May 2006, Vol.21, No.3, pp.370-377 J. Comput. Sci. & Technol.

An Efficient VLSI Architecture for Motion Compensation of AVS HDTV

Decoder

Jun-Hao Zheng!® (¥{27%), Lei Deng? (Xf %), Peng Zhang!3 (3¢ fIf§), and Don Xie? (fiflE7R)
! Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, P.R. China

2 Department of Computer Science, Harbin Institute of Technology, Harbin 150001, P.R. China

3 Graduate University of Chinese Academy of Sciences, Beijing 100039, P.R. China

4 Grandview Semiconductor (Beijing) Corporation, Beijing 100089, P.R. China

E-mail: {jhzheng, ldeng, zhangpeng}@jdl.ac.cn; don.xie@grandviewsemi.com

Received October 31, 2005; revised March 13, 2006.

Abstract In the part 2 of advanced Audio Video coding Standard (AVS-P2), many efficient coding tools are adopted
in motion compensation, such as new motion vector prediction, symmetric matching, quarter precision interpolation, etc.
However, these new features enormously increase the computational complexity and the memory bandwidth requirement,
which make motion compensation a difficult component in the implementation of the AVS HDTV decoder. This paper
proposes an efficient motion compensation architecture for AVS-P2 video standard up to the Level 6.2 of the Jizhun Profile.
It has a macroblock-level pipelined structure which consists of MV predictor unit, reference fetch unit and pixel interpolation
unit. The proposed architecture exploits the parallelism in the AVS motion compensation algorithm to accelerate the speed of
operations and uses the dedicated design to optimize the memory access. And it has been integrated in a prototype chip which
is fabricated with TSMC 0.18-pum CMOS technology, and the experimental results show that this architecture can achieve the
real time AVS-P2 decoding for the HDTV 1080i (1920 x 1088 4 : 2 : 0 60field/s) video. The efficient design can work at the
frequency of 148.5MHz and the total gate count is about 225K.

Keywords motion compensation, AVS, VLSI architecture

1 Introduction

Chinese Audio Video Coding Standard ! is a new na-
tional standard for the coding of video and audio which is
known as AVS. The first version of AVS video standard!?
(AVS part 2, AVS-P2 in short) has been finished in Dec.
2003.

AVS-P2 defines a hybrid block-based video codec,
similar to prior standards such as MPEG-2[!, MPEG-
414 H.2635] and H.264[5]. The hybrid coding framework
combines inter-picture prediction with transform-based
coding of the prediction errors. However, AVS-P2[7 is an
application driven coding standard with well-optimized
techniques. By adopting many new coding features and
functionality, AVS-P2[8! achieves more than 50% coding
gains over MPEG-2 and similar performance with lower
cost compared with H.264.

The traditional block-based motion compensation
(MC) which is used to exploit the temporal redundancy
is improved in the AVS-P2 standard in order to achieve
higher coding efficiency. These new features in the MC
of AVS-P2 contains variable block sizes (16 x 16 down
to 8 X 8), new motion vector (MV) prediction based on
the vector triangle, multiple reference pictures (up to
2 frames or 4 fields), direct and symmetric prediction
modes, unrestricted MV and quarter precision interpola-
tion. All new features require higher calculation capacity
and more memory bandwidth which directly affect the
cost effectiveness of a commercial AVS-based video de-
coder solution. The amount of memory access!® for MC

is about 50% and the time consumed by pixel interpola-
tion processing is about 25% in the AVS-P2 decoder. So
MC becomes one of the most data intensive parts of the
AVS-P2 decoder, and a bottleneck of implementation.
The application target of AVS-P2 is high definition
digital broadcasting and high-density storage media. For
HDTV 1080i (1920 x 1088 4 : 2 : 0 60field/s) video, the
macroblock (MB) rate arrives to 244,800MB/s. If us-
ing the 150MHz system clock, the time budget is only
610 clock cycles assigned for the processing of one MB
which contains four luminance blocks and two chromi-
nance blocks. It is so tight that pure software implemen-
tation cannot provide real-time decoding if just depend-
ing on a simple or low-end CPU. So for the high-end ap-
plication such as Set Top Box etc., it is necessary for the
dedicated hardware accelerators. In [10-12] some kinds
of dedicated MC architectures had been proposed which
were based on prior specific video standards. However
AVS-P2 is a new standard, its own features associated
with the new requirements make the old designs unsuit-
able. For example, in order to find out more accurate
predicted MV, AVS-P2 specifies the complicated algo-
rithm using the spatial or temporal relative information,
as further described in Subsection 2.1. The involved mul-
tiplier and division operations increase significantly the
calculation complexity. While in other video standards
such as MPEG-4 and H.264, a simple scheme is applied.
The predicted MV is equal to the median value selected
from three decoded MVs of the spatial neighborhood.
In this paper, we propose an efficient VLSI architec-

