Nov. 2005, Vol.20, No.6, pp.758-762

J. Comput. Sci. & Technol.

Complexities of Homomorphism and Isomorphism for Definite Logic

Programs

Dao-Yun Xu! (¥4l =) and Zhi-Hong Tao? (P E4L)

! Department of Computer Science, Guizhou University, Guiyang 550025, P.R. China
2 Department of Computer Science, Peking University, Beijing 100871, P.R. China

E-mail: dyxu@gzu.edu.cn
Received December 27, 2004; revised April 8, 2005.
Abstract

it preserves complements and program clause.
pla) < ¢(a1),...

A homomorphism ¢ of logic programs from P to P’ is a function mapping Atoms(P) to Atoms(P') and
For each definite program clause a «+ ai,..
,p(as) is a program clauses of P’. A homomorphism ¢ is an isomorphism if ¢ is a bijection. In this

.,an € P it implies that

paper, the complexity of the decision problems on homomorphism and isomorphism for definite logic programs is studied.
It is shown that the homomorphism problem (HOM-LP) for definite logic programs is NP-complete, and the isomorphism
problem (ISO-LP) is equivalent to the graph isomorphism problem (GI).

Keywords

1 Introduction

A literal is a propositional variable or a negated
propositional variable. A clause C can be regarded as a
set of literals and a CNF formula F' as a set of clauses.
A clause C is a Horn clause if C' contains at most one
positive literal. A Horn clause C is definite if C contains
exactly one positive literal. A definite logic program is
a set of definite Horn clauses. For CNF formulas H and
F', a homomorphism ¢ from the formula H to F is a
mapping from lit(H) to lit(F) and it preserves comple-
ments and clauses, i.e., o(—L) = —¢(L) for L € lit(H),
and ¢(C) € F for every clause C' € H, where lit(-) is
the set of literals over variables occurring in the formula,
and ¢ is an isomorphism from the formula H to F if ¢
is a homomorphism from the formula H to F' and ¢ is
a bijection. Clearly, if the formula H is homomorphic
to the formula F, then the unsatisfiability of H implies
the unsatisfiability of F', and if the formula H is isomor-
phic to the formula F', then H and F' have the same
satisfiability.

We are interested in homomorphism and isomor-
phism of CNF formulas for motivations of construct-
ing some more efficient algorithms for satisfiability and
simplifying the proofs of unsatisfiable formulasl'=6!. Tn
[2], Krishnamurthy illustrated the power of symmetry
for propositional proof systems. He added to the res-
olution calculus the rule of symmetry and gave short
proofs for some hard formulas. For example, the pigeon
hole formulas have a proof of polynomial size in this
extended calculus. The rule of symmetry allows the fol-
lowing inference: if a clause C has been derived from
a set of clauses F' and ¢ is a permutation over the set
of variables occurring in F', then the clause ¢(C) can
be inferred as the next step in the derivation. Further
interesting results can be found in Urquhart’s paperl®!.

logic program, homomorphism, isomorphism, decision problem, complexity

We call a permutation of variables as variable renaming.
Instead of a permutation of variables we can make use
of a more general renaming, namely a so-called literal
renaming or isomorphism. That means we have a per-
mutation of variables and additionally variables can be
simultaneously replaced by their complements.

A deeper understanding of structures of CNF for-
mulas may help to improve DPLL algorithm[”. In the
splitting tree of the DPLL algorithm, if two formulas are
labelled at two different nodes, and one of the formulas
can be mapped to the other by an isomorphism, then we
can replace one of the formulas by the empty clause and
continue with the remaining formula. We have showed
that DPLL algorithm with such a symmetry rule has
short proofs for the pigeon hole formulas, which are a
class of hard formulas. It needs only a cubic number of
nodes®l. Szeider!® introduced homomorphisms of for-
mulas for simplifying the proof of the unsatisfiability of
formulas and investigated the core of formulas. A ho-
momorphism ¢ from H to F is called a retraction if
there exists a homomorphism v from F' to H such that
1o = Idp, where Idp is the identity function over F.
In this case we call F' as a retract of H. A formula F
is a core if every retract of F' is isomorphic to F. The
formula F' is a core of H if F' is a core and F' is a re-
tract of H. Szeider showed that the cores of formulas
are mutually isomorphic and the recognition of cores is
co- NP-completel®].

