-

over, identifiers and controlled vocabularies employed in these separate repositories are

often different even for identical physical entities. To address these issues, we have

gathered a wide range of data providers in their respective areas to discuss obstacles

and implement solutions towards interoperable services.

Biological Interaction Network
In this hackathon representatives from three different service providers, the Database

of Interacting Proteins (DIP) [34], the Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING) [35]/the Search Tool for Interactions of Chemicals

(STITCH) [36], and IntAct [37,38], as well as representatives from two service consu-

mer projects, Cytoscape [39] and CellDesigner [40], jointly discussed the most promi-

nent issues. These included a standardized data format for interaction networks, a

common API for interaction web services, and an ontology for molecular interaction

data. The Systems Biology Markup Language (SBML) [41] or the Biological Pathways

Exchange (BioPAX) [42] formats can be used to represent molecular pathways, but the

Proteomics Standards Initiative-Molecular Interactions (PSI-MI) seems to be the stron-

ger with experimental and interaction data while not being as computationally complex

than the more flexible approach taken by BioPAX [43]. The group agreed to use PSI-

MI 2.5 [44] as the standard exchange format (both XML-based MIF and tabulated

MITAB), which is an existing format widely used in the biological interaction network

analysis community. This also solved the problem of defining an interaction data

ontology since PSI-MI is based on a well-defined ontology maintained by the Molecu-

lar Interaction workgroup of the HUPO Proteomics Standards Initiative (PSI) [45].

This allowed the design of a new protocol called PSICQUIC (PSI Common Query

Interface). It is a simple API to search and retrieve PSI-MI-based datasets using either

dedicated functions or a simple query language using the Apache Lucene syntax. In

order to cope with the large amount of returned information, all PSCICQUIC queries

can be paginated. A WSDL was created that can be used by the different resources to

provide molecular interaction data programmatically, and a proof-of-concept of this

approach was demonstrated. Based on this specification, ten PSICQUIC web services

[46] including IntAct and iRefIndex [47] has been developed since then.

As a test client for PSICQUIC the group used the Cytoscape visualization platform.

Since version 2.6, Cytoscape supports web services as external data sources. It is rela-

tively easy to implement a client in Cytoscape because the data exchange format is

based on PSI-MI (which is already supported by the software). The Cytoscape team is

implementing a universal client for PSICQUIC, supporting network data integration

and visualization from multiple data sources. The working group and the International

Molecular Exchange (IMEx) consortium [48] members continue to work on this pro-

ject and publish standard services along with the reference implementation of the

PSICQUIC client.

Glycoinformatics
The goal of the glycomics standards and interoperability group was to integrate emer-

ging bioinformatics tools for glycobiology into the larger bioinformatics world, primar-

ily by establishing a foundation for web services for the glycobiology community [49].
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Bioinformatics for glycobiology is in its infancy, and the tools for identifying glycan

structures, their biosynthetic mechanisms, and their biological functions are just being

developed. The three participants in this group have taken active roles in developing

these tools. A major obstacle in this endeavor is the difficulty in the non-ambiguous

digital representation of complex glycans. This is due, in part, to the branched nature

of glycans and the fact that the linkage between individual glycosyl residues can be

complex. Several different successful representation protocols have been developed,

including LINUCS (Linear Notation for Unique description of Carbohydrate

Sequences) [50], and KCF (KEGG Chemical Function) [51]. Recently, it became clear

that interoperability of the various databases and web services for glycobiology depends

on a data exchange standard, which led to the development of GLYDE-II as a colla-

borative effort [52]. GLYDE-II is now almost completely functional, providing a key

element for interoperability in glycoinformatics.

