May 2006, Vol.21, No.3, pp.412—417 J. Comput. Sci. & Technol.

Agent-Oriented Probabilistic Logic Programming

Jie Wang! (£ §%), Shi-Er Ju? (#52J0,), and Chun-Nian Liu! (XI|#54E)

1 Key Laboratory of Multimedia and Intelligent Software, Beijing University of Technology, Beijing 100022, P.R. China
2 Institute of Logic and Cognition, Zhongshan University, Guangzhou 510275, P.R. China

E-mail: {wj, ai}@bjut.edu.cn; hssjse@zsu.edu.cn

Received May 6, 2005; revised March 10, 2006.

Abstract  Currently, agent-based computing is an active research area, and great efforts have been made towards the
agent-oriented programming both from a theoretical and practical view. However, most of them assume that there is no
uncertainty in agents’ mental state and their environment. In other words, under this assumption agent developers are just
allowed to specify how his agent acts when the agent is 100% sure about what is true/false. In this paper, this unrealistic
assumption is removed and a new agent-oriented probabilistic logic programming language is proposed, which can deal with
uncertain information about the world. The programming language is based on a combination of features of probabilistic

logic programming and imperative programming.

Keywords

1 Introduction

Agents are software or hardware systems that can
autonomously take actions based on changes in their
environment!! 3!, In the research community of agents,
the concept of BDI-agents!*! is nowadays a well-known
notion. A lot of theoretic and practical investigation
have been done in order to make this notion both better
understood and applicable to real-world problems. The
main characteristics of BDI-agents:

e agents have internal mental states: beliefs, desires,

plans, and intentions that may change over time;

e agents act pro-actively and reactively

e agents have reflective or meta-level reasoning ca-

pabilities.

Therefore, BDI agents can be regarded as goal-directed,
belief-transforming entities. That is, agents have a set of
goals and try to realize their goals by means-end reason-
ing or practical reasoning according to their belief and
plans. Their belief must be updated in the light of the
information about the current situation they find them-
selves in. Plans are recipes for achieving their goals, and
therefore play a crucial role in this reasoning.

In BDI model of agents, it is assumed that there is
no uncertainty in an agent’s mental states and its en-
vironment. In other words, an agent can act through
reasoning only with certain knowledge and information
(i.e., the agent is 100% sure about what is true/false in
the environment). However, in many real-world scenar-
ios, agents developers have to face a partial, uncertain
knowledge/information about the environment®5-7],
For example, when an image processing agent is asked
to identify a military object, it might return the fact
that the object could be a civil one with probability
60%—70% and military one with probability 30%—40%.

In order to deal with such uncertainties, this paper

agent, uncertainty, probabilistic logic programming, agent-oriented programming

extends BDI-agents by using our method of probabilis-
tic logic programming!8l. We chose probability theory
as foundation to express uncertainty in the agents. This
is because although during the recent decades many
schemes for managing uncertainty have been proposed,
the most sound one is still probability theory. More-
over, in our setting the uncertainties are estimated by
interval probability rather than point probabilities. This
is because of two reasons. Firstly, probability intervals
are a kind of generalization of point probabilities and so
more flexible. Secondly, the knowledge stored in agents
are usually from the human users!®1% and they like to
estimate probabilities using intervals more than using
pointsl®:11],

More precisely, we extend Hindriks et al.’s logic pro-
gramming language for BDI-agents['?l to an interval
probabilistic logic programming language for uncertain
BDI-agents. Our interval probabilistic logic language
consists of three components: belief updating, goal up-
dating, and practical reasoning under uncertainty. That
is, our language can express uncertain beliefs and goals,
update uncertain beliefs and goals, and perform uncer-
tain practical reasonings.

The rest of the paper is organized as follows. In
Sections 2-4 we discuss functions of the programming
language for the belief updating, goal revision and prac-
tical reasoning under uncertainty. Section 5 presents
the basic framework of uncertain BDI logic program-
ming language for agents and presents a program using
this language. Section 6 discusses the related work. The
final section concludes the paper.

2 Uncertain Beliefs

The uncertain beliefs of an agent can be expressed

Short Paper

This work is supported by the National Natural Science Foundation of China under Grand No. 60496322 and the Chinese Ministry

of Education under Grand No.05JZD720.4001.