The definite logic programs, a class of special CNF
formulas, have some good structures. It is easy to prove
that for given definite logic programs P and @Q, if ¢ is
a homomorphism from P to Q with p(P) = Q and A is
the answer set of P, then ¢(A) is a subset of the answer
set of @), and further, if ¢ is an isomorphism from P
to @, then ¢(A) is the answer set of Q. Investigating
decision problems on homomorphism and isomorphism

Short Paper

The work is supported by the National Natural Science Foundation of China (Grant Nos. 60310213 and 60463001), the Special
Foundation for Improving Scientific Research Condition of Guizhou, and the Government Foundation of Guizhou Province.

Dao-Yun Xu et al.: Complexities of Homomorphism and Isomorphism for Definite Logic Programs 759

for definite logic programs is closely relevant to the con-
struction of some minimal unsatisfiable formulas and the
graph isomorphism problem (GI). A formula F' is min-
imal unsatisfiable if F' is unsatisfiable and F'\ {C} is
satisfiable for any clause C' € F. In [10], Papadimitriou
and Wolfe showed that for every formula F' one can con-
struct a formula f(F') in polynomial time such that

e F is satisfiable if and only if f(F') is satisfiable;

e F is unsatisfiable if and only if f(F') is minimal
unsatisfiable.

In other words, an unsatisfiable formula can be
transformed into a minimal unsatisfiable formula in
polynomial time.

The deficiency of a formula F' is defined as #cl(F') —
#var(F), ie., the difference between the number of
clauses and the number of variables of F', denoted by
d(F). It is well-known that F' is not minimal unsatisfi-
able if d(F) < 01'12l, So, we denote MU (k) as the set of
minimal unsatisfiable formulas with deficiency k& > 1. It
is well-known that Horn-MU, the set of minimal unsatis-
fiable Horn formulas, is a subset of MU (1)['?. Whether
or not a formula belongs to MU (k) for fixed k can be de-
cided in polynomial timel'3]. Tt has been proved in [14]
that for any k,t > 1 and any formula F' € MU(t), there
exists a formula H in MU(k) and a homomorphism ¢
from H to F such that ¢(H) = F. Moreover, for fixed
k,t > 1 the formula H and the homomorphism ¢ can
be constructed in polynomial time. For classes C; and
Cy of CNF formulas we consider the following problem.

Problem: HOM-(Cy,Cs)

Instance: Given formulas H € C; and F € Cy

Query: Does there exist a homomorphism ¢ from H
to F' such that o(H) = F?

H. Kleine Biining and Dao-Yun Xu have proved that
the problems HOM-(Horn-MU, Horn-MU) and HOM-
(MU(k), MU (t)) are NP-complete!®:15],

A graph G = (V,E) is isomorphic to a graph
G' = (V',E’) if there is a bijection ¢ from V to V'
such that for any u,v € V, (u,v) € E if and only
if (p(u),p(v)) € E'. The graph isomorphism prob-
lem for undirected graphs, which is denoted by GI, is
in NP. But it is an open problem whether GI is NP-
completel'®, A graph G = (V, E) is homomorphic to
a graph G’ = (V' E’) if there is a mapping ¢ from V'
to V' such that for any w,v € V, (u,v) € E implies
(¢(u),p(v)) € E'. The homomorphism on graphs is
closely relevant to the coloring of graphs. Let G and
K be undirected graphs. We say that G is K-coloring
if there exists a homomorphism from G to K. In [17],
Hell and Neset#il showed that if K is bipartite then the
K-coloring problem is solvable in polynomial time and if
K is not bipartite then the K-coloring problem is NP-
complete. K, denotes a complete graph with n ver-
tices. Clearly, K, is not bipartite for n > 3, whence
K, -coloring problem is NP-complete for n > 3.