Further advancement in this area demands robust protocols for web service discovery

and composition of web processes. The BioHackathon was a unique opportunity to get

developers of glycoinformatics together to explore possibilities for this purpose. The

immediate goal of the group was to develop a prototype workflow that integrates web

services provided by the groups of the three represented glycoinformatics groups. This

served as a test-bed and model for future integration efforts. There was a debate as to

whether glycan structures should be integrated with the existing data types or to be

defined separately. There was also a question as to whether the formats for these data

types, such as the GLYDE-II XML formats, LINUCS and KCF, should be separate

from other biomolecule sequence formats. In the end, it was decided that it would be

easier to simply create a single GlycomicsObject data type in the BioMoby ontology

from which all other data types would be extended. Using this consensus ontology, the

three participants each provided web services that could communicate with one

another, resulting in a single workflow. This workflow consisted of an input glycan

structure in LINUCS format, and a search for glycans with similar structures in the

RINGS (Resource For Informatics Of Glycans) database returning structures as KEGG

GLYCAN IDs. The IDs were subsequently transformed to the corresponding GLYDE-

II format data, which passed to another web service to output the structure’s image in

SVG format.

Phyloinformatics
In the field of phyloinformatics, existing approaches to integrate data and services into

workflows are highly specific to the integration platform (e.g. CIPRES, BioPerl, Bio::

Phylo, Kepler) [53,54], and thus not immediately reusable as web services. In order to

achieve an interoperable standard for the construction of generic web services, an

agreement on the representation of the basic required objects for phylogenetic or phy-

logenomic analysis is necessary.

As a starting point, the group revisited the representation of phylogenetic trees and

annotation (or metadata) often associated with nodes, branches, or the tree as a whole.

For example, the branches of a phylogenetic tree can have length values or be asso-

ciated with metrics indicating support, such as bootstrap value or posterior probability.

Tree nodes might be associated with taxonomic information in the case of species

trees. Nodes in gene trees may in addition be linked to gene names or identifiers and
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other gene or genome annotation. Beyond the more standard metadata elements, there

is a large and increasing variety of data and annotation that is being associated with

phylogenetic tree nodes in research applications, ranging from biogeographical data

(latitude/longitude) to host species (for analyzing host/parasite co-evolution) to func-

tional gene attributes (GO terms, gene expression data). Compared with plain text for-

mats, the representation of such metadata according to an XML schema (as in

phyloXML [55] and NeXML [56]) enables strict syntax validation and provides a stan-

dard framework for the integration of ontologies to describe the meaning of data and

metadata, yet still allows the flexibility conferred by simple attribute/value pairs that

can accommodate an unlimited number of metadata elements including new elements

arising from new research approaches.

Tree reconciliation is another important class of problems for which standardization

is a prerequisite for preparing such operations for wider adoption in web services. Spe-

cifically, the tips in a phylogenetic tree depict Operational Taxonomic Units (OTUs),

which may stand for a species as represented by one or more specimens, or for one or

more molecular sequences which belong to genes of a specific taxon. Reconciling trees

involves matching tips in one tree to those in another where the trees may use differ-

ent OTUs, or different conventions for labeling OTUs. For example, to infer gene

duplication events from reconciling gene trees with species trees, the gene tree OTUs

must be matched with the tips in the species tree, which requires identification of the

canonical species to be unequivocal for both kinds of trees. A similar problem is

encountered for applications that need to find trees in a database of trees, for example

trees with nodes matching gene or species names, regardless of which kind of molecu-

lar sequence the trees of interest have been built from. A standardized encoding

mechanism for OTUs would aid greatly towards exposing and consuming such opera-

tions in a consistent and predictable manner as web services.

Analysis-based web services for phyloinformatics applications typically require multi-

ple types of data as input, some of which may be large, such as a distance or character

matrix and one or many trees in respective order. While there are exchange formats

that would allow marshalling of multiple data types in a single attachment or message

body (e.g. a chunk of NEXUS [57] or NeXML [56]), this is often not desirable in web

services due to network interruptions and bandwidth limits, and large parameter values

may also easily exceed the capacity of URL-based requests to a RESTful web service.