Regular Paper

Supported by the National High Technology Development 863 Program of China under Grant No.2003AA171290.

Jun-Hao Zheng et al.: An Efficient VLSI Architecture for MC of AVS HDTV Decoder 371

ture for MC which contains a three-stage pipeline. The
hardware architecture is composed of MV predictor unit,
reference fetch unit and pixel interpolation unit. MV
predictor unit employs the pipelined structure to exploit
the parallelism for the AVS’s special median prediction
algorithm and uses the specific FIFO to smooth the mem-
ory accessing. An effective memory mapping scheme is
applied to helping reference fetch unit achieve the high
efficient memory access. Pixel interpolation unit adopts
the flexible transfer array and the dedicated ALU to per-
form the heavy calculation task.

The remainder of the paper is organized as follows.
The MC algorithm applied by AVS-P2 is described in
Section 2. Section 3 describes the details of the imple-
mented architecture of the MC subsystem. Simulation
results and VLSI implementation will be shown in Sec-
tion 4. Finally, we draw a conclusion in Section 5.

2 Motion Compensation Algorithm

The aim of MC is to exploit temporal redundancy to
obtain the higher coding performance. AVS-P2 adopts
the complicated but effective algorithms to improve the
efficiency of MC. In this section all functional blocks of
the MC algorithm will be explained.

2.1 Motion Vector Prediction

The prediction for an inter-coded MB is determined
by the set of MVs that are associated with the MB. The
MVs are generated through the vector difference (MVD)
plus the predicted vector (MVP). Since significant gains
in efficiency can be made by choosing a good prediction,
the process of MV prediction becomes quite complicated
in the AVS-P2 standard to find out more accurate MVP.

AVS-P2 uses either median or directional prediction
to build the MVP, depending on the block partition
mode and the availability of neighboring vectors. As
described above, AVS-P2 employs a novel median selec-
tor. The edge with median length is selected from the
vector triangle?!. The scaled MVs make up of the trian-
gle. For the scaling techniques, however, the complicated
arithmetic calculations are involved which increase sig-
nificantly the calculation complexity of the MV decoding
process.

Fig.1 describes the specific triangle which consists of
three edges VAB, VBC and VAC. The calculation process
for MVP value of current block E is listed as follows.

Step 1. Calculate the scaled MVA, MVB and MVC ac-
cording to the distance relationship between the neighboring
and current block using (1):

512

> X muX x BlkDistE + 256
wvx — BlkDistx A > PR

29 ’

(1)

where X denotes block A or B or C and mv denotes the
origin MVs for the neighboring block. Because multiple ref-
erence pictures can be supported by the AVS-P2 standard,
different block has different reference picture. BlkDist is used
to denote the distance differences between the two reference

pictures of the neighboring blocks. The vector with double
arrows is the scaled MV in Fig.1.

Origin (0, 0)

Fig.1. MV spatial prediction.
Step 2. Calculate the spatial distances between two scaled
MVs.
VAB = Abs(MVA_z — MVB_z) + Abs(MVA_y — MVB_y),
VBC = Abs(MVB_z — MVC_z) + Abs(MVB_y — MVC_y),
VAC = Abs(MVC_z — MVA_z) + Abs(MVC_y — MVA_y).

Step 3. The temporary parameter FMV is given by the
median of the corresponding spatial distances. The dashed
line denotes the FMV in Fig.1.

FMV = Median(VAB, VBC, VAC).

Step 4. Select the edge with median length and obtain the
MVP using the scaled value from the corresponding vertex.

if (FMV == VAB) MVP = MVC,
else if (FMV == VBC) MVP = MVA;
else MVP = MVB.