A definite Horn clause (aV —ay V - -+ V —a,,) can be
written as a@ < ay, ..., a, (m > 0) which is called def-
inite program clause, where a,aq,...,a,, are atoms of

the language L. For a definite program clause C = a +
a1,...,0am, we call the atom a as head of C, denoted by
head(C), and the set {ay,...,a,} as body of C, denoted
by body(C). We denote Atoms(C) = {a,a1,...,am}. A
definite logic program P consists of clauses of form a +
at,...,am. We denote Atoms(P) = |Joep Atoms(C).

We write A <, B, if the class A is polynomially
many-one reducible to the class B. A =, B is an abbre-
viation for A <, B and B <, A.

In this paper, we investigate the following decision
problems.

Problem 1 (HOM-LP)

Instance: Given definite logic programs P and P’;

Query: Does there exist a homomorphism ¢ from P
to P’ such that p(P) = P'?

Problem 2 (ISO-LP)

Instance: Given definite logic programs P and P’;

Query: Does there exist an isomorphism ¢ from P
to P'?

By the NP-completeness of Kj3-coloring, we show
that the problem HOM-LP is NP-complete. By the
transformation between a logic program and a graph,
we show that the problem ISO-LP is as hard as GL

2 Homomorphism for LP

Graph theoretic terminology not defined here can
be found in [18]. For a graph G, we denote the set
of vertices (resp. edges) by V(G) (resp. E(G)). (u,v)
(resp. (u,v)) is an edge of an undirected (resp. directed)
graph. A graph G is simple if G contains no multi-edge
and self-loop. A graph G is called to be 3-colorable if the
set V(G) of vertices can be colored by at most three dif-
ferent colors and any two adjacent vertices are colored
by different colors. If G is 3-colorable and G contains a
complete subgraph K3, then G can be colored by exactly
three different colors. Clearly, a graph G is 3-colorable
if and only if G is homomorphic to K3. Please note that
the problem K3-coloring is NP-complete since K3 is not
bipartite.

Theorem 1.
complete.

Proof. Clearly, the problem HOM-LP is in NP. It
is known that the problem K3-coloring is NP-complete.
Thus, it suffices to prove that the problem Kj-coloring
can be reduced to the problem HOM-LP.

Let G = (V,E) be a simple connected undirected
graph, i.e., it is a connected undirected graph without
multi-edges and self-loops, where V' = {zy,...,z,} and
E = {(xy,2j,),.--,(zi,,2j,)}, and let K3 = (Vy, Ep)
be a complete graph with three vertices, where Vy =
{a,b,c} and Ey = {(a,b),(a,c),(b,c)} and {a,b,c} N
{z1,...,2,} = 0. We define the graph GT = G + K.
Clearly, G is 3-colorable if and only if the vertices of G
can be colored by exactly three different colors.

We can view vertices as variables (atoms) and trans-
form an edge (z;,z;) as a clause (—z; V —z;). We intro-

The problem HOM-LP is NP-

760

duce m+ 3 new variables y1, y2,ys, 21, . - - , 2m and define
the following definite logic programs:
Py={a+;b<+jcyy1 « a,b;ys < a,c; y3 < b, c}
and
P = {a <;b +;c 521 ¢5...5@, 5y1 < ab;
Yo < a,C; Y3 < b,c; 21 = Tiy 3 Tjyye e 32m xim,m]—m}.
For the sake of readability, we write P as the follow-
ing matrix:

Y1 -1

Y2 0 -1

S 0 0 —1

z1 0 0 0 —1

Zm 0 0 0 -1

a 1 1 0 0 0 —1

b 1 0 1 0 0 0 —1

c 0 1 1 0 0 0 0 —1

1 0 0 0 0 —1

Ty 0 0 0 0 -1

where the submatrix M (G) is the incidence matrix
of the graph G. The k-th column of M (G) is associ-
ated with the edge (z;,,z;,) of G for (1 < k < m). In
the above matrix, a column of the matrix corresponds
to a definite logic program clause. The sign —1 (resp.
1) means that the corresponding variable occurs in the
head (resp. body) of the definite logic program clause.
Clearly, P can be constructed in polynomial time on the
size of G.

Now we show that Gt can be colored by exactly
three different colors if and only if there exists a homo-
morphism ¢ from P to Py such that ¢(P) = P,.

