July 2006, Vol.21, No.4, pp.529-536 J. Comput. Sci. & Technol.

Automatic Transaction Compensation for Reliable Grid Applications

Fei-Long Tang! (FE &), Ming-Lu Li' (Z=B]{#), and Joshua Zhexue Huang? (E#5%)

! Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, P.R. China
2E-Business Technology Institute, The University of Hong Kong, Hong Kong Special Administration Region, P.R. China
E-mail: {tang-fl,li-ml}@cs.sjtu.edu.cn; jhuang@eti.hku.hk

Revised May 20, 2006.

Abstract As grid technology is expanding from scientific computing to business applications, service oriented grid com-
puting is aimed at providing reliable services for users and hiding complexity of service processes from them. The grid
services for coordinating long-lived transactions that occur in business applications play an important role in reliable grid
applications. In this paper, the grid transaction service (GridTS) is proposed for dealing with long-lived business transac-
tions. We present a compensation-based long-lived transaction coordination algorithm that enables users to select results
from committed sub-transactions. Unlike other long-lived transaction models that require application programmers to de-
velop corresponding compensating transactions, GridTS can automatically generate compensating transactions on execution
of a long-lived grid transaction. The simulation result has demonstrated the feasibility of GridTS and effectiveness of the

corresponding algorithm.

Keywords

1 Introduction

Grid technology enables people to utilize comput-
ing and storage resources transparently. By providing
service oriented computation and data infrastructures,
grid technology is expanding from scientific computing
to business applications!=4.

Business applications require highly reliable sup-
port from a computation platform. As an effective
and widely-used means, transaction technology can help
people to create reliable applications and provide appli-
cation developers with multiple transparencies on loca-
tion, replica, concurrency and failurel’). In service grid,
a transaction is defined as a set of operations that exe-
cute on different grid services. The transaction service
is responsible for coordination of these services to keep
the system consistent and free from various failures. It
shields users from the complex recovery process. Owing
to the autonomous, dynamic and heterogenous proper-
ties of grid services, however, the existing transaction
technologies are not directly applicable to service grid.

A long-lived transaction is associated with a busi-
ness process that lasts for a long time that can be a
few hours or even a few days. A long-lived transaction
often consists of a set of sub-transactions that have to
be executed to complete the transaction. Transaction
compensation is an appropriate method to release grid
resources being held by sub-transactions as early as pos-
sible. For example, in an e-shopping process, an enter-
prise E orders a set of machines from service A, applies
for a shipment from service B, and reserves a storage
from service C. If a sub-task fails, other two sub-tasks
have to be cancelled. On the other hand, the user ' may

service grid, long-lived transaction, compensating transaction, algorithm

apply for more orders for the shipment and then selects
the “best” (e.g., the cheapest) one and cancels others.
In the above two situations, cancellation of submitted
sub-task(s) (sub-transactions) should use compensating
transactions. In existing transaction models, however,
application programmers have to develop compensating
transactions, which is impracticable in the grid envi-
ronment because service providers need to setup special
compensating rules.

In this paper, we present the grid transaction service
(GridTS) for dealing with long-lived business transac-
tions and a coordination algorithm that enables users
to select results from committed sub-transactions. Es-
pecially, we focus on how to automate the generation of
compensating transactions for service grid. Our moti-
vation is to provide a transaction service based on au-
tomatic compensation for grid applications. Our simu-
lation result has demonstrated the feasibility of GridTS
and effectiveness of the corresponding algorithm.

The remainder of this paper is organized as follows.
In Section 2, we review related work. The GridTS and
the coordination algorithm are presented in Section 3
and Section 4 respectively. In Section 5, we investigate
how to automatically generate compensating transac-
tions. The comparison and experimental result are re-
ported in Section 6. Finally, Section 7 concludes the
paper with the discussion of our future work.

2 Related Work

Existing models for long-lived transactions were gen-
erally built on compensating transaction that was first
proposed by Grayl®7. The typical implementation of

Regular Paper

This work is supported by the National Basic Research 973 Program of China (Grant No. 2002CB312002), the National Nat-

ural Science Foundation of China (Grant Nos. 60473092 and 90612018), Natural Science Foundation of Shanghai Municipality of
China (Grant No. 05ZR14081), and ShanghaiGrid from Science and Technology Commission of Shanghai Municipality (Grant No.
05DZ15005).

