Jan. 2006, Vol.21, No.1, pp.66-71 J. Comput. Sci. & Technol.

A Workflow Process Mining Algorithm Based on Synchro-Net

Xing-Qi Huang (¥ E), Li-Fu Wang (F37.4F), Wen Zhao (X), Shi-Kun Zhang (3K {H2),
and Chong-Yi Yuan (GR4z X)

School of Electronics Engineering and Computer Science, Peking University, Beiyjing 100871, P.R. China
E-mail: {huangxq, wlf, owen, zsk}@cs.pku.edu.cn

Received April 25, 2005; revised October 24, 2005.

Abstract
mining aims at extracting information from event logs for capturing a business process in execution. In this paper a process

mining algorithm is proposed based on Synchro-Net which is a synchronization-based model of workflow logic and workflow
semantics. With this mining algorithm based on the model, problems such as invisible tasks and short-loops can be dealt

Sometimes historic information about workflow execution is needed to analyze business processes. Process

with at ease. A process mining example is presented to illustrate the algorithm, and the evaluation is also given.

Keywords
1 Introduction

A workflow is a partial or total automation of a busi-
ness process in which activities are executed by human
or machines according to certain predefined rules!.

Modern enterprises increasingly use workflow tech-
nology to design business processes, by means of man-
agement systems that provide mechanisms for formally
specifying the schema of execution, for simulating its
evolution under different conditions, for validating and
testing whether it behaves as expected, and for evalu-
ating the ability of a service to meet requirements with
respect to throughput times, service levels, and resource
utilization.

In an ideal situation, a well-defined business process
should be designed before its enactment is possible and
redesigned whenever changes take place. Sometimes, we
may need process mining to get the information about
workflow execution and find out how people and/or a
procedure really work. The process mining can also be
applied to delta analysis, which means comparing ac-
tual processes with predefined ones. Therefore, process
mining is of great importance.

In general, a workflow process model is the static de-
sign of a business process, while the workflow execution
is dynamic and decides which activities take place at
runtime. The definition of workflow process mining is
given in [1]: Given a workflow process log that records
the orders in which activities take place, we try to find
a workflow process model with some constrains, so that
all traces correspond to the instance of the business pro-
cess model. In fact, engine log is stored in database or
a plat file and what we need to do is to use data mining
technique to rediscover the process model from the log.

Considerable work has been done in this field. Aalst
uses a special kind of Petri net named WF-net to model
the control flow of a process[?l. Based on WF-net, Aalst
applies the a-algorithm to mining the process modell®4.
And later, some extended algorithms are proposed!® 8!,

workflow, process mining, workflow logic, workflow semantics, Petri net

Some other people also do some researches in this field,
Herbst and Karagiannis, as well as Greco, Guzzo, Manco
and Pontierim*1% to name but a few. However, there
still remain some problems to be adequately resolved,
such as invisible tasks, none free choices, one-length
loops, two-length loops and so on®!.

In this paper, we propose our process mining method
which is based on a synchronization-based model of
workflow logic and workflow semantics, named Synchro-
Net['], and present a mining algorithm to rediscover
the process model from workflow engine’s log. With the
workflow model and our process mining method, prob-
lems such as invisible tasks and one-length loops can be
dealt with at ease.

The rest of this paper is organized as follows. Section
2 introduces a synchronization-based model of workflow
logic and workflow semantics. In Section 3, a process
mining method based on the model is given and a con-
crete algorithm for constructing process model is pro-
posed. To illustrate the mining algorithm, an example
is given in Section 4, and the evaluation of the mining
method is also outlined. Finally, the conclusion and fu-
ture work are drawn in Section 5.

2 A Synchronization-Based Model of Workflow
Logic and Workflow Semantics

Firstly, let us take a general look at the Synchro-Net,
a synchronization-based model.