Jie Wang et al.: Agent-Oriented Probabilistic Logic Programming

in first-order formulae from a language L consisting of
a finite set of predicate symbols and finite set of vari-
able symbols. Let p be a sub-interval of [0, 1], the ba-
sic elements of the language are given by a signature
X = (P, F,C,A,p), where P is a set of predicate sym-
bols, F' is a set of function symbols, C' is a set of con-
stants, A is a set of action symbols, p is a set of proba-
bilistic constants. Terms and atoms of a language L are
defined as usual from a signature X and an infinite set
of variables T'Var. The notion of variable substitution,
unifier, most general unifier, and variant are defined as
usual'3l. The set of atoms is denoted by At.

A p-atom is an expression of the kind E/p with an
atom FE and interval probability p which is called the
probability that E occurs. When p = [1,1] (abbreviated
for E/1), it means E is true; when p = [0,0] (abbrevi-
ated for E/0), it means E is false; and when p C (0,1),
it means E probably occurs. Intuitively, E/p means
that the probability of E being true lies in the interval
p. The set of p-atoms is denoted by p-At.

After giving the notation, we turn to discuss how
to calculate the uncertainties of one belief that is the
combination of a number of uncertain sub-beliefs. The
probability that a conjunction of two events is true de-
pends on not only the probabilities of the individual
conjuncts, but also the dependencies between the events
denoted by these conjuncts!'¥. The notion of a prob-
abilistic conjunction strategy defined below!®! captures
these different ways of computing probabilities via Def-
inition 2.

Definition 1. A probabilistic conjunction strategy is
a mapping @ which maps a pair of probability intervals
to a single probability interval satisfying the following
arioms:

1. Bottomline: [ly,u1] ® [la,u2] < [min(ly,ls),

min(uy,us)], where [z,y] < [2,y] &z < 2'Ay <
y's

2. ignorance: [l1,u1] ® [l2, us] C [max (0,1, + 1y —1),

min(u, u2)];

3. identity: [la,us] = [1,1] = [l1,u1] ® [l2,us] =

[ll ) ul]a
4. annthilator: [l1,u1] ® [0,0] = [0,0];
5. commutativity: [l1,u1]®[la, us] = [l2, u2| ®[l1, u1];

]

6. associativity: ([l1,u1] ® [l2, us]) ® [ls, us] = [l1, u1]

®([l2, u2] ® [l3,us));

7. monotonicity: [la,us] < [l3,us] = [l1,u1] ® [l2, us)

< [l wa] @ (U3, us).

Intuitively, [l1,u1] and [l2, us] are intervals in which
the probabilities of events e; and e; are located, and
[l1,u1] ® [l2,us] returns a probability range for the con-
currence of both these events. Now we use an example
to explain the above setting further.

FEzample1l. A Robot called Orville wandering around
in a two-dimensional grid world. There are only military
and civil objects. Sometimes Robot Orville cannot make
sure whether an object is a military one or not. That is,
it has uncertain belief. The basic predicates which de-

413

scribe this world are: Orville(z,y)/1 for “Robot Orville
is at coordinates (z,y)”; military(z,y)/p1 for “there is a
military-object at coordinates (z,y) with the probabil-
ity of p1”; and cwil(z,y)/pa for “there is a civil-object
at coordinates (x,y) with the probability of p3”. So in
the probability space, military(z,y)/p1 also means that
there is a civil-object at coordinates (z, y) with the prob-
ability of 1—p;. Similarly, civil(z,y)/p2 also means that
there is a military-object at coordinates (z,y) with the
probability of 1 — ps.

In this example, Orville has uncertain knowledge of
its environment. That is, although it knows its own po-
sition at any moment and the location of objects, Orville
has only uncertain belief in the nature of the objects.

Ezample 2. The Robot Orville can take the follow-
ing basic actions: west for moving west, east for moving
east, morth for moving north, south for moving south,
and destroy for destroying an object that is believed to
be a military object with the probability p. The goal
of Orville is to destroy the military objects. The goal
is denoted by the predicate destroy-military, which is a
user-defined predicate and is in fact given below as a
usual procedure definition.