530

compensating transactions is the Sagas model that is
widely used in many extended transaction models!® 1],

Sagasl® is a classical transaction model for handling
long-lived transactions, based on transaction compen-
sation. In Sagas, a transaction is called a “Saga”,
which consists of a set of sub-transactions with ACID
(atomicity, consistency, isolation, durability) properties
T={T),T5,...,T,}, and a set of associated compensat-
ing transactions C = {Cy,Cy,...,C,}, where each sub-
transaction T; associates with a compensating transac-
tion C; that can semantically undo the effect caused by
the commit of T;. Sub-transactions in Sagas indepen-
dently commit and immediately release resources ac-
cessed in the execution of the sub-transactions in or-
der to reduce the duration of resource lock and im-
prove the system efficiency. In Sagas, all the committed
sub-transactions must be undone if a subsequent sub-
transaction fails, which causes waste of a lot of valuable
work already finished.

ACTA"] is a comprehensive transaction framework
that permits a transaction modeler to specify the effects
of extended transactions on each other and on objects in
the database. ACTA allows to specify interactions be-
tween transactions in terms of relationships and trans-
actions’ effects on objects’ state and concurrency status.
ACTA provides a reasoning ability more powerful and
flexible than Sagas through a series of variations to the
original Sagas.

ConTracts!'? is a mechanism for grouping transac-
tions into a multi-transaction activity. It consists of a
set of predefined actions called steps, and an explicitly
specified execution plan called a script. In case of a
failure, the ConTract state must be restored and its ex-
ecution may continue.

The above long-lived transaction models require ap-
plication programmers to provide compensating trans-
actions beforehand for all sub-transactions. These mod-
els are database-centric and primarily aimed at preserv-
ing the consistency of shared data. Thus, they are gen-
erally not applicable for applications that comprise of
loosely coupled, Web-based business services!'3l. In the
Business Transaction Protocol (BTP)'* and Web Ser-
vices Transaction (WS-Transaction)!'®!| the use of com-
pensation for coordination of long-running activities was
proposed, but no details are given on how to provide
compensating transactions.

3 Grid Transaction Service

3.1 Layered Architecture

The architecture of grid transaction is divided into
three layers (see Fig.1). The middle layer, GridTS, is a
special grid service responsible for management of long-
lived grid transactions. It consists of the following main
components.

Coordinator and Participant. They cooperatively
coordinate a transaction for an application and grid

J. Comput. Sci. & Technol., July 2006, Vol.21, No.4

services respectively. The coordinator and participant
themselves do not execute actual application operations.

Transactional

Grid applications grid application

:Service—speciﬂc : Extended-TX

GridTS Grid transaction
| Scheduler | service
! Coordinator/
participant CTG
Service Log service
discovery

Grid infrastructure

Transactional
grid service

Local transaction manager

3 xa

Grid resources

Fig.1. Architecture of grid transaction.

Scheduler. This component takes charge of (1) cre-
ating a coordinator and a coordination context (CC) on
the application side and participants on the service side,
and (2) scheduling the Service Discovery module.

Compensating Transaction Generator (CTG). If a
predefined event occurs, the component first queries the
corresponding compensating rule(s), and then dynami-
cally generates a compensating operation. Finally, it en-
capsulates the generated compensating operations into
a compensating transaction when the sub-transaction
commits.

Log Service. This component records the coordina-
tion operations and the state information for recovery
of transactions from failures.

Service Discovery. This component dynamically dis-
covers qualified grid services according to users’ require-
ments, such as cost, quality and availability, to complete
specified sub-transactions. Further information can be
found in [16-19].

Interfaces. GridTS provides grid applications with
two types of APIs: the extended TX interfaces for trans-
action management, and the service-specific interfaces
for management of the Grid TS service instances and dis-
covery of grid services to execute application operations
in sub-transactions.

3.2 How to Use GridTS

GridTS is a special grid service and possesses all
properties of a grid service. Interfaces of GridTS are
encapsulated in TX portType of grid services by defin-
ing each interface, corresponding input and output pa-
rameters as operation, input and output messages. The
interface definition is exemplified in Fig.2.

GridTS ensures the reliability for grid applications
through the following ways.

Fei-Long Tang et al.: Automatic Transaction Compensation for Reliable Grid Applications 531

1) Public transaction service. GridTS is published
in the public registration center. Transactional appli-
cations discover and invoke the GridTS. The advantage
in this way is flexible and convenient, which means that
users may share reliability support without installing
the GridTS.