As mentioned in [11], a workflow is the formal
description of a business process, including workflow
logic which describes dependences (causal dependences
and/or organizational regulations) between tasks and
workflow semantics added on the logic to describe obvi-
ous contents. To check finished tasks according to the
workflow logic and to start the next task or select and
start the next task according to the workflow seman-
tics involve workflow management. Both workflow logic

Short paper

Supported by the National Natural Science Foundation of China under Grant No. 60473058.

Xing-Qi Huang et al.: A Workflow Process Mining Based on Synchro-Net 67

and semantics make up a process model, represented by
Synchro-Net.

In [11], the details of workflow logic and semantics
are explained rationally, and a formal model has been
presented. Next, let us explain some most important
points of the model and the formal definitions, so as to
make readers understand the workflow mining algorithm
based on the model described later.

2.1 Workflow Logic and Workflow Semantics

Workflow logic plays a decisive role in workflow. And
in fact, synchronization between tasks is the central con-
cern of workflow logic.

In general, workflow logic specifies how tasks of a
business process are ordered and disordered, i.e., how
they are synchronized. The order is derived from the ca-
sual dependences among tasks and from organizational
regulations. Besides, it covers all possible routes for all
possible cases allowed by the business in question, i.e., it
is case irrelevant. And workflow logic is not concerned
with the actual contents of a task execution. Further-
more, a task can be executed at most once for each run
of the logic. So, iterative routing should not appear to
be a logic feature. Thus, it is not concerned with case
attributes needed to make decisions on selective rout-
ings. Such attributes will be introduced into the logic
to form workflow semantics. The passing of control from
task to task is to be done automatically by workflow en-
gine since control-passing involves resource assignment
to tasks. As such, control-passing is a matter of im-
plementation which a task should not be involved in.
The duty of a task is confined to the business itself, not
including business management.

With the understanding of workflow logic, workflow
semantics may be described as follows.

Workflow semantics is case-relevant, and it defines
a unique route for each case based on case attributes.
It involves only those attributes that are needed to
make decisions on selective routing, while not concerned
with actual contents of tasks beyond decision-making at-
tributes. Workflow semantics does not deal with man-
agement affairs like resource assignments, time con-
straints and safety considerations. Performance analysis
is also beyond its scope. There is no need for returns
(redo) and skips to be introduced into a workflow seman-
tics model, for the duty of workflow semantics is only
to solve the conflict in the workflow logic and not con-
cerned with the quality of the task that has been done.
Whether to redo or not is the concern of workflow man-
agement, and the actual return to redoing some tasks
is judged by the workflow engine according to the deci-
sions by certain participants or management rules. Such
postponed ship and returns are called implicit jumps:
jump forward and jump backward, and are dealt with
by workflow engine at runtime.

2.2 Formal Descriptions

Now, we introduce the formal descriptions of the
synchronization-base model of workflow logic and se-
mantics.

Order Relations Among Tasks. All tasks in TASK
are ordered by the nature of the related business pro-
cess. So we have a relation <, < C TASK x TASK.

And we have a sub-relation < of <: < C < and
(t,t') e<=Vt" € TASK: —~(t <t" Nt <).

< is the next relation among tasks. For (T1,T5) €<
we say that T; is immediately before T, or T5 is im-
mediately after T;. We will define workflow logic by
specifying how T, T, and 17 < T, are synchronized.

Synchronizer. The synchronizer is the central con-
cern of workflow logic. Place p with a local structure
as shown in Fig.1 is called a synchronizer of pattern
(a1,a2) between Ty and T5, or simply a synchronizer. It
is called a selective synchronizer if a; < |T1|V az < |T3],
otherwise it is a decisive synchronizer. We write p =
(Tla Tg, (al, 02)).

f f

=T

pe=T2

n=a-d,

Im1 t ;112

Fig.1. Synchronizer.

In workflow logic, each transition can occur at most
once, and a synchronizer p = (T, T, (a1,az2)) can au-
thorize the post transitions to happen only if M(p) =
ay; X ag.