3 Goals and Action Selection

In our setting, agents try to achieve two basic kinds
of goals: goals to do some actions and goals to achieve
some mental state of affairs. These two basic kinds can
compose different complex ones in the following manner.

Definition 2. Let Y. = (P,F,C, A, ) be a signa-
ture, and Guar an infinite set of goal variables ranging
over goals. The set of goals LY is inductively defined by:

1. A C LY, called basic actions;

2. p-At C L9, in particular, At C L9,

3. if p € L, then ¢? € L9;

4. Guar C L9;

5. 4f 1, my € LY, then my;me,m + Mo, mi||me € LY.

Basic action a € A, achievement goal ¢ € p-At, and
test goal ? are the basic goals in our language. Basic
actions are updating operators on the uncertain belief
base of an agent. Achievement goal ¢ is a goal to achieve
a state where ¢ holds. Test goal ¢? is to check the un-
certain belief base to see whether or not ¢ holds.

It is also possible to build more complex composi-
tions of basic goals, by using the program to construct
sequential composition(;), nondeterministic choice(+),
and parallel composition(||). Assume m; and 7y are p-
atom Ej/p; and Es/py, respectively. This allows us
to specify conjunctive goals 71||m2 by means of paral-
lel composition and nondeterministic goals 7 + 75 by
means of nondeterministic choice.

With respect to the nondeterministic action selec-
tion, we present an utility-theory-based approach for
modeling. That is, an agent that chooses, for exam-
ple, A1 or As, based on not only the uncertain beliefs
of the objects but also the utility of performing the ac-
tion in pursuing the goal. For example, when an agent



414

decides to destroy an object, it considers not only the
probability that the object is a military one, but also
the benefit (loss) for destroying the object.

First, we briefly review the basic idea of utility
theory['¥. Utility is a measure of a decision maker’s
preferences on courses of action under uncertainty and
risk (i.e., uncertainty with known probabilities). Utility
theory assumes that the decision maker always chooses
the alternative for which the expected value of the util-
ity (expected utility) is maximum. In this paper, we can
use utility function to determine what actions the agent
should take — the ones with the highest expected util-
ity (if more than one actions have the highest expected
utility the agent will choose one randomly).

Usually, the probability is a real point in [0,1]. So,
it is easy to calculating the expected utility of each ac-
tion. But in our setting, the uncertainties of agents’
beliefs are represented by means of probability intervals
(see Table 1). Thus, we have to extend utility theory to
deal with the setting of interval probability.

Table 1. Utility of Action in Uncertain States
state b1 e bn

state’s probability  [I1,u1] [ln, un]
action A, w1 S Uln
action A, Um1 Umn

Now we present a new approach to calculating the
interval that the expected utility falls in when the prob-
abilities of an agent beliefs are intervals. We use oper-
ation on interval numbers!'® to calculate the maximum
and minimum values of expected utility of decision ac-
tion A; (i =1,2,...,m). Let m = [a,b] and 1 = [e,d],
then

m+n=[a+c,b+d, (1)
—n=la—d,b— ¢, (2)
m x n = [min{ac, be, ad, bd}, max{ac, be, ad, bd}],

(3)
(a>0, ¢>0). (4)

RN

i/ = [a/d, b/,

Thus, by (1) and (3), according to Table 1 the inter-
val expected utility of decision action A; is:

B(A;) =Y uijlly,uy] = [Zuijljvzuijuj}-
Jj=1 j=1 j=1

That is, the interval that FE(A;) falls into is
[>5_1@ijci, 25—y aijd;]. In order to choose an action
that has the biggest expected utility, we give the follow-
ing method to compare two actions’ interval expected
utilities.

Definition 3. Action A; is more preferable than A;

(5)

if
O(UE(Ai) + (1 — a)lE(Al) 2 O[UE(A]-) + (1 — a)lE(Aj),

where a is a predetermined constant (called optimistic
coefficient), Ip(a,) and uga,) (k = i,j) are the lower

J. Comput. Sci. & Technol., May 2006, Vol.21, No.3

and upper boundaries that the action Ay ’s expected util-
ity falls into respectively.

Intuitively, this definition means the greater the
boundaries the better the action.

Now we examine a simple example using interval ex-
pected utility.