Alternatives that can solve some of these problems include passing parameters ‘by

reference’ as globally unique identifiers (such as LSIDs [58]) rather than by value, and

the accumulate-and-fire paradigm. The latter allows the calling agent to submit one

parameter value at a time to accumulate at the service provider until the parameter list

is complete, which would trigger execution of the service. As web services, and espe-

cially RESTful services are typically layered on top of the stateless HTTP protocol, sup-

porting this calling paradigm would require additional mechanisms to maintain state

between invocations. Hence, the conclusion reached at the BioHackathon was that

such combinations of data would best be submitted as multiple parameters in a single

request, but using the POST method of the HTTP protocol. A summary of input/out-

put data types for phyloinformatic web services is provided in Table 3. Based on these

considerations during the BioHackathon, a specification for RESTful phyloinformatic

web services was proposed following the meeting. This specification, called PhyloWS

Katayama et al. Journal of Biomedical Semantics 2010, 1:8
http://www.jbiomedsem.com/content/1/1/8

Page 9 of 19



[59], has been further developed at the Database Interoperability Hackathon [60] and

onwards. At its most basic compliance level, the specification provides a simple API

for assigning unique URLs to phylogenetic data objects (such as phylogenetic trees and

character state matrices) and for retrieving them in various serialization formats using

query string arguments. Prototype implementations of this compliance level have been

created for TimeTree [61] and for the Tree of Life Web Project [62]. In addition to

simple lookup of phylogenetic data objects, the PhyloWS specification also allows for

searching using Contextual Query Language [63], a specification developed by the US

Library of Congress that facilitates separation of search predicates from the underlying

data provider’s schema. Compliance at this level is provided by TreeBASE [64].

Text-mining
Natural Language Processing (NLP) technology has greatly improved in recent years,

and enables us to syntactically analyze huge amounts of text data, such as the entire

Table 3 Input and output data types relevant for phyloinformatic web services

Inputs - The input data types defined here do not imply pass-by-value, and could be passed as an
identifier:

One Tree exactly one tree, which might function as a query topology, as an input for
topology metric calculations, or as something for which associated data (matrices)
and metadata might be retrieved

Pair of Trees exactly two trees, for tree reconciliation (e.g. duplication inference) or for tree-to-
tree distance calculations

Set of Trees input for consensus calculations, or as query topologies

One OTU exactly one OTU for which associated data (trees or matrices that contain it) and
metadata might be retrieved

Pair of OTUs exactly two OTUs, as input for topological queries (MRCA) and calculations (patristic
distance)

Set of OTUs input for topological queries (MRCA) and for trees or matrices that contain them,
and metadata is retrieved

One Node input for tree traversal operations (parent, children) and for which metadata might
be retrieved

Pair of Nodes input for topological queries (MRCA) and calculations (patristic distance)

Set of Nodes input for topological queries (MRCA)

One Character exactly one character (matrix column) for which calculations are performed
(variability) and metadata is retrieved

Set of Characters input as filter predicate, to retrieve OTUs that contain recorded states for the
characters

One Character State
Sequence

input for which metadata is retrieved

Pair of Character State
Sequences

input for pairwise alignments, as input to calculate pairwise divergence

Set of Character State
Sequences

input for multiple sequence alignment

Character State Matrix input for inference (of one tree or set of trees), for calculations (average sequence
divergence) and metadata retrieval

Outputs - In addition to the mirroring the inputs described above, some ‘primitives’ may be required:

Int an integer, for things such as topology metrics (node counts) tree-to-tree distances
(in branch moves) node distances (in number of nodes in between), character state
counts, sequence divergence (substitution counts, site counts)

Float a floating point value, for topology metrics (balance, stemminess, resolution) tree-
to-tree distances (symmetric difference), patristic distance, sequence divergence