(=) Assume that GT can be colored by exactly three
different colors. Then the vertices a,b, and ¢ must be
colored by different colors. Suppose that the vertex a
(resp. b and c¢) is colored by the color a_color (resp.
b_color and c_color). By the colors of vertices, the set
V ={x1,...,z,} is parted into three disjoint subsets as
follows:

Vo ={z € Vthe vertex z is colored by a_color},
Vp ={z € V| the vertex z is colored by b_color}
Ve ={z € V| the vertex z is colored by c_color}.

For every 1 < k < m, the vertices z;, and zj,
must be colored by different colors since (z;,,z;,) €
E(G). In other words, the vertices w;, and xj;, are
colored by one of the color groups {{a_color,b_color},
{a_color,c_color}, {b_color,c_color}} only.

We define a part mapping over the set of z-variables
ox: {z1,...,z,} — {a,b,c} as follows:

a, if ze€V,,
eox(x)=1< b, if eV,
¢, if zeV..

Please note that the edge (z;,,x;,) corresponds to a
definite program clause zj, < x;,,z;, (1 < k< m).

J. Comput. Sci. & Technol., Nov. 2005, Vol.20, No.6

By the mapping ¢x, the index set {1,...,m} of the
set {z1 < ®iy, %, ..., 2Zm < i, 2, } will be divided
into three disjoint subsets as follows:

Loy = {kl ox ({ziy, 25, }) = {a,b}},
Tac = {k| SDX({xikVTjk}) = {a,c}},
Iy = {k‘ SOX({xikﬂwjk}) = {b7 C}}
We define a part mapping over the set of z-variables ¢ :
{z1,---,2m} = {y1,y2,y3} as follows:
y1, if k€ I,
QDZ(ZIC) = Y2, if ke Iu.ca
Y3, if ke ITpe.

We now define a mapping ¢ from Atoms(P) to
Atoms(Py) by px and ¢z as follows:

rm, lf xr € {y17y27y37a7bac}’
ex(@)m, if ze{m,. .. o0},
(PZ(x)ma if z¢€ {21,--~;2m}'

p(z) =

It is easy to check that ¢ is a homomorphism from P to
Py and ¢(P) = Py.

(<) Conversely, assume that there exists a homo-
morphism ¢ from P to Py such that ¢(P) = P. By
the structures of Py and P, for every definite program
clause z, < x;,, 2, in P, we have that o(z < x;,, ;)
is one of {y1 ¢ a,b, y2 < a,c, y3 < b,c}. And we have
o(z) € {a,b,c} for every « € V = {x1,...,2,}, and
SO(Z) € {y17y2ay3} for every z € {Z17 te Zm}‘

We now define three subsets of V' as follows:

a},
b},
c}.

Clearly, the three sets form a partition of V. More-
over, for each edge (z;,,x;,) € E(G) and the set
Ve {Vo, W, Vo}, if ;, € V' then z;, ¢ V/, and if
zj, € V' then z; ¢ V'. Thus, the vertices x;, and x;,
are colored by different colors. Therefore, the graph G+
can be colored by exactly three different colors. O

Vo ={z € V| p(z)
Vi ={z € V] p(z)
Ve={z € V] p(z)

3 Isomorphism for LP

In this section, we consider complexity of the decision
problem on isomorphism for definite logic programs. We
will show that the problem is equivalent to the graph
isomorphism problem (GI).

Theorem 2. GI <, ISO-LP.

Proof. We can associate in polynomial time with any
simple undirected graph G a definite logic program Pg,
such that for every pair G; and G2 of graphs we have:
G is isomorphic to Gy if and only if Pg, is isomorphic
to PG2 .