Three vertexes (see Fig.1) need to be calculated so as
to get only one MVP value which totally needs 3 divi-
sions, 12 multiplications and 15 additions. Furthermore,
AVS-P2 can support the 8 x 8 partition thus the maxi-
mum number of MVP value in one MB is 5 (three 8 x 8
blocks with unidirectional prediction and one 8 x 8 block
with spatial direct prediction). The special method needs
to be applied to accelerate the process which is described
further in the Subsection 3.2.1.

2.2 MC Prediction Mode

AVS-P2 can support rich MB coding schemes with
more than 30 kinds of MB types (mb_type) and tree
structure MB partition. The predictive modes include
intra, skip, forward, backward, spatial direct, temporal
direct and symmetric. AVS-P2 adopts its own particular
way to specify the symmetric and direct mode.

For the symmetric prediction, only forward MV is
transmitted for each partition. The backward MV is
conducted from the forward one by a symmetric rule as
shown in Fig.2.

For traditional bi-prediction picture, the coding per-
formance can be improved by joint estimation. But it is

372

very expensive to perform the joint estimation of forward
and backward MVs in reality. However, for symmetric
mode, joint estimation algorithm can be easily imple-
mented with the same solution as conventional forward
or backward searching. Besides, the symmetric mode can
efficiently save bits of coding the backward MV.

Forward Ref.

Current B Backward Ref.

Current MB

T

mvBw »

BlkDistFw BlkDistBw

\ 4

Fig.2. Symmetric mode.

For the direct prediction, both forward and backward
MVs are derived from the MV of the collocated inter-
coded block in the backward reference picture. Fig.3 il-
lustrates the process of the temporal direct mode.

Forward Ref 1 Forward Ref0 Current B Backward Ref.
[l’ﬂ\ Current MB Collocated MB
Trp
A Trb Trd .

\ 4

Fig.3. Temporal direct mode.

If the collocated block is intra-coded, AVS-P2 uses
the spatial prediction algorithm to generate the forward
and backward MVs respectively described in Subsection
2.1.

To support temporal direct MV prediction, all MVs
in the latest P-picture need to be stored in memory as
collocated MV buffer. However, for AVS-P2 10801 video
the total bits of all motion data in one picture is about
118KB. It is so huge that all data must be stored to the
external memory rather than the on-chip memory.

2.3 Pixel Interpolation

In the AVS-P2, MVs from the luminance component
are specified with quarter-sample accuracy. Interpola-

J. Comput. Sci. & Technol., May 2006, Vol.21, No.3

tion of the reference video pictures is necessary to gen-
erate the predicted MB using sub-sample precision MVs.
The position of the pixel is illustrated in Fig.4, where
the grey pixels are the integer pixels, light grey ones are
1/2-pixel and white ones for 1/4-pixel samples. 1/2-pixel
interpolation filter is a 4-tap filter (—1/8,5/8,5/8,—1/8).
For ordinary 1/4-pixel samples, a, ¢, d, f, i, k, n and ¢
in Fig.4, a 4-tap filter (1/16,7/16,7/16,1/16) is applied,
and four special 1/4-pixel samples, e, g, p and r, are fil-
tered by 2-tap bilinear filter (1/2, 1/2). A bilinear filter
is used to interpolate the chrominance pictures.

®©® 0 6w® O

© © ®» ®

@® @

O

® ®
@ @

@ @
@ @

® 06 6

® e O

@ @
® @ ®

€ o

© o© oe®me®e o o

Fig.4. Position of integer pixels, 1/2 pixels and 1/4 pixels.

The complexity of the required interpolation filter
varies depending on the phase specified by the MV. The
calculation for quarter pixel sample requires the value of
half pixel sample. The computation of N x N block needs
a (N +5) x (N +5) reference block as illustrated in Fig.4.

For a detailed description of the MC algorithm, see
the AVS-P2 standard?.

3 Implemented Architecture

Fig.5 shows the system-level architecture of AVS de-
coder. The whole decoding system runs in macroblock
level pipeline. The grey parts are responsible for motion
compensation which consists of three stages.