String for metadata, e.g. descriptions

Stringvector for metadata, e.g. a set of tags
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MEDLINE database. While useful biological knowledge can be extracted using this

technology, all-in-one software package for easy utilization of state-of-the-art algo-

rithms is still lacking. In addition, the existence of several similar applications with

their own specific functions can make it difficult to readily apply NLP in everyday

research. Typically, in order to extract biological knowledge from a large amount of

text, a series of NLP tools are sequentially applied as follows: 1) a sentence splitter out-

puts one sentence per line from a given text, 2) a Part-of-Speech (POS) tagger outputs

the set of pairs of POS tags and their corresponding word positions in the given sen-

tence, 3) a named entity recognizer (NER) outputs the set of pairs of a domain-specific

term such as a gene or protein name and their positions from the given POS-tagged

sentence, 4) a deep parser outputs a syntactic tree that describes syntactic dependen-

cies among words of the sentence from the POS with NER-tagged sentence, and

finally, 5) an information extraction (IE) tool indicates some biological knowledge such

as protein-protein-interactions. At each step, several research groups have developed

tools for their own needs, and interoperability has correspondingly suffered.

The Unstructured Information Management Architecture (UIMA) [65] is an open

framework developed to address this lack of interoperability. It was originally devel-

oped by IBM and is now an Apache project being widely used in the BioNLP commu-

nity. UIMA provides a specification and a reference implementation for tools to

transfer their inputs/outputs of unstructured data, such as text or images, easily and

seamlessly in order to construct a workflow. However, UIMA itself is not enough to

connect NLP tools in the field of biology and to realize the processes mentioned

above. The BioNLP field is defining more detailed data types for biology and develop-

ing corresponding tools [66,67].

U-Compare [68] is an integrated NLP platform based on UIMA, developed as a col-

laborative project in the BioNLP community; U-Compare provides what UIMA is

missing to be truly interoperable: It allows NLP users to easily combine and compare

the existing applications, aids usability through visualizers, and assists developers. U-

Compare also provides a large collection of ready-to-use interoperable tools and cor-

pora, some of which are web services, and in fact U-Compare itself is distributed as a

web application.

On the other hand, several components of NLP functions mentioned above are avail-

able independently over SOAP, such as NER, domain specific dictionary lookup, or

abbreviation searching, as can be seen in services like Whatizit [69] and TerMine [70].

There are also databases of text-mined information that provide web service APIs such

as iHOP [71], BioCreative [72] and Allie [73]. UIMA itself provides a SOAP interface

available for any UIMA component. While BioNLP tools seem to be readily linked

with other bioinformatics web services, the raw data generated by several BioNLP

tools, such as a syntactic parse tree in an XML format, tend to be complex data struc-

tures, which requires the recipient web service to parse and interpret the data. This

situation is essentially the same as for the local NLP services.

BioSQL
The results obtained from web services will inevitably need to be manipulated locally.

Ideally this can happen in a manner that can fully harness and is interoperable

between the Bio* libraries, such as BioPerl, BioRuby, BioPython, and BioJava. The Bio*
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libraries, however, are based on different and independently developed DNA sequence

models, and therefore there is no obvious or common way to share object types

among these projects. Although the International Nucleotide Sequence Databases

(INSD) defined a standard format for DNA sequence and its annotation [74], the for-

mat specification itself does not assure consistency and compatibility of data converted

to it.

In response to these needs, the Bio* projects have started to collaborate to utilize the

programming language-independent BioSQL data model [75] as the basis for an intero-

perable set of entities and operations defined on them for storing, querying, and

manipulating richly annotated biological sequence objects. The BioSQL project was

originally started in 2001 as a means to store and query a local copy of GenBank in

relational format, and has since evolved as a relational model and persistence interface

that aims to be interoperable between the Bio* libraries. The core model covers

sequences, sequence features, sequence annotation, and a reference taxonomy as well

as controlled vocabularies and ontologies. Though significant progress has been made,

full semantic interoperability has not yet been achieved due to differences in the way

the Bio* projects interpret and represent different kinds of sequence annotation and

sequence features. An agreed upon definition of the semantic mapping from common

rich sequence formats to a shared entity model such as BioSQL could be the corner-

stone for standardizing sequence and annotation semantics across the Bio* libraries,

and serve as a reference to many web service providers and consumers that use

sequence data.