2) Private transaction service. The GridTS locates
on the application-side and service-side nodes. The
strength of this method is efficiency and the weakness is
less flexibility.

(gwsdl: portType name =“TX” extends = “ogsi:GridService”)

operation name =“Begin”

p g

input message =“tns:txType”

g

(output message =“tns:CoordinationContext” /)

(fault name =“Fault” message = “ogsi:FaultMessage” /)
(/operation)

(/gwsdl:portType)

Fig.2. Definition of interface begin in GridTS.

4 Coordination of Long-Lived Grid
Transaction

A long-lived grid transaction (LGT) T consists of a
set of sub-transactions that execute on different grid ser-
vices, formally described as T ={T;|T; € T, 1 < i < n,
n is the number of sub-transactions involved in T'}. As
the name suggests, an LGT takes a relatively long time
to finish, even without the interference from other con-
current transactions, so the LGT relaxes the atomicity
and isolation properties. Grid services that join an LGT
independently commit sub-transactions after receiving
the pre-commit message, and then immediately release
the held resources.

The coordination algorithm of an LGT (CALGT), as
shown in Fig.3, allows users to confirm or cancel com-
mitted sub-transactions according to their own require-
ments. The algorithm consists of two parts, the co-
ordinator algorithm ActionOfCoordinator and the par-
ticipant algorithm ActionOfParticipant, where t is the
system time, CC is a coordination context, and Tyuiq4
is the valid time before which a coordinator must send
a confirmation or cancellation decision and participants
must report their commit states. Otherwise, if a coordi-
nator does not confirm or cancel a sub-transaction be-
fore Tyqaiid, the corresponding participant automatically
undoes the committed sub-transaction by the compen-
sating transaction. On the other hand, a coordinator
presumes that a participant has failed if the participant
does not return the commit result before T,q;4. The
state diagrams of a Coordinator and a Participant in
an LGT are respectively depicted in Figs.4(a) and 4(b),
where messages close to solid lines and break lines come
from a Coordinator and a Participant respectively.

ActionOfCoordinator
Input: references of all participants, time parameters;
Output: global transaction results or failure;
{step 1: initiate an LGT
Scheduler creates a Coordinator;
completed=false;
while (¢ < Tyq1i4 and not completed) {
Scheduler sends CC to Participants;
wait for Response messages;
step 2: enroll participants
send Enroll to Participants;
step 3: confirm/cancel participants
wait for and record incoming messages;
if (message is Enrolled)

if (user selects some)

send Confirm to them;

wait for Comfirmed;

} else {

send Cancel to them;

wait for Cancelled; }
if (LGT completes successfully)

completed=true;

I

(a)

ActionOfParticipant
Input: CC and time parameters;
Output: T} results or failure;
{step 1: join in the transaction
Scheduler creates a Participant after receiving CC;
send Response to Coordinator;
step 2: commit sub-transaction
wait for Enroll from Coordinator;
if timeout exit;
allocate resources;
record commit information in log;
commit and generate compensating transaction;
release resources;
/ /nested transaction, call ActionOfCoordinator;
step 3: confirm/compensate
if (commit successfully) {
send Enrolled to Coordinator;
while (t < Tvalid) {
wait for incoming messages;
if (message is Cancel) {
call its compensating transaction;
send Cancelled;
} else {
if (message is Confirm)

send Confirmed;}}}}

(b)

Fig.3. Coordination algorithm of an LGT (CALGT). (a) Coordi-
nator algorithm. (b) Participant algorithm.

5 Automatic Generation of Compensating
Transaction

The LGT wuses compensating transactions to
undo committed sub-transactions. In the existing
compensation-based long-lived transaction models, ap-
plication programmers generally have to define and im-
plement compensating transactions, which is imprac-
ticable in service grid. There are two major reasons:
(1) owing to the autonomy of grid services, some com-
pensating actions are service-specific and it is difficult
for application programmers to know special compen-
sating policies of services discovered dynamically; (2)

532

it imposes heavy burden and programming complexity
on application development. On the other hand, there
are common compensating rules with which each trans-
action complies. We define the common compensating
rules according to the types of operations, while allowing
service providers to add and modify their own rules.

Compensating
Timeoul

Cancelled

Confirming

I- Confirmed

(@
Response

*
i A borted _ |Enroll

- Enrolled

—..Cancel
¢ Compensating
: . Timeout

Committed
: Confirm
é\ Cancelled

I: . Confirmed

(b)
Fig.4. State diagrams of an LGT. (a) Coordinator. (b) Partici-
pant.