MYV predictor unit receives the motion data decoded
by VLD and generates the real MVs. Reference fetch
unit uses these MVs to fetch the integer pixel data from
the decoded picture buffer. The fractional pixel data are
calculated in the pixel interpolation unit and are trans-

Inverse Inverse Intra
/‘ quantizer transform prediction \\
Variable length Pixel . .
’ decoder reconstruction | Deblocking—s Pixel store —
Motion R Pixel
1 eference : 1xel
nggggtror ™ fetch [linterpolation|

Fig.5. System-level architecture of AVS decoder.

Jun-Hao Zheng et al.: An Efficient VLSI Architecture for MC of AVS HDTV Decoder 373

ferred as the result of the inter prediction to the pixel re-
con struction unit. In this section, the MC architecture
with efficient MB pipelining is proposed for HDTV spec-
ification (1920 x 1088 4 : 2 : 0 60field/s, the Jizhun profile
at the Level 6.2). The proposed architecture can support
all features for MC in the AVS-P2 standard. The de-
tailed analysis and system/module designs are described
in the following subsections.

3.1 MC Subsystem

From the algorithm analysis above, it is observed that
the MV predictor, the reference fetch and the pixel inter-
polation are separable because there is no feedback loop
among them. Therefore, a task-level interleaving scheme,
i.e., macroblock pipelining, is incorporated into our de-
sign to accelerate the processing speed. So a three-stage
MB pipelining is proposed as shown in Fig.6. All sub-
modules have one or two input FIFOs to buffer MB data
from the previous stage. Note that all logic blocks will
be described in the later subsection.

——{CMD FIFO] —
NS SHi
——B{DAT FIFO, Logic0 |»{E | [iZ
VLD o = <
Stage 1 = <
MV predictor !—I I_I — g
¥ ¥ == |2
[CMD FIFO3|| MV FIFO, | 3 =)
E a
I
Logicl L] EIRIE]
Stage 2 & e
Reference fetch I — .
Pixel FIFOy
Stage 3 Logic2
Pixel interpolation

|
v Reference data
Fig.6. MC top level block diagram.

MYV Predictor unit reads the side information from
Command FIFOq which is written by MIPS and the
MVD data from Data FIFO; written by VLD. The final
MYV and relative MB info are outputted to the MV FIFO,
and Command FIFOj3 respectively. Reference Fetch unit
reads the two FIFOs to generate the data address of DDR
SDRAM. The integer pixel block samples from the DDR
SDRAM are stored into the pixel FIFOs firstly. After the
post process for combining and padding, the aligned data
are sent into the pixel FIFOg in the pixel interpolation
unit. Finally the interpolated block is outputted as the
result of inter-prediction. The special MV FIFO; will be
explained in Subsection 3.2.2.

There are two DDR interfaces: one for the reference
motion information used by the direct mode in B-picture;
the other for the integer pixel samples. In the architec-
ture, 64-bit DDR SDRAM is adopted during the process
of the design and implementation in order to guarantee
the requirement of memory bandwidth.

3.2 MYV Predictor Unit

MV predictor unit is the first stage for the whole
MC subsystem which generates all motion data includ-
ing MVs and reference picture indices. Fig.7 shows the
implemented architecture of the MV predictor. The real
lines indicate the data flow, and the dash lines for control
messages.

r

eceneone »l Spatial prediction

VLD

'—l
|_DAT FIFO [
MIPS CMD FIFO
Main controller MVD Y "M A
g e v
Direct mode ISymmetric mode [
— FwMV
Temporal prediction v
T R Output]
BwMYV|__ controller

MV FIFO

DDR
SDRAM

Ref fetch
v

Fig.7. MV Predictor block diagram.

Main controller unit firstly parses the commands
sent by MIPS which contain the MB information such
as mb_type, the available flag for neighboring MBs
etc. Then the controller invokes the corresponding sub-
module working according to the current MB mode. For
example, if the controller finds the mb_type is equal to
the symmetric mode, the symmetric prediction module
will be activated through the handshake protocol.

Spatial and Temporal Predictions perform the spatial
and temporal MV predictive operations respectively. The
motion data from or to the external memory are stored
to the MV FIFO firstly to avoid trivial memory access-
ing requests. The MV data read from the MV FIFO are
used by the Direct Prediction as the reference motion
data. Output controller manages the final motion data
to output to the reference fetch module and maintains
the neighboring information buffer used by spatial pre-
diction. Besides, in order to support the variable predic-
tion blocksize, the MV predictor unit transfers all block
modes to the uniform 8 x 8 block which is the minimum
blocksize to simplify the operations in the downstream
stages.