The opportunities for cross-project collaboration during the BioHackathon allowed

the BioSQL group to put the finishing touches on the schema and release the 1.0 ver-

sion of BioSQL shortly after the event. Previously each of the major Bio* library pro-

jects had already developed bindings of their respective object models to the BioSQL

relational model. Some of them, in particular the bindings for BioJava and BioRuby,

were significantly improved at the event, in particular in regard to the ability to round-

trip sequences as truthfully as possible through load and retrieve cycles. Aside from

these activities, the group implemented a proof-of-concept BioSQL web service inter-

face powered by Enterprise Java Beans (EJBs). A version ready for use in a production

environment will need further optimizations that allow clients to retrieve only those

attributes of sequence or annotation objects that they actually need. For example, a cli-

ent retrieving a whole chromosome sequence entry that has numerous types of annota-

tion attached may only be interested in a small subsequence and correspondingly only

the annotation pertaining to that part, and possibly only certain types of annotation.

The mechanisms that facilitate this include lazy (on-demand) loading of data, and

implementation of call-backs.

Standardization promotes interoperability
We discussed data exchange formats in the fields of Interaction Network, Glycoinfor-

matics, and Phyloinformatics, respectively, and have begun to develop web services

using them (Table 4). These activities indicate that standardization of data exchange

formats facilitates development of related web services. In addition, it has an advantage

in enabling us to provide web services that have higher interoperability, and workflow

development will be eased.
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Technical challenges
In order for web services to be utilized in high-throughput bioinformatics research,

several common technical challenges exist, including management of large data (which

is especially demanding in light of the recent development of next-generation sequen-

cers), asynchronous execution, and data security. Below we summarize the discussions

regarding these challenges.

Managing large data
Transfer of large amounts of data through web services is problematic not only because of

performance issues, but also because long transmissions are more likely to be interrupted

by sporadic drops in network connectivity and similar transient problems. Aside from the

susceptibility to interruption, large data sets sent inside of a SOAP envelope (using Base64

encoding) must always be loaded into memory on both client and server side, and existing

web service client stacks often do not handle large documents in a robust manner. One

feasible workaround is to send many gigabytes of data as Message Transmission Optimiza-

tion Mechanism (MTOM) SOAP attachments [76]. MTOM is based on MIME, and can

be processed separately from the SOAP envelope. Another way is to avoid sending the

data itself through SOAP and pass it instead by reference; for example, through the use of

a URI (possibly LSID [58]) fetching the data is not only delayed until the last step before

execution, but it can be further optimized at the end of the service provider through a Bit-

Torrent peer-to-peer (P2P) download [77]. BioMoby has proposed a mechanism to allow

parts of the Moby data payload to be references, in order to achieve efficient management

of large data in their framework. To retain type safety and argument semantics, references

can be typed, and by advertising the types in the MobyCentral metadata registry they can

be made available to clients such as Taverna.

We note that creating a service which accepts or creates references is not actually

technically difficult; instead, the difficulty is in the advertisement of this capability, spe-

cifically with technologies such as WSDL that have no way to identify the actual data

types of the de-referenced input values. The challenges that any system must solve to

support reference passing are therefore: 1) acceptance of input data passed to the ser-

vice as a reference type, 2) allowing the client to specify the delivery type for any

results, 3) ideally a mechanism where a naive (non-reference aware) client is able to

use the service without modification and 4) some level of lifecycle management for

results held in a delivery location.