Ezample 3. Orville intends to destroy a military ob-
ject. However, for some reasons, it cannot make sure
whether or not the nearest object to its current position
is a military one. The utility value and probabilities for
each state and action are as shown in Table 2.

Table 2. Utility of Action in Uncertain Object

Object Military Civil
Object’s probability  [0.3,0.6] [0.4,0.7]
action Aj: destroy 3 2
action Asz: look for 1 3

Thus, by (5), we can obtain the interval expected
utilities of each decision action:

E(A1) = [1.7,3.2], E(A) =[1.5,2.7].

Then, given a = 0.5, by Definition 3, we get

auE(Al) + (1 — a)lE(Al) 2 auE(Az) =+ (1 — oz)lE(Az).

That is, action A; is more preferable than action As.
So, Oriville will move to the object and then destroy it.
However, clearly if Oriville is a traditional agent (given
a = 0.2), action Ap will be more preferable.

In addition, the programming language for BDI-
agent includes variables which range over goals. These
variables can be used for several purposes. The first one
is for reflective reasoning. This will become clear in the
next section, where these variables are also allowed in
the head of practical reasoning rules. The second is for
communication. For example, an agent might receive in
a goal variable a request to establish some goals.

4 TUncertain Practical Reasoning Rules

To achieve its goals an agent has to find the means
for achieving them, and sometimes may have to revise
its goals. This kind of reasoning is called practical rea-
soning. To perform this type of reasoning an agent uses
a set of practical reasoning rules.

Definition 4. Let ¢ € L,m,n’ € L9. Then an un-
certain practical reasoning rule is in the form of

7+ o|n’ € LP,

where
e 7 is called the head of the rule;
e 7' is called the body of the rule;
e ¢ is called the guard of the rule;
e the free variables in the head of a rule are called
global variables of the rule; and



Jie Wang et al.: Agent-Oriented Probabilistic Logic Programming 415

e all variables in a rule that are not global are called

local variables.

Since ¢, 7, ' are p-atoms with uncertainty, practi-
cal reasoning rules can actually be used to carry out the
reasoning under uncertainty. The guard can be used to
specify the context in which the rule might be applied
and to retrieve data from the set of uncertain beliefs.

The function of a practical reasoning rule is two-fold.
First, a rule can specify the means to achieve a partic-
ular goal under uncertainty. In this case, uncertainty is
involved in both of the head and the body (a plan) of
the rule. A plan rule encodes the procedural knowledge
of an agent. Thus, an agent has a plan library it con-
sults to find the means to execute actions and perform
a kind of dynamic planning during execution.

Ezample 4. Robot Orville wants to destroy military
objects in its world. A plan rule which specifies how to
achieve this goal is the following;:

destroy-military

+— Oruville(zg,yo) N nearest(zo, yo, x,y)
| Orville(x, y); military(z,y)/ p?;
prefer(destroy(x, y))?; destroy-military.

Thus, when the agent has uncertain belief for objects,
the plan tests action destroy is more preferable accord-
ing to utility theory, destroys that military object, and
then recursively starts destroying military objects again.
The guard retrieves the current position of Orville and
the position of the nearest object.

A plan for getting Orville at a specific position is the
following:

Orville(z,y)

+—Orville(zo, yo)|(x = zo Ay = y0)? + [(z < z0)7;
west + (zg < )75 east + (y < yo)7?;
south+ (yo < y)?; north]; Orville(z, y).

The plan (i.e., the body of the rule) states that to get at
position (z,y), the agent should repeat making a move
in the right direction until that position. This rule illus-
trates the two uses of predicates in our language. The
predicate Orville(z,y) in the head denotes a possible
subgoal of the agent, while the predicate Orville(zo, yo)
in the guard denotes a test on the belief base. By using a
predicate both in the head (as a goal) and in the guard
(as a belief) in a practical reasoning rule an interface
between the belief and goal bases is established. Thus,
predicates in goals are not just procedurally defined, but
can be related to their logical interpretation as beliefs
via uncertain practical reasoning rules.