5.1 Key Technologies for Automatic
Transaction Compensation

Compensating actions are closely related to system
states. The states describe current properties and possi-
ble further action(s) of a transaction system. For exam-
ple, we can describe the state of an airline booking sys-
tem as S = {reservation, available}, where reservation
is the number of available tickets, and available indicates
whether the system can accept new reservations or not.
If reservation is greater than 0, available becomes true;
otherwise, available becomes false.

States are changed by operations. However, not all
operations affect system states. For example, the up-
date (d1,d2) operation changes the data value from d1
to d2 and the Enroll message transfers the Participant
state from Active to Committing, but reading a data
value does not affect the system state.

Definition 1. A compensating transaction (CT) is
the transaction that rollbacks the operations taken by a
committed transaction T and undoes semantically the

J. Comput. Sci. & Technol., July 2006, Vol.21, No.4

effects from the commit of original transaction T.

A compensating transaction mainly involves in two
aspects. One is to undo the effects of the original opera-
tions, and the other is to recover the system consistency.
The key technologies to generate automatically compen-
sating transactions include:

e definition of compensating rules,

e generation of compensating operations in the ex-

ecution of a long-lived transaction, and

e generation of a compensating transaction at the

commit of a sub-transaction.

Data modification| Rule
event predefinition
- e
Transaction | |
coordination event
Compensating Compensating
Service " traéﬁ?}fi?oor“ ™ transaction
self-definition —* g
event

Fig.5. Architecture of generating compensating transactions.

5.2 Set Compensating Rules

Generation of a compensating transaction is event-
driven. Compensating rules indicate how to undo the
effects from events that change system states. We di-
vide these events into three types: data modification
event, transaction coordination event and service self-
definition event (see Fig.5). Compensating rules for the
first two types of events are provided by GridTS while
rules for service self-definition events are set by service
providers through the following interfaces:

setCompensatingRule (): sets compensating rules
for grid services;

getCompensatingRule (): gets compensating rules of
grid services.

5.2.1 Data Modification Event

Currently, most companies store their information in
relation databases. Data modification operations in an
LGT mainly consist of insertion, deletion and replace-
ment of records in databases.

Definition 2. A data modification event refers
to insertion, deletion or modification of data in a
databases. Let er,[p(d)] be a data modification event
from which transaction T; modifies data d using opera-
tion p, where p € OT belongs to one of operation types.
Furthermore, DEr, is a set of data modification events
caused by T; and er,[p(d)] € DEr,.

For a relation database, OT={update, insert,
delete}. We mainly analyze how to compensate these
three data modification operations.

Let S; and S;11 be the states before and after T;
commits respectively, CT; a compensating transaction

Fei-Long Tang et al.: Automatic Transaction Compensation for Reliable Grid Applications 533

of T;, and T; (j # 1) a dependent transaction that ex-
ecutes between T; and CT;. If data accessed by T; is
not modified by T;, CT; simply executes a reversed ac-
tion for each operation in T;. Otherwise, CT; undoes
the committed transaction T;, but may not change the
results of the dependent transaction 7. For example,
the cancellation of Alice’s airline ticket reservation can-
not affect Bob’s reservation. Compensating rules for
update, insert and delete operations are set as follows.

(1) Update

Let op; = update(dl, d2) be an operation in T; that
replaces d1 with d2. How to compensate op, depends
on the data modification operation op; in 7j.

@ An insert operation op; = insert(d) in 7} does not
affect the result of op;. The compensating operation for
op, is cop; = update(d2,dl).

@ A delete operation op; = delete(d2) in T; will
delete the result of op,;. As a result, it is not necessary
to compensate op,.

® An update operation op; = update(d2,d3) in T
will change the result of op,. The compensating op-
eration of op; depends on the type of the replacement
operation.

Relevant replacement S;y1 = f(S;,T;). It means
that the state S;;1 is relevant to the state S;. cop;
has to remove the effect of op,. For example, if op, =
update(dl, d2) and d2 = d1+ n, the corresponding com-
pensating operation is cop, = update(d3,d4), where
d4 =d3 —n.

Irrelevant replacement S;y1 = f(T;), where S;11
is irrelevant to S;, e.g., op; = update(“Monday”,
“Tuesday”) and op;=update(“Tuesday”, “Wednes-
day”). Such a replacement need not be compensated.