Let G be a simple undirected graph with V(G) =
{z1,...,2,} and E(G) = {(zi,,zj,),.--, (@i, 2z,)}

Dao-Yun Xu et al.:

We can regard vertices as variables and transform an
edge (z;, ;) as a clause (—x; V —z;). By introducing m
new variables zq, ..., z,, we define a definite logic pro-
gram: Pg = {z1 <j...; 2y <321 < T4y, Tjp5 oo Zm
x;,., ;. }. Pg can be represented by the following ma-
trix:

Z1 -1

Zm -1

Ty, -1

where the submatrix M (G) is the incidence matrix of
the graph G. The k-th column of M(G) is associated
with the edge (z;,,z;,) of G for (1 < k < m). Clearly,
Pg can be constructed in polynomial time on the size of
G.

For given graphs G; (i = 1,2) with n; vertices and
m; edges, we can transform G; and G5 into definite logic
programs Pg, and Pg, respectively. By the structures
of Pg, and Pg,, we have

:{mgl) .. (1)<—z()<—x£1), gi),...,
et)

:{x§2)<— (2)<—z()<—x£1),m§?),...;
e)

Suppose ¢ is an isomorphism from G; to Gs. We
have ny = ny = n, my = my = m and a per-
mutation 7, over {1,2,...,n} and a permutation 7,

over {1,2,...,m}, such that ¢(m§)1)) = mf)() for each

1 <p<mn and (z (ql),:cg)) € E(G) if and only if
2 2

(z ()() mfrz)(jwz(q))) € E(Gs) for each 1 < g < m.

We now define an isomorphism ¢* from Pg, to Pg,
as follows:

« xffj(p), it @=af’ eV, all},
Y@= , (1)
Zn (q)" if x:zq E{z1 yeesZin

Conversely, suppose ¢ is an isomorphism from Pg, to
Pg,. We have ny = ng = n, m; = mg = m and a permu-
tation 7!, over {1,2,...,n} and a permutation 7 over

{1,2,...,m} such that for each 1 < p < n, QO(.CC;l)) _
:v:;(p) and for each 1 < g < m, W(zél)) _ Zﬁ)(q)‘ Hence,

the restriction of ¢ over {z1,...,z,} is an isomorphism
from G, to Gs. O

Theorem 3. ISO-LP <, GI.

Proof. We can associate in polynomial time with
any definite logic program P a directed graph Gp, such
that for every pair P; and P, of definite logic programs
we have: P is isomorphic to P, if and only if Gp, is
isomorphic to Gp,.

Complexities of Homomorphism and Isomorphism for Definite Logic Programs 761

Let P = {C4,...,Cy} be a definite logic program
over the variables x1,...,x, where the clauses are given
in an arbitrary but fixed order. We associate with P the
directed graph Gp = (Vp, Ep) as follows:

1) Vp = Vyar U Vi, where Vg = {21, ..
responding to variables in P), V = {ey,...
responding to clauses in P);

2) EP = Eloop U Ehead U Ebody7 where Eloop =
{{zr,zr) | 1 < k < n}, Ereaa = {{ci,zr) | 2x =
head(C;) for 1 < k < mand 1 < 7 < m}, and
Epody = {(zk,¢i) | 2 € body(C;) for 1 < k < n and
1< i< m}.

Please note that:

(a) we construct a self-loop at each vertex zj, to dis-
tinguish x; and c¢;;

(b) the edge (c;, zk) in Epeqq corresponds to the vari-
able xj occurring positively in the clauses Cj;

(c) the edge (z, ¢;) in Epoay corresponds to the vari-
able xj, occurring negatively in the clauses Cj;.

W.l.o.g., we assume that both P; and P, are def-
inite logic programs with Atoms(Py) = Atoms(Pz) =
{xla"'amn}) Pl {Cla"'acm} and P2 {Cia

.,C!l}. If otherwise, P; is not isomorphic to P,. Let
G p, and G p, be the associated directed graphs of P; and
P,, respectively, where V(Gpt) Vaar U V(t) (t=1,2),
Vc(ll) ={c1,...,¢m} and V ={c,...,c.}.

Suppose that @ is an 1somorphlsm from P, to Ps.
We have a permutation 7, over {1,...,n} and a permu-
tation 7. over {1,...,m} such that ¢(zx) = =, (&) for
1<k <nand p(C;) =CL ()forl i < m.