The second purpose of uncertain practical reason-
ing rules is to revise goals. Change of uncertain belief
can lead to two types of situations in which a rational
agent might wish to revise his goals (i.e., in case a more
optimal strategy can be followed, or in case of failure).
We show an instance of each of these cases of goal revi-
sion, also illustrating the use of goal variables. Firstly,

we consider the former (i.e., a better strategy can be
followed). We use the method of default logic which is
based on decision-theoretic default!*!. The formulation
of decision theoretic defaults takes probability and util-
ity into consideration. Let e be a formula in the propo-
sitional calculus, and A = {ay,...,a,} a set of possible

alternate action (the possible actions being primitive),
and a € A. Then

if FU = EU (a;,e).
i (a,€) glg)j (ai,e)

e — A

In other words, given all that we know (contingently)
is e, a is the action in A that maximizes expected util-
ity. For uncertain practical reasoning rule, we modify
the definition of decision-theoretic default to deal with
interval-probability-oriented decision. That is,

e— aa if ea,e) = maﬁe(ai,e).

a; €
where €(a;, e) = aug(q,) + (1 — @)lg(a,;)- So, the goal up-
dating depends on not only the probability and utility
of each state and action but also the optimistic attitude
coefficient. Optimistic coefficient reflects the tendency
of an agent.

FEzample 5. In Example 3, Orville has a goal to de-
stroy an military object with the probability [0.3,0.6].
But with Orville going nearer to the object, the agent
thinks the object is a civil one with greater probability
p1 = [0.6,0.8] and a military one with py = [0.2,0.4].
The utility values for each state and action are change-
less. Now at the situation, for a = 0.5,

QUE(a,) + (1 — a)lE(al) < QUE(ay) + (1 — a)lE(az).

This means action “look for another object” is more
preferable. So a better strategy is to revise its current
goal and look for another military object. The following
rule makes this type of goal-revision possible:

G : Oruville(z,y)
+— Oruville(xo, yo) A military(x,y)/p2
A —prefer(destroy(z,y)) | Orville(x1,y1).

The rule applies when Robot Orville has a goal of doing
some (probably empty) list of actions G.

In another situation, for example, where Orville still
has the goal of going west, but now a civil object is in
the way and Orville cannot move west. If Orville tries
to move west, it fails. Since Orville is assumed to have
perfect knowledge for its position, it immediately detects
the failure and knows that it is still at its old position.
To avoid such failure Orville may use the following rule:

West; Orville(z,y)

+— Orville(zy,yo) A cwil(zg — 1,y0)
| [(yo < y)?; north
+ (yo = y)?; south; Orville(z, y).



416

This rule detects the failure and makes it possible to
revise the goal and employ a strategy to go around the
civil object (not a very adequate one).

We need a number of technical definitions in order
to proceed. A term, formula, or program, and a free
variable are defined in the usual way. The set of free
variables in an expression c¢ is denoted by Free(c). The
notions of wariable substitution, unifier, most general
unifier, and variant are defined as usuall*3l.

5 Probabilistic Agent Programs

Agents are goal-directed and belief-transforming en-
tities that are capable of means-end reasoning and have
reflective capabilities. We assume that beliefs are up-
dated by uncertain information, and goals are updated
by execution and revision. This clearly separates the
two different types of updating. The uncertain practical
reasoning component is encoded in uncertain practical
reasoning rules. Thus, an agent’s beliefs and goals can
change but practical reasoning rules and basic actions
are fixed. Beliefs and goals constitute the mental state
of an agent. Formally, we define:

Definition 5. A mental state is a pair (I, o), where

o II C LY is a set of goals called a goal base, and

e 0 C L is a set of beliefs called a belief base.

The dynamics of behavior of an agent, therefore, is
fully specified if the semantics of basic actions is given
and the mechanisms for executing goals and applying
rules are defined.

Definition 6. The semantics of basic actions A is
given by a transition function T of type: Bx B — p(A).
Let a € A. We use the following notational convention,
and write: {o,0') a for a € T{o,0').

FEzample 6. Robot Orville is capable of performing
five basic actions. The operational semantics of action
“west” is given by:

({---, Orwille(z,y), not(civi( X —1,Y),---, },{ -,
Oriville(X — 1,Y), not(civi( X —1,Y),---})west.

This means action “west” can be performed if Orville
believes it is at coordinates (X, Y), and after performing
the action its beliefs change such that Orville believes it
is at coordinates (X —1,Y).