Due to the limit space, only the spatial prediction and
MYV FIFO module are described in detail.

3.2.1 Pipelined Spatial Prediction

The algorithm is described in Subsection 2.1. The
pipelined architecture for the spatial MV prediction is
shown in Fig.8. It contains 5 stages for FMV calcula-
tion.

The 10b/9b division costs 2 cycles in our design. So
it takes only 15 cycles to finish all operations for the cal-

374

culation of one MVP including preparing the input data.
So for the worse case the total cycle is 15 x5 = 75 cycles.

S2 S3 S4 S5

=
(=
o

4
y

4
Y

9b
e
BIkDistX

ge

Mul 2
+256, >>9

13b
e

mvX
9b

>
BIkDistE

=
59
=
=
5
o
=

22b

[Mul1 | | Division | @

S3. Absolute value;
S4. Addition;
S5. Median value.

S1. Division and 1st multiplication;
S2. 2nd multiplication, successive
addition and shift;

Fig.8. Pipelined spatial prediction.

Because the scaling technique is also applied to the
direct and symmetric prediction in the AVS-P2 standard,
the similar pipelined structures are implemented in the
temporal prediction unit (see Fig.7).

3.2.2 MYV FIFO

Direct mode needs to use the reference MVs from the
backward reference picture. It is known that the mo-
tion data in a reference picture must be stored into the
DDR SDRAM according to the previous analysis. The
straightforward way is to access the memory once the de-
coder finds the direct prediction mode in the process of
current MB decoding. However, it is awful to request the
DDR controller frequently and irregularly. Because the
DDR controller has to serve multiple clients and guaran-
tee the schedulability of all critical tasks, i.e., the display
feeder, it is probable that the request for the motion data
in the current MB decoding period could not be acknowl-
edged in time and the irregular request will also impact
the services for other clients. So a dedicated FIFO is
built to improve the efficiency of the memory access. In
the P-picture decoding, the MV FIFO works as a cache.
Motion data are written into MV FIFO after each MB is
decoded. When MV FIFO is half full, the writing request
is sent out to inform DDR controller and then the data
are read from MV FIFO successively, at the same time,
sending them to DDR SDRAM through the DDR inter-
face. In the B-picture decoding, MV FIFO pre-fetches
motion data from the DDR SDRAM. The data flows are
shown in Fig.9.

Storing
Processin, DDR|® DDR
it IF [SDRAM
Loading
Processing DDR| O DDR
unit VF [€] SDRAM

Fig.9. Data flows for MV FIFO.

J. Comput. Sci. & Technol., May 2006, Vol.21, No.3
3.3 Reference Fetch Unit

Reference fetch unit is the middle stage of the MC
pipeline. It receives the MVs and control signals from
the MV predictor, and generates and sends the address
to DDR controller for fetching the reference pixels. The
architecture is designed and illustrated in Fig.10, which
consists of the main controller, data requesting, data
padding, data combination and some necessary FIFOs.

Control
o CMD FIFO Address &
. request R n >
: eques|
MV FIFO > generation a
NV I x =
= — =
[a)
Main controller 2
o a
1 e
v v 3
. Data 5
Data padding €= .mbination =

Pixel
v interpolation

Fig.10. Reference fetch block diagram.

In fact, the memory mapping of reconstructed pic-
ture is the key issue which determines whether the de-
coder can operate in real-time or not. In order to meet
the memory bandwidth requirement, an efficient map-
ping method is applied as described below. Besides, in
the AVS-P2 standard, MVs can point to any position
of the picture and even to outside of the picture. Thus
two additional functions, named data combination and
data padding units (see Fig.10) are employed to deal with
these exceptional cases.

3.3.1 Memory Mapping
The decoder system adopts the 64-bit DDR SDRAM

which can be considered as the logic memory with 128-
bit width, that is, it can read and write 16 pixels at one
cycle.

MC consumes the most part of the memory band-
width. The rate is more than 50% and even more in
the worse casel®). The memory addresses of the reference
blocks are unpredictable. A typical reference line with
21 pixels (N = 16) may require three 128-bit words. It
is probable that the three words are located in the differ-
ent banks, thus more cycles will be cost to activate the
additional bank.