Workflow Logic. X = (P,T;F,K,W,M,) is called
the workflow logic of (TASK, <), or WF-logic for short,
if <= {(t,t)|t, ' € TAIp € P: t e *pAt € p*},
Vpe P: (*p=0= My(p) =1)A(*p # 0 = My(p) = 0),
and (T, <) = (TASK,<').

Workflow Semantics. A C_net('l] system X = (P,
V,T;F,K,W,R, W, Wr,My) is called a work-
flow semantics frame, ws_frame for short, if
(P,T;F,K,W, M,,) is a WF-logic, where M,, = My|p,
and Yo € V: Jw(v)| < 1A|r(v)] > 1AMy(v) =0, Vt € T
Mr = guard(t) + body(t).

Fig.2 is an example of the workflow logic and seman-
tics in applying for leave process.

In workflow logic and semantics model: P is the set
of places; V is the obvious variables of the B_form!'l
and variables in V are used in guard and body of tran-
sitions; T is the set of transitions and each transition in
T holds for a task of the business process; F' is the flow
relation between places and transitions, while in the net
it is the arc; K is the set of capacities of places in P; W
is the set of weight on each arc of F'; R is the reading
relation that denotes which transition in 7" reads which
variables in V; W,. is the writing relation that denotes
which transition in 7' writes which variables in V; My
is the set of guard and body of each transition in 7T'; and
My is the initial marking of each place in P.

68 J. Comput. Sci. & Technol., Jan. 2006, Vol.21, No.1

(O *S3 y
v:=D
7 O
y<10 Q
P
1y 3
Py to Py Py
12
=0
x> 15 s
y:=D

&

Fig.2. Example of workflow logic and semantics.

It should be noticed that both of the workflow logic
and workflow semantics together make up the workflow
process model. In this sight, we do mining and try to
rediscover a workflow logic and semantics model like
above.

Readers can refer to [11] for more details about
the synchronization-based model of workflow logic and
workflow semantics.

3 Process Mining

The log database stores the execution traces of work-
flow processes, such as when a transition starts and ends,
as well as each transition’s status, for example, the vari-
able’s value in guard and body of a transition. What we
need to do is to mine this information so as to rediscover
the workflow process model.

3.1 Some Assumptions Before Mining the

Model

Before presenting how to do mining, we need to put
forward some assumptions.

Firstly, in a more theoretical approach, we do not
focus on issues such as noise. We assume that there is
no noise and the log contains sufficient information.

Since our work is based on the synchronization-based
model of workflow process, in which synchronizer is the
central concern of the Petri net, our mining result is a
Petri net strictly following the workflow logic and se-
mantics model, in which loop or jump does not occur,
for the latter two things are the concerns of the work-
flow management, and the actual return to redoing some
tasks is judged by the workflow engine according to the
decisions by certain participants or management rules.

There is another assumption that the original pro-
cess model is well defined. Before the workflow pro-
cess is actually executed by workflow engine, usually it
has to be verified. That phase is called process model
verification. In process model verification, the model is
judged according to the rules in a rule base so as to make
sure whether it is well-constructed. The synchronizers in
our model make it clear that there neither exists such a

structure that the choice and synchronization are mixed
nor is synchronization without all its preceding transi-
tions. This makes our net structure meet the definition
of Aaslt’s SWF-netl*l. In [11], the author presents some
verification rules of the model. In a word, we assume
the original process model is well-constructed before we
try to rediscover the model.

3.2 Owur Mining Method

For our process mining, we need to rebuild a Petri net
(P,V,T;F,K,W,R,W,., My, My) from the log of work-
flow engine. T is recorded in the log database. Then,
we can easily get Mr, which is corresponding to T. Ob-
viously, we can come to the conclusion that the set of
variables appear in guards and bodies of transitions in
T, and that is V. Now we have T\, Mp and V, and R
and W,. can be concluded. My can be easily built be-
cause only the start place contains a token. What is left
for us is to mine P, F', K and W from the information
above.