Similar definitions can be applied to actions east,
north, and south,

({---, military(X,Y)/p, Oriville(X,Y),-- - },{-- -,
Orville(X,Y), not{object( X,Y),---})destroy.

Note that in the case if there is a civil-object blocking
the way to the west, although the west action will fail
in the real world, Orville will still believe he has made
a move to the west. Only by observing the environment
Orville notices that his action of moving west has failed.
Similar remarks are applied to the other actions.

Thus, to program an agent is to specify its initial
mental state, the semantics of the basic actions that the

J. Comput. Sci. & Technol., May 2006, Vol.21, No.3

agent can perform, and a set of uncertain practical rea-
soning rules. This is formally represented in the next
definition.
Definition 7. A probabilistic agent program is a
quadruple (T,1y,00,T"), where
e T is a basic action transition function, specifying
the effect of basic actions;
e Iy is the initial goal base;
e 0y is the initial belief base; and
e T is a set of practical reasoning rules (PR-base for
short).
Ezample 7. The agent program for Orville is the
following:
e 7T is defined for the basic actions in Example 6;
e the initial goal base is given by: {destroy-
military};
e the initial belief base is given by

{Orville(0,0), ciwil(1,5)/p1, civil(3,3)/pa2,
cwil(2,1)/ps, military(2,2)/pa };

e the PR-base contains the PR-rules as defined in
Examples 4 and 5.

The agent program works according to the following
steps. Firstly, it will test if the action “destroy” to the
nearest object is more preferable according to utility
theory. If yes, it will act according to the rule in Ex-
ample 4; otherwise agent will looking for other object.
Secondly, if agent’s belief changes in the processing of
go-ahead, it will revise the goal according to the rule in
Example 5.

Notice that there are two special cases of uncertain
practical reasoning rule. Firstly, the rule with an empty
body. For example, Orville tests before destroying an
object whether the action “destroy” is more preferable.
In case it is not, however, Orville will fail in the test,
and the goal becomes infeasible. This situation can be
represented by the following rule:

prefer(destroy(x,y))? : destroy
+—not(prefer(destroy(z,y))) | .

Secondly, the rule with an empty head, for example, in
case Orville happens to be at a position of a military-
object, Orville should destroy it, regardless of what
other goals Orville has at that moment. This can be
achieved by the following rule,

— Orville(X,Y) A military(X,Y) | destroy.

We call this type of rules data-directed.

Data-directed rules create new goals on the basis of
beliefs only. These rules are a distinguishing feature
of agents, although they do resemble interrupts. Data-
directed rules could be used to make agents reactive
to their environment (like interrupts) but the level of
reactiveness accomplished also highly depends on the
underlying control structure of the language.



Jie Wang et al.: Agent-Oriented Probabilistic Logic Programming

6 Related Work

Some researchers also tried to extend the BDI agent
model to the situation of uncertainty. For example,
Parsons and Giorginil'®! extended the work of Parsons,
Sierra and Jennings!'”) on the use of argumentation in
BDI agents/* to uncertainty. In their work, the degree
of belief is represented by a mass assignment in evi-
dence theory'®. When updating its belief set in the
light of new information, the combination rule of ev-
idence theory is used to calculate the degree of each
piece of information in the belief set. Evidence theory
is also employed to handle the issue of fusing an agent’s
belief with the information obtained from its sensors by
Li and Zhangl®. Further, in their work['%!, the theory
is used to fuse the information that is from an agent’s
own sensors, and uncertainty that it is told by other
agents. The work of Li and Zhang®1%! deals with the
uncertain belief fusion, but disregards the uncertain be-
lief revision while the issue of belief revision is dealt
with in the work of Parsons and Giorginil'®. However,
all of them cannot handle the issues of goal and action
selection and revision under uncertainty and the issue
of uncertain practical reason. Nevertheless, these limi-
tations have been removed in our work that is presented
in this paper.

On the other hand, compared with previous work on
logic programming for agents, our work is also novel.
For example, although Dix and Subrahmanian/® gave
a proposal for programming probabilistic agents, and
show how, given an arbitrary program written in any
imperative program, they may build a declarative prob-
abilistic agent program on top of which supports deci-
sion making in the presence of uncertainty. However,
unlike our work, theirs is not based on BDI concepts.