So our main idea is to optimize the MC reference fetch
accessing and reduce the SDRAM operational overhead,
i.e., bank conflict. In our design, each 8 consecutive MBs
are put into one row of one bank to minimize the number
of bank conflict. Pixels in a line of the picture are located
at the successive address in the DDR SDRAM. Picture
data are organized and aligned well in the DDR SDRAM
by memory pages. The scheme reduces the probability
of changing the row address which can save many cycles
so as to fulfill the real-time MC requests.

Jun-Hao Zheng et al.: An Efficient VLSI Architecture for MC of AVS HDTV Decoder

3.3.2 Data Combination

The data combination unit is responsible for align-
ing fetched pixel data and combining them to form the
required reference line. Because the required reference
block from the DDR SDRAM is usually not aligned in
the boundary of the pixel array. An example is shown
in Fig.11, in which a 21-pixel reference line is required.
Firstly three successive memory words are fetched from
the DDR SDRAM, and then they are combined to form

the required 21-pixel reference line.

Word 2

\ \ /J /

Combined reg (21Bytes)

Word 1 (16B) Word 3

Fig.11. Data combination.
3.3.3 Data Padding

The data padding unit is used to obtain the pixels
which are outside of the picture in order to support the
unrestricted MV. According to the MV value, there ex-
ist five cases in the horizontal locations for the reference
block as shown in Fig.12.

Cases 1 and 2 need leftward boundary padding, while
cases 4 and 5 need rightward boundary padding. Case 3
does not need any padding. The vertical padding also has
five cases, and it is merged into the downstream module,
i.e., pixel interpolation. Since the reference block may be
outside of the reference picture, the combined reference
line in Subsection 3.3.2 may be not complete. Its outside
part is derived by horizontally padding the pixels on the
boundary of the picture.

Case 2 is illustrated as an example in Fig.12 where
the left part is out of the picture. Thus the left first pixel
of the combined reference line is duplicated to the outside
part of the required reference line.

All combined and padded reference lines are finally
written into the pixel FIFO of the pixel interpolation
module.

3.4 Pixel Interpolation Unit

Pixel interpolation unit takes up the major computa-
tional task of fractional sample interpolation. The inter-
polated results are the final results of the MC process.
The architecture is given in Fig.13. In order to meet
the computational requirement of the AVS-P2 HDTV de-
coder, this architecture is constructed by two interpola-

375

tion pipelines. Each pipeline has its own pixel register
array for data transferring and ALU for calculating the
fraction samples.

3.4.1 Data Feeder

The data feeder is responsible for feeding data into
the interpolation pipeline. The interpolation pipeline is
based on the minimal block size, i.e., 8 x 8 block size.
Thus the data feeder also needs to split other block into
8 x 8 blocks before transferring them into the pipeline.
An example for 8 x 16 block interpolation is illustrated
in Fig.14. The data feeder will send the first 13 rows
from the Oth to the 12th position into the data transfer.
Then the read pointer should be rolled backward to the
8th position. The second reference block from the 8th to
the 20th position is read successively for the lower 8 x 8
block.

By adjusting the read pointer of the input FIFO, the
data feeder unit also implements the vertical padding op-
eration, which just repeats reading the data from the
same position in the input FIFO.

3.4.2 Data Transfer Array

The pixel data transfer array has a register array
which has 13-row and 6-column registers used to reserve
the data for the current or later processing. The active
pixel register serves the current processing. And the pas-
sive pixel register stores the data for the later processing.
Active rectangle signed by the shadow area in Fig.15 has
6 x 6 active pixel registers used to hold the MB samples
for 1/2 or 1/4 interpolation calculation. The data trans-
fer in three ways: upwards, downwards and to the left to
obtain the high transfer efficiency.

In addition, a dedicated ALU are adopted to achieve
the high computational capability. The details of data
transfer array and ALU can be found in our previous
work[®].

4 Implementation Results

We have described the design in Verilog HDL at
the RTL level. According to the AVS-P2 verification
modell’®!, a C-code model of the MC subsystem is also
developed to generate simulation vectors. By testing with
12 HD (including 720p and 1080i) bitstreams, Synop-
sys VCS simulation results show that our Verilog code
is functionally identical with the MC functional model

specified by the AVS-P2 standard.