Asynchronous service invocation
Some web service transactions can potentially take a long time to complete, exceeding

the timeout threshold of intermediate communication protocols such as HTTP. It is

Table 4 Standardization of data exchange formats and web services

Domain Format Service Relevant technologies

Interaction
Network

PSI-MI PSICQUIC DIP, STRING, STITCH, IntAct, Cytoscape, Cell
Designer

Glycoinformatics GlycomicsObject BioMoby GLYDE-II, LINUCS, KEGG GLYCAN (KCF), RINGS

Phyloinformatics phyloXML, NeXML PhyloWS CIPRES, Kepler, BioPerl (Bio::Phylo), NEXUS

Text-mining U-Compare type
system

U-
Compare

UIMA, Whatizit, TerMine, iHOP, Allie

BioSQL BioSQL schema - BioPerl, BioRuby, BioPython, BioJava
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possible to overcome this problem by using an asynchronous invocation model, where

a single logical transaction is implemented as multiple, short-lived transport-level

transactions. As the web service by itself is stateless, a mechanism needs to be

employed to keep state across transactions. For this purpose, BioMoby uses the Web

Service Resource Framework (WSRF) [78], which is well supported by the WSRF::Lite

library in Perl. However, the library in Java has not been updated to the latest specifi-

cation at the time of the hackathon, and there is no implementation in Ruby, prevent-

ing the development of asynchronous BioMoby clients in this language. Furthermore,

WSRF is ratified by the Organization for the Advancement of Structured Information

Standards (OASIS) [79], and it provides only limited compatibility with WS-I [80]. Sev-

eral major service providers also have implemented or are in the process of imple-

menting asynchronous services in several different ways: DDBJ WABI [81], PDBj, INB

MOWserv, EBI-EMBOSS (SoapLab), EMBRACE NoE [82], and InstantSOAP [83].

Most of them provide custom solutions such as the polling model using a job identi-

fier, but the use of HTTP Cookies to maintain state, for example, cannot be utilized by

the Python library and even requires a client side implementation in other computer

languages.

The default solution for asynchronous services in the web service stack is to use call-

back operations. However, the majority of web services in the bioinformatics domain

are unidirectional, and it cannot be generally expected that a client would have the

possibility to expose an external service interface and to accept incoming calls from

the server. Therefore, a solution based on polling, ideally accompanied by descriptions

in WSDL, is more light-weight and suitable since it does not assume that a client also

exposes a service interface. One implementation of a polling-based approach is the

SoapLab asynchronous interface [84], which is based on the Life Science Analysis

Engine (LSAE) specification [85]. WSDL 2.0 also provides promising solutions, extend-

ing WSDL web service description capabilities to the REST world.

Security
To make web services secure, there are two different layers to be considered; one is the

transport security level and the other is the protection of shared resources. At the Bio-

Hackathon, requirements for the latter case were discussed to define the minimal

information that should be provided by the client in order for the service to know who

is trying to use it. Using such information, security services may enforce access control

policies at all levels to provide secure authentication and communication over an open

network, including: 1) resource protection by restricting the availability of software and

computational resources, 2) protection of restricted or proprietary data, and 3) sche-

duling for priority-based systems. An authorization service is desirable for dynamic

access control and security management over federated resources. An example imple-

mentation of such a management system can be seen in MyProxy [86], an open source

security credential (certificates and private keys) repository for grid computing environ-

ments. After registration the user connects to the grid service portal and creates dele-

gated credentials on a MyProxy repository, where delegation is achieved by the use of

so-called proxy credentials. The user then uses different services and workflows

through the portal, and when a service is called, the user is authenticated through the

proxy certificates managed by the MyProxy. Services can thus depend on a central
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authorization service to determine the access level, and services offering access to sen-

sitive data can require additional authorization decision requests to some other author-

ization service that implements the appropriate data protection policies. Minimal

information required for client authentication would include: 1) authorization levels of

a user according to UNIX-like permissions, 2) standardized interchange protocols and

formats, 3) authentication based on X509 digital certificates, a technology commonly

used for secure website connections (https), 4) certificates managed through a Public

Key Infrastructure (PKI), which deals with the secure creation, validation and revoca-

tion of certificates, 5) availability of all relevant web services in the case of running a

workflow, 6) profiling of offer deployment based on user rights or roles.