Our process mining algorithm receives an event log
from the log database as input and returns to an ex-
tended Petri net named Synchro-Net!!l as output. It
can be seen as an extension of a-algorithm.

Let T be a set of tasks. Let o = t1ty...t,, € T a se-
quence over T' of length n. €, first, and last are defined
as follows:

1)t € o if and only if t € {t1,ta,...tn};

2) if n > 1, then first(o) = ¢; and last(o) = t,.

And next we define order relations between transi-
tions in the log. There are four types of order relations:

next, parallel, choice, and only possibility of next. Let
L be alog over T, and t,,t, € T

1) tq < tp: if there is a trace o = tytoty -+ t,, 0 € L,
to =t; and tp, = t;41;

2) tollty: if and only if ¢, < tp and t, > tp;

3) to#ty: if neither t, < t, nor tpt,;

4) t, < tp: if t, < tp, and not t, < t,.

The main idea of our algorithm is as follows.

1) Firstly, we define the first and the last transitions.

Xing-Qi Huang et al.: A Workflow Process Mining Based on Synchro-Net 69

2) Secondly, we construct the set of pairs of transitions
which have the < relation. Given a set X, consider sets of
transitions A and B, if for all ¢; included in A, ¢5 included in
B, the relation between t1 and t3 is t1 < t2, then put (A, B)
into Xp.

3) And then, we refine X1, by taking only the largest ele-
ments with respect to set inclusion. It assures that the tran-
sitions that have choice relation share the common place. Yz,
is the result set after refinement.

4) Between every pair of transitions, we build a place to
connect them, as well as the arc to connect the transitions
and places. But we should notice that the set of places built
here is only a temporal one, not the final one. Then, the
temporal arc set between transition and place is also con-
structed. For each A, B in YL, each t, in A and each ¢ in
B, makes t,; and t; connected by a place p;. Then make an
arc from t,; to p;, and an arc from p; to tp;. The temporal
sets of places and arcs are built for reduction of the Petri net
and computation of the weight of arc and of the capacity of
places after net reduction.

5) Add a start place before all the first transitions in the
set, and add end places behind every last transition. In our
net, there is only one start place while there are multiple end
places.

6) So far, a net has been constructed. However, there
is still something to do. One is that the net needs to be
reduced, for the places in our net need to be synchronizers
and the net must follow constrains of the logic and semantics
model. Here we refer to the reduction rules in [11]. It assures
that the mined net has exact amount of places. Each place
has a set of pre transitions and a set of post transitions. To
do the reduction, we do a forward scan and then a reverse
scan on the Petri net iteratively, until no more places can be
reduced.

4]

=

Fig.3. Reduction rules.

7) Later, the weight on the arc can be computed with the
information recorded in the fourth step and reduction rule;
meanwhile, we can get capacity of each synchronizer in the
same way.

8) Only with the logic, the process model is not com-
pleted. We need to add workflow semantics on the logic
layer. This means we should construct V., W, W,., R, Mr
and M.

9) Till now, the mining is over and the process model is
rediscovered.

3.3 Mining Algorithm

Let L be a workflow log, and o be a sequence of
transitions in L. The algorithm is as follows:

Mining Process (L):

W N =

T ={t € T|3oert € o},

. Thrst = {t € T|3oecrt = first(o)},

. Tlast = {t S T|E|o-eLt = last(cr)},

XL = {(A,B)|A CTLANB C1TL AVt, € AVty, € B,

te < A Vtaltaz S A, tal#taZ /\thl,tbz € B,
tv1#te2 },

.Yy ={(A,B) € X, |[V(A",B') € X,, ACA'AB

CB = (AaB) = (AI7BI)}a

Py = {p(ta,ts)ta € A, t, € BA(A,B) C Yi}

U{p(null, t;)| t; € Thrst } U {p(to, null)|to € Tiast }

. F' ={(t,p)|t € Tr, p € P At €ppre} U{((p,1)|t

€ Ty, p € PLAL € ppost} W = {(f,1)|f € F'}
K' ={(p,1)lp € P}

. (Pr,W, K) = Reduce_net(P,,W' K');