[z’ Pixel data line Pixel data Interpolated
— Integer array pixel
[2 - pixel " > Da;?r;r}'clll(l)Sfef > ALUD > Output Reference
Motion i | Data Input utpui pixels
\[E| | info. feeder [FIFO buffer >
Data transfer
> » ALUIL
T e arrayl >
RV VYY)

Fig.12. Data padding.

Fig.13. Pixel interpolation block diagram.

376

Y|

=

Fig.15. Data transfer array.

The validated Verilog code is synthesized using
TSMC 0.18-pm complementary metal oxide semiconduc-
tor (CMOS) cells library by the Synopsys Design Com-
piler. The circuit totally costs about 225K logic gates
exclusive the SRAM when the working frequency is set to
148.5MHz. The implemented architecture costs at most
580 cycles to perform the MC operations for each MB,
which is sufficient to realize the real-time MC process for
HDTV AVS-P2 bitstreams.

The gate count of each functional block is listed in
Table 1. Several SRAM modules worked as data FIFOs
are used in the MC subsystem as shown in Fig.6. The
total area for all SRAM is about 0.7mm?.

Table 1. Gate Count Profile

Functional block

Gate count

MYV predictor 71K
Reference fetch 54K
Pixel interpolation 100K
Total 225K

The proposed VLSI architecture for MC has been
integrated into our AVS-P2 decoder SoC. A prototype
chip named AVS101 was fabricated in Mar. 2005. The
AVS101 is an AVS-P2 decoder chip capable of full HD

real-time decoding. The core size is about 6.9 x 6.9mm?.

J. Comput. Sci. & Technol., May 2006, Vol.21, No.3

The chip photo is shown in Fig.16. AVS101 can fully
support for AVS-P2 stream up to the Jizhun profile at
the level 6.2 which is the highest level in the AVS-P2
standard.

Fig.16. AVS101 chip.

5 Conclusion

In this paper, we contribute an efficient VLSI architec-
ture for MC of the AVS-P2 standard. Firstly we analyze
the algorithm of the AVS-P2 MC to obtain the proper
parallelism information based on the new features.

Secondly, a macroblock-level pipeline is proposed.
Table 2 provides a list to describe our proposed solutions
which can meet the new requirements of the AVS-P2
standard. Our main idea is to use the three-stage oper-
ations to simplify the hardware design and the pipelined
structure to improve the processing performance. The
proposed VLSI architecture for MC contains a three-
stage pipeline which consists of MV predictor unit, ref-
erence fetch unit, and pixel interpolation unit. MV pre-
dictor unit employs the pipelined structure to accelerate
the process for the new median prediction algorithm and
uses the dedicated MV FIFO to smooth the memory ac-
cessing. Reference fetch unit implements the parallel be-
tween the memory request and the data post processing
to achieve the high efficient memory access through the
effective memory mapping scheme. Pixel interpolation
unit adopts the flexible data feeder unit to support vari-
able block partition. The efficient transfer array and the
dedicated ALU unit are integrated into the pixel inter-
polation unit to take up the heavy calculation task. In
addition, because the major framework of motion com-
pensation between H.264 and AVS-P2 are similar, the
efficient schemes provided by the proposed architectures
can also work for H.264 with the minor modifications to
deal with the differences between the two algorithms in
details.

Table 2. New Features vs. Proposed Solutions

New features

Proposed solutions

Owner unit

Variable block sizes

New complicated MV prediction
Multiple reference pictures

Direct and symmetric prediction mode
Unrestricted MV

Quarter precision interpolation

Transfer to the uniform block size
Pipelined structure

Specific address generator

Specific accelerator for MV calculation
Specific schemes for all situations
Efficient data transfer array

MYV predictor

MYV predictor
Reference fetch
MYV predictor
Reference fetch
Pixel interpolation

Jun-Hao Zheng et al.: An Efficient VLSI Architecture for MC of AVS HDTV Decoder

Finally, we give our implementation results. A proto-

type chip integrated the proposed MC architecture was
fabricated with TSMC 0.18-um CMOS process and is
capable of decoding 1920 x 1088 AVS-P2 interlace video

(4

:2: 060 field/s) in real time at the working frequency

of 148.5MHz. The gate count for MC subsystem is 225K.