We now define an isomorphlsm Y from Gp, to Gp,
as follows:

,&n} (cor-
,em} (cor-

7$n}a

sCm}

Conversely, if there exists an isomorphism % from Gp,
and Gp,, then we have ¥(V,ar) = Viyar. Thus, the re-
striction ¥|v,,, is the desired isomorphism from P; to Ps,
since x, = head(C;) if and only if Gp, contains the edge
(ci,xR), and xp € body(C;) if and only if Gp, contains
the edge (zy,c;).

It is easy to prove that the isomorphism problems
for undirected graph and directed graph are equivalent.
Thus, we have that the problem ISO-LP is reducible
polynomially to GI. O

By Theorems 2 and 3, we have ISO-LP =, GI.

T k), if x =z € {xg,...

C;_C(i), ife=c¢; €{e,...

v - {

4 Conclusions

We investigated the transformations between a
definite logic program and a graph. By the NP-
completeness of the problem Kj-coloring, we proved
that the homomorphism problem for definite logic pro-
grams is NP-complete, and the isomorphism problem
for definite logic programs is equivalent to the graph
isomorphism problem (GI).

762

References

[1] Cook S A, Reckhow R A. The relative efficiency of proposi-
tional proof system. Journal of Symbolic Logic, 1979, 44(1):
36-50, 2001.

[2] Krishnamurthy B. Short proofs for tricky formulas. Acta In-
formatica, 1985, 22: 253-275.

[3] Szeider S. How to Prove Unsatisfiability by Homomorphisms.
Elsevier Preprint.

[4] Szeider S. NP-completeness of refutability by literal-once reso-
lution. Lecture Notes in Artificial Intelligence 2083, Springer
Verlag, Draft version, 2001.

[5] Urquhart A. The complexity of propositional proofs. The Bul-
letin of Symbolic Logic, 1995, 1(4): 425-467.

[6] Urquhart A. The symmetry rule in propositional logic. Dis-
crete Applied Mathematics, 1999, 96-97: 177-193.

[7] Davis M, Putnam H. A computing procedure for quantifica-
tion theory. Journal of the ACM, 1960, 7: 201-215.

[8] Daoyun Xu. On the complexity of renamings and homomor-
phisms for minimal unsatisfiable formulas [Dissertation]. Nan-
jing University, 2002.

[9] Szeider S. Homomorphisms of conjunctive normal forms. Dis-
crete Applied Mathematics, 2003, 130(2): 351-356.

[10] Papadimitriou C H, Wolfe D. The complexity of facets re-

solved. Journal of Computer and System Sciences, 1988,

[11]

12]

[13]

14]

[15]

[16]

(17]

(18]

J. Comput. Sci. & Technol., Nov. 2005, Vol.20, No.6

37(1): 2-13.

Aharoni R. Minimal non-two-colorable hypergraphs and mini-
mal unsatisfiable formulas. Journal of Combinatorial Theory,
Series A, 1996, 43(A): 196-204.

G Davydov, I Davydova, H Kleine Biining. An efficient algo-
rithm for the minimal unsatisfiability problem for a subclass
of CNF. Annals of Mathematics and Artificial Intelligence,
1998, 23(3-4): 229-245.

Fleischner H, Kullmann O, Szeider S. Polynomial-time recog-
nition of minimal unsatisfiable formulas with fixed clause-
variable difference. Theoretical Computer Science, 2002,
289(1): 503-516.

H Kleine Biining, Xishun Zhao. Polynomial time algorithms
for computing a representation for minimal unsatisfiable for-
mulas with fixed deficiency. Information Processing Letters,
2002, 84(3): 147-151.

H Kleine Biining, Daoyun Xu. The complexity of homomor-
phisms and renamings for minimal unsatisfiable formulas. An-
nals of Mathematics and Artificial Intelligence, 2005, 43(1-4):
113-127.

Kobler J, Schoning J, Toran J. The Graph Isomorphism Prob-
lem: Its Structural Complexity. Birkh&user Verlag, 1993.
Hell P, Nesetfil J. On the complexity of H-coloring. Journal
of Combinatorial Theory, Series B, 1990, 48: 92-110.
Bondy J A, Murty U S R. Graph Theory with Applications.
London: Macmillan, 1976.