F={(t,p)|t € Tr, p € PL At € p.pre}
U{((p,t)|t € Tr, p € PL At € p.post}

. My = {(t, guard, body)|t € T}

V' = {v|3(t,guard, boday)emp v € guard V v € body}

W, ={(t,v)[t € Te,v € VATm,cmp v € my.body.l}
R={(t,v)|t € Tp,v €V ATm,emp v € my.body.r
Adm,emyp v € my.guard}

Mo = {(p, 1)|p € {p(null, t;)|t; € Thrst}U

{(,0)lp & {p(null, t;)|t; € Thrst}

10. Synchro-Net (L) = (P.,V,Tw,F,K,W, R, W,, Mr,

Mo).

Reduce_net (P;,W' K'):
Flag =1
While Flag! =0

Foreacht; €T,i=1,2,...,n
Priemp, = {plti{plt: € p.pre Ap € PL}
P} = {plp.pre = Up'.pre A p.post = Up'.post A p'
E Ptempi}
Pp, = Pp; Pp, = (Pp, , — Peemp,) UP;
Wiemp;, = { (fy,w)|f = (t,p') At € Up'.pre Ap'
!
€ Ptemp,} J {(f7w)|f = (p 7t) At
€ Up'.post Ap' € Piemp, }
Wi* = {(f:w)|f = (tap) /\p € Pz* ANw = Ew,
A" w') € Weemp, A f" € (t,0") A
€ Up'.pre Ap' € Premp, }
Wi =W" W =(W_1 —Wiemp,) UW/
Ki =K'; Ki = (K{_1 — {(p, k)|p € Piemp, })
U{(p,k)Ip € P*i' Nk =3k, (p,k) € Ki_y,p
c Ptempi}

Pl =P, ;W'=W,; K'=K,
Foreacht; € T,i=n,n—-1,...,1

Pemp, = {p|ti € p.post Ap € P[}

P} = { p|p.pre = Up'.pre A p.post = Up'.post A p’
€ Plemp,}

Pgn = £7 Pgi,l = (Pgl 7Pt’empi71)UPi*7’1

Wiemp, = { (f,w)|f = (t,p") At € Up'.pre Ap

! /
€ Plomp, } U{(fiw)lf = (P, t) At
€ Up'.post Ap' € Piopp. }

W = {(f,w)|f = (tp") Aw = 3w A(f’ w')
€ Wt'empl Af"e(t,p)Nt e Up .pre Ap
€ Pemp, }

Wy =W" W = (W] = Wiemp,—1) UWxi_y

Ky =K" K"y =K —{(p;k)lp € Piemp,—1}

U{(pak)|p € Pi*—Hl A k = Ek7(pak) € Kz{lv
pE Pt’empifl}

70

Pr = Pgl; Pi = PL; W =
K=K/ K =K
If Piemp, = O A Py, = 0 then Flag =0;
Return (Pr, W, K);

wi; W= Ww;

4 Example and Evaluation

To illustrate the process mining algorithm above,
we consider the engine log shown in Table 1. The
log contains information about four process instances
(1001~1004) and nine tasks (¢t; ~ tg). It should be
noticed that the information of guard and body in tran-
sitions and variables’ values is omitted in the table for
clarity. In fact, it is also kept in the log database.

Table 1. Event Log
PIProcessID TaskID PIProcessID TaskID

1001 T1 1004 T3
1002 T1 1002 T8
1003 T1 1003 T4
1001 T2 1003 T5
1002 T3 1004 T4
1002 T2 1001 T6
1001 T3 1002 T9
1003 T3 1004 T5
1001 T4 1003 T7
1004 T1 1003 T9
1003 T2 1001 T9
1002 T4 1004 T7
1001 T5 1004 T9
1004 T2

Based on the information and making some assump-
tions about the completeness of the log, we can deduce
a process model. In this example, following the min-
ing algorithm, we can deduce a process model presented
by Synchro-net (P, V, T, F, K, W, R,W,., M1, M), which
actually describes a business process of Land and Re-
source Bureau.