References

(1]
2]

(3]

(4]

(5]
[6]

[7]

(8]

(9]

[10]

[11]

12]

(13]

AVS working group official website. http://www.avs.org.cn.
Information technology—Advanced coding of audio and
video—Part 2: Video. AVS-P2 Standard draft, Mar. 2005.
Information technology—General coding of moving picture and
associated audio information: Video. ITU Recommendation
H.262 | ISO/IEC 13818-2 (MPEG-2) Standard draft, Mar.
1994.

Information technology—Coding of audio-visual objects—Part
2: Visual. ISO/IEC 14496-2 (MPEG-4) Standard, Jul. 2001.
Video coding for low bitrate communication. ITU-T Recom-
mendation H.263 Standard, Nov. 1995.

Advanced video coding for generic audiovisual services. ITU-
T Recommendation H.264 | ISO/IEC 14496-10 AVC Standard
draft, Mar. 2005.

Liang Fan, Siwei Ma, Feng Wu. Overview of AVS video stan-
dard. In Proc. IEEE Int. Conf. Multimedia and Ezpo
(ICMEZ2004), Taipei, Jun. 2004, pp.423-426.

Lu Yu, Feng Yi, Jie Dong, Cixun Zhang. Overview of AVS-
Video: Tools, performance and complexity. In Proc. SPIE,
Visual Communications and Image Processing, Beijing, China,
Jul. 2005, pp.679-690.

Lei Deng, Wen Gao, Ming-Zeng Hu, Zhen-Zhou Ji. An efficient
VLSI implementation for MC interpolation of AVS standard.
In Advances in Multimedia Information Processing—PCM
2004: 5th Pacific Rim Conference on Multimedia, Tokyo,
Japan, Dec. 2004, pp.200-206.

He Wei-Feng, Mao Zhi-Gang, Wang Jin-Xiang, Wang Dao-
Fu. Design and implementation of motion compensation for
MPEG-4 AS profile streaming video decoding. In Proc. 5th
International Conference on ASIC, Beijing, China, Oct. 2003,
pp.942-945.

Lee J, Vijaykrishnan N, Irwin M J. High performance array
processor for video decoding. In Proc. IEEE Computer So-
ciety Annual Symposium on VLSI, Florida, USA, May 2005,
pp-28-33.

Chih-Da Chien, Ho-Chun Chen et al. A low-power motion
compensation IP core design for MPEG-1/2/4 video decod-
ing. In IEEE Int. Symp. Circuits and Systems (ISCAS2005),
Kobe, Japan, May 2005, pp.4542—-4545.

AVS1.0 part 2 reference software model. RM52r1, December
2004.

377

Jun-Hao Zheng received the B.S.
degree (June 2000) and M.S. degree
(June 2003) both from Huazhong Uni-
versity of Science and Technology,
Wuhan, China. Now he is work-
ing toward the Ph.D. degree in the
Dept. Computer Architecture, Insti-
tute of Computing Technology, Chi-
nese Academy of Sciences. His major
research interests include video coding

technology and associated VLSI architectures.

Lei Deng received his B.Sc. de-
gree in computer science, in 1998 from
Jilin University and M.Sc. degree in
computer science and engineering, in
2000 from Harbin Institute of technol-
ogy. He is pursuing his Ph.D. degree in
the Harbin Institute of Technology for
computer architecture and video signal
processing. His research interests lie
in the areas of computer architecture,

digital signal processing and video compression.

Peng Zhang received the B.S. de-
gree in electronic engineering and in-
formation science from University of
Science and Technology of China, in
2002, and the M.S. degree in computer
science from Institute of Computing
Technology, Chinese Academy of Sci-
ences, in 2004. At present, he is a
Ph.D. candidate in Institute of Com-
puting Technology, Chinese Academy

of Sciences. His research interests include video coding, com-
puter architecture, effective VLSI implementation and SoC

Don Xie received the M.S. and
the Ph.D. degrees in electrical engi-
neering from University of Rochester,
New York, USA in 1992 and 1994, re-
spectively. Now he is the engineering
director of the Grandview Semiconduc-
tor, Beijing, China. His research inter-
ests include the SoC design and embed-
ded system for consumer electronics.