Workflow integration case study
To explore the possibilities and limitations of service integration, we constructed a

workflow in Taverna as a case study that pipelines web services from Japan-based pro-

viders (DDBJ, PDBj and KEGG) to annotate a protein sequence by homology and

structure (Figure 1). In this workflow, given an unannotated protein sequence, 1)

homologous sequences are searched using BLAST in the DDBJ DAD database, 2) cor-

responding annotations of the resulting homologs are retrieved from DDBJ, 3) when

only hypothetical proteins are found, the BLAST search is extended to PDB, 4) homo-

logs obtained in this way (both annotated or not) are sent to Structure-Navigator

(structure search) at PDBj, and finally, 5) annotations are retrieved from PDBj and

KEGG for entries with similar structures.

In the course of this evaluation, limitations in the current state of interoperability as

well as possible challenges became apparent. Firstly, while the SOAP services provided

Figure 1 Screenshot of Taverna workflow constructed as a case study that pipelines Japanese web
services (DDBJ, PDBj and KEGG) to annotate a protein sequence by homology and structure. Green
boxes indicate the actual web services, and beige and purple boxes are local BeanShell script and Java
shims that function as glue codes connecting the web services.
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by DDBJ and KEGG were readily usable, the required functionality in this workflow

was missing in the SOAP-based API of PDBj, so that the REST interface was alterna-

tively utilized after several necessary modifications. Therefore, although it is difficult to

immediately standardize the data types, web services that are available can still be use-

ful for users as long as they only require small modifications on the client side. Sec-

ondly, it turned out that Taverna at present does not support conditional branching,

so the workflow had to be branched unconditionally. Thirdly, in most cases the output

of one service could not be directly passed as the input of another service due to

incompatibility of the data types, and small pieces of glue code were necessary for

minor adjustments. Nonetheless, BeanShell scripts in Java provided by Taverna proved

effective and useful for such formatting. To avoid or minimize glue code programming,

it would be convenient if converters of data types were exposed themselves as a web

services.

After the hackathon, PDBj has begun to provide a required API and the first issue is

fixed. The second issue is essentially due to the Taverna software architecture/design,

and end-users need to wait for another workflow management environment to be

developed or write a code by themselves. To solve the third issue, DBCLS has started

to develop a new web service called TogoWS [87], which enables end-users to seam-

lessly utilize web services provided by several heterogeneous providers. In addition, it

provides a service to convert data formats to liberate end-users from making a glue-

code when they construct a workflow. In our view, use of RDF as a data exchange for-

mat among major services will make construction of workflows even easier.

Conclusions
Standardization efforts for exchange formats and service ontologies reached a certain

level of agreement in the areas of biological interactions, phyloinformatics, glycoinfor-

matics, and text-mining. However, there still remain several domains in biology where

the basic exchange data types are not yet approved and relevant web services are not

yet developed. Promoting standardization and interoperability efforts to these emerging

areas are essential for integrative analysis, hence appropriate guidelines to develop

standard web services are required. It is also very important that major bioinformatics

database centers cooperate with each other towards this end. Accordingly, continued

collaborative efforts among service providers, Open Bio* library developers, and work-

flow client developers are necessary for an effective advance in bioinformatics web ser-

vice technologies.

Standardization and integration by their nature require intensive collaboration and

coordination between independent projects and work groups. The gaps in the intero-

perability of web services therefore partly arise from the relative infrequency of oppor-

tunities for inter-project face-to-face discussion and collaboration. A highly intensive

collaborative meeting with participants who have a wide variety of expertise therefore

mitigates this problem, and a “hackathon” provides an effective and unique opportunity

to make this happen [88]. Further increasing the interoperability of bioinformatics web

services on a sustained basis would therefore likely benefit from regular BioHackathon

events in the future.
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