1. T = {t1,t2,t3,ta, ts, te, tr, ts, to}

2. Tﬁrst = {tl}
3. Tiast = {to}
4. X = {{ta}, {t2}), {ta}, {ta}), {22}, {ta}), {t},

{tad), ({tak,{ts}), ({tak,{tsh) ({ts}, {te}),
{ts}, {tr}), ({te}, {ta}), ({tr}, {to}), ({ts}, {ta})}

5.Vp = {({ta}, {t2}), ({ta}, {ts}), ({22}, {ta}), ({ts},
%t‘l:}};} <{t4}7{t57t8}>7 <{t5}7{t6at7}>7 <{t67t77t8}7
tg

O

51

VAN

13

J. Comput. Sci. & Technol., Jan. 2006, Vol.21, No.1

6. Pp = {(null, {t:}), ({t:},{t2}), ({ta}, {ta}), ({t=},
{t4}>7 <{t3}7{t4}>7 <{t4}a{t57t8}>a <{t5}7{t6at7}>7
({te, t7,ts},{to}), ({to}, null)} named pj ~ ps

7.F = {{po,t1), (t1,p1), (t1,p2), (P1,t2), (P2, ts),
<t27p2’>>7"'7<p{77t9>7 (tg,l’lull>}

8. P = {<nu117{t1}>a <{t1}1{t27t3}>1 <{t21t3}7{t4}>’
<{t4}7{t57t8}>7 <{t5}’{t67t7}>7 <{t6’t77t8}7{t9}>7

({to},null)} named po ~ pe

F = {(po,t1), (t1,p1), (p1,t2), (p1,t3), (t2,p2),
(t3,p2), (p2,ta), (t4,p3),...,(Ps,to), (o, pe)} named
fo~ fir

w = {<f0:1>a <f1:2>a <f3:1>a <f4:1>7 <f5:1>7 <.f6a2>7
<f771>7 <f871>7 <f971>7 <f1071>a <f1171>7 <f12a1>7

(f13,1), (f14,1), (f15,1), (f16,1), (f17,1)}
K = {<p0a1>7 <p172>7 <p2a2>7 <p3a1>7 <p4a1>7 <p511>v
(ps, 1)}

9. My = {(t1, null, null), (¢2, null, null), (t3, null, null),
(ta,true,xz := D), (ts,x,null), (t¢,y > 35, null),
(t7,y < 35, null), (ts, —@,null), (to, null, null)}

V =A{z,y}Wr = {(ts, z)}
R= {<t5,ﬂ:>7 <t67m>a <t67y>a <t77y>}
Mo = {(po, 1), (p1,0) (p2,0) - (ps, 0)}
10. Synchro-net = {P,V,Tr, F, K,W, R, W,., M, Mo}.

With our process mining method, problems such as
invisible tasks and one-length loops can be dealt with
at ease.

First, because there is no transition special for a
routing purpose as in WF-net, there will be no invisible
task in our original process model either. Therefore, the
problem with our process mining, that no invisible tasks
can be rediscovered, may not stand.

Second, there is no loop or return in the process
model as presented by Synchro-Net, for they are the
duty of workflow management, not of the workflow logic
and semantics. However, when the process is in execu-
tion, actual loops may occur, or a task in model may
extend to multiple copies to be executed by different
participants. Hence the log may contain a sequent of
transitions like o = tity---txty - - t,, which could be
called one-length loop. Obviously, with our model, the
one-length loop makes no impact on the ability of the
rediscovering. Both the original process model and the
mined one contain exactly one copy of t; which is dou-

Y>35

raY

)

Fig.4. Rediscovered process model.