In addition, although fuzzy information is put into
consideration in the agent systems[®7], no concepts of
probability and BDI are involved in these agent systems.

7 Conclusion

Uncertainty is unavoidable in agent systems. In this
paper, we extend the BDI agent model such that belief-
updating, goal-updating and practice reasoning can be
carried out under uncertainty. Our approach consists
of three components for programming uncertain BDI
agent. The first one is the function to update uncertain
belief based on interval probability theory. The second
one is that goal selection and revision based on inter-
val utility theory. The third one is the propagation of
uncertainty along practical reasoning.

417

References

(1]

[2

[3

(4]

(5]

[6

[7]

(9]

[10]

[11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

Ferber J. Multi-Agent Systems: An Introduction to Dis-
tributed Artificial Intelligence. Addison-Wesley, 1999.
Jennings N R, Sycara K, Wooldridge M. A roadmap of agent
research and development. Autonomous Agent and Multi-
Agent Systems, 1998, 1: 7-38.

Luo X, Jennings N R, Shadbolt N, Leung H F, Lee J H M. A
fuzzy constraint based model for bilateral, multi-issue negotia-
tion in semi-competitive environments. Artificial Intelligence,
2003, 148(1-2): 53-102.

Rao A S, Georgeff M P. BDI agents: From theory to practice.
In Proc. the First International Conference on Multi-Agent
Systems, San Franciso, CA, USA, 1995, pp.312-319.

Dix J, Subrahmanian V S. Probabilistic agent programs.
ACM Transactions on Computational Logic, 2000, 1(2): 207—
245.

Zhang C, Luo X. An issue on transformation of interval-based
uncertainty in distributed expert systems. In Poster Proc. the
10th Australian Joint Conference on Artificial Intelligence,
Perth, Australia, 1997, pp.38—43.

He M, Leung H F, Jennings N R. A fuzzy logic based bidding
strategy in continuous double auctions. IEEE Transactions
on Knowledge and Data Engineering, 2003, 15(6): 1345-1363.
Wang J, Ju S, Luo X. Probabilistic logic programming with
inheritance. In Proc. the 7th and 8th Asian Logic Confer-
ences, World Scientific, Singapore, 2003, pp.409—422.

Li Y, Zhang C. Information fusion and decision making for
utility-based agents. the Third World Multi-
Conference on Systemic, Cybernetics and Informatics and
the Fifth International Conference on Information Systems
Analysis and Synthesis, Orlando, USA, 1999, pp.377-384.
Luo X, Jennings N R, Shadbolt N. Acquiring user tradeoff
strategies and preferences for negotiating agents: A default-
then-adjust method. International Journal of Human Com-
puter Studies, 2006, 64(4): 304-321.

Luo X, Zhang C, Jennings N R. A hybrid model for shar-
ing information between fuzzy, uncertain and default reason-
ing models in multi-agent systems. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 2002,
10(4): 401-450.

Hindriks K V, de Boer F S, der Hoek W van, Meyer J J C.
Formal semantics of an abstract agent programming language.
In Proc. International Workshop on Agent Theories, Archi-
tectures, and Languages (ATAL ’97), LNCS 1365, Springer,
1998, pp.215-229.

Lloyd J. Foundations of Logic Programming. Springer, 1984.
Poole D. Decision theoretic defaults. In Proc. the 9th Bien-
nial Canadian Artificial Intelligence Conference, San Fran-
cisco, CA, USA, 1992, pp.190-197.

Li Y, Zhang C. Information-based cooperation in multiple
agent systems. Advanced Topics in Artificial Intelligence,
LNAI 1747, Springer, 1999, pp.496-498.

Parsons S, Giorigini P. An Approach to Using Degrees of Be-
lief in BDI Agents. Information, Uncertainty and Fusion,
Kluwer Academic Publisher, 2000, pp.81-92.

Parsons S, Sierra C, Jennings N R. Agents that reason and ne-
gotiate by arguing. Journal of Logic and Computation, 1998
8(3): 261-292.

Shafer G. A Mathematical Theory of Evidence.
University Press, 1976.

In Proc.

Princeton