Xing-Qi Huang et al.: A Workflow Process Mining Based on Synchro-Net

bled in execution. Consequently, the drawback of a-
algorithm that cannot be dealt within one-length loop
is solved in our work.

Our mining algorithm based on the model also has
some drawbacks. Since return is either the duty of work-
flow logic nor that of workflow semantics, as mentioned
above, the return of a task may occur in the execution
time. The log may contain a sequent of transitions like
o = titotstats - - t,, which could be called two-length
loop or jump. In this case, our algorithm cannot re-
discover the exactly same process model as the original
one.

5 Conclusion and Future Work

In this paper, a new process mining algorithm is
presented, which is based on a synchronization-based
model of workflow logic and semantics. Since tasks take
time, parallelism can be detected explicitly. According
to the relations of tasks in a complete log, a Petri net
can be constructed following the algorithm. Some of the
known problems such as invisible tasks and short-loops
are tackled by the algorithm together with the model.

As can be conceived, our future work will focus on
the following aspects. First of all, we will try to find
a way to solve the problems such as two-length loop or
jump in process mining. And then, we may plan to ap-
ply the mining algorithm in practice and try to reduce
the running time so as to improve the performance of
the mining procedure.

References
[1] Gianluigi Greco, Antonella Guzzo, Giuseppe Manco,
Domenico Sacca. Mining, reasoning on workflows. I[EEE

[2

(3]

(4]

[5

[6]

[7]

(8]

[9

[10]

[11]

71

Trans. Knowledge and Data Engineering, April 2005, 17(4):
519-534.

Wil van der Aalst, Kees Max van Hee. Workflow Manage-
ment: Models, Methods and Systems. Cambridge, Mas-
sachusetts, London: The MIT Press, 2002, pp.22-73.

A K A de Medeiros, W M P van der Aalst, A J M M Wei-
jters. Workflow Mining: Current Status and Future Direc-
tions. Meersman R et al. (eds.), CooplS/DOA/ODBASE
2003, LNCS 2888, Berlin, Heidelberg: Springer-Verlag, 2003,
pp.389-406.

‘W M P van der Aalst, A J M M Weijters, L Maruster. Work-
flow mining: Discovering process models from event logs.
IEEE Trans. Knowledge and Data Engineering, September
2004, 16(9): 1128-1142.

Laura Maruster, A J M M (Ton) Weijters, W M P van der
Aalst, Antal van den Bosch. Process mining: Discovering di-
rect successors in process logs. Computers in Industry, April
2004, 53(3): 231-244.

A J M M Weijters, W M P van der Aalst. Rediscovering
workflow models from event-based data using little thumb.
Integrated Computer-Aided Engineering, 2001, 10(2): 151-
162.

A K A de Medeiros, B F van Dongen, W M P van der Aalst, A
J M M Weijters. Process mining: Extending the a-algorithm
to mine short loops. BETA Working Paper Series, WP 113,
Eindhoven University of Technology, Eindhoven, 2004.

Lijie Wen, Jianmin Wang, Wil M P van der Aalst, Zhe Wang,
Jiaguang Sun. A novel approach for process mining based on
event types. Tsinghua University and Eindhoven University
of Technology, ISBN 90-386-2057-8 /ISSN 1386-9213, WP 118,
May 2004.

Gianluigi Greco, Antonella Guzzo, Giuseppe Manco,
Domenico Sacca. Mining frequent instances on workflow.
Workshop on ID& CBM, Hinterzarten, Germany, March 12,
2004, pp.209-221.
Gianluigi Greco,
Domenico Sacca.

Antonella Guzzo, Giuseppe Manco,
On the mining of complex workflow
schemas. In Proc. Italian Conference on Advanced Database
Systems — SEBDO0/. S. Margherita di Pula (CA), Italy, 2004,
pp-118-129.

Chongyi Yuan. Principals and Application of Petri Nets.
Publishing House of Electronics Industry, 2005, pp.213-258.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