(2) Insert

Let operation op; = insert(dl) in T; insert a record
with value d1. cop; is also relevant to data modification
operations op; in Tj.

® op; = insert(d2) does not affect the result of
op; so that the compensating rule for op; is cop, =
delete(d1).

@ op; = delete(d1) will delete the result of op;, how-
ever, op, need not be compensated in order to keep the
result of op;.

® op; = update(dl, d2) is compensated as follows.

If (d2 # d1)

If (relevant replacement) {
temp=change caused by op; = update(d1, d2);
insert (temp);
delete (d1); }

else

do nothing;

(3) Delete

A delete operation op; = delete(d) in T; deletes a
record with the value d. Any operation in T} cannot af-
fect the result of op, so that the compensating operation
for op, is simply a reversed operation cop; = insert(d).

5.2.2 Transaction Coordination Event

Definition 3.
denotes that a sub-transaction receives messages from
a coordinator. The set of transaction coordination
events involved in a sub-transaction T; is TEr, C
{CC, Enroll, Confirm, Cancel}.

Each transaction coordination event changes the
state of a transaction system. The GridTS sets the com-
pensating rules for the transaction coordination event in
the following way.

1) For CC message, it records the original transac-
tion identifier and input parameters.

2) For Enroll message, it encapsulates compensating
operations in delimiters Begin and Commit, and stores
the compensating transaction CT; in a database.

3) For Cancel messages, it invokes CT); stored in the
database.

4) For Confirm message, it deletes CT; in the
database because CT; will be useless after the sub-
transaction is confirmed.

A transaction coordination event

5.2.3 Service Self-Definition Event

Definition 4. A service self-definition event refers
to the actions that a service provider takes according to
the states of a business process, which depends on the
special business model of a service provider.

The compensating rules for the service self-definition
event are defined by service providers. They typically
focus on:

e subsequent activities after undoing operations in
an original transaction, e.g., sending an email to notify
the user of new available services;

e economic compensation, for example, if a user can-
cels a committed sub-transaction which has finished a
transportation order, the transportation company typi-
cally requires amends from the user.

5.3 Generate Compensating Operations

In the execution of an LGT, the Compensating Trans-
action Generator (CTG) of GridTS monitors events,
such as a delete operation or an Enroll message. Once
predefined events occur, CTG examines whether the
conditions for a rule are satisfied. If so, it extracts
the type and parameters of the operation, queries corre-
sponding compensating rules of the operation, generates
a compensating operation, and records input param-
eters. For example, when a sub-transaction deletes a
record from the database, the Delete event will generate
a compensating operation to insert the record.

5.4 Generate and Invoke Compensating
Transactions

The Enroll message enables the CTG to generate
delimiters Begin and Commit, and combines the com-
pensating operations into a transaction. If the sub-

534

transaction fails, all compensating operations generated
previously are abandoned. A compensating transaction
is stored in a database, and deleted from the database
when GridTS receives a Confirm message from the Co-
ordinator.

In an LGT, both the Cancel message and a timeout
signal, which is generated after the transaction deadline
Tyalid, can start the corresponding compensating trans-
action.

5.5 Handle Noncompensable Transaction

A transaction is compensable if effects from its com-
mit can be semantically undone by another transaction,
i.e., the corresponding compensating transaction. Oth-
erwise, the transaction is noncompensable.

Actual enterprise applications are complex. Cur-
rently, our automatical compensation mechanism can
work in a restricted environment. One condition is that
an original transaction has to be compensable. Another
is that data modification operations in a transaction
do not cause successional processing that changes other
data, such as cascade delete.

A compensating transaction consists of a set of com-
pensating operations. A transaction 7' is compensable,
if and only if each operation OP; € T has a correspond-
ing compensating operation COP;. Some transactional
grid applications comprise noncompensable operations
so that these transactions are noncompensable. Gen-
erally, noncompensable operations can be divided into
two types:

1) difficult compensating operations such as the sale
of stocks bought previously, which means that the exe-
cution of these compensating operations may cause un-
expected results;

2) unable compensating operations, which refer to
the operations that cannot be compensated. For exam-
ple, it is impossible to compensate a launched missile.

Noncompensable operations often generate effects on
outside activities so that, in general, their effects are not
allowed visible out of these applications. Thus, GridTS
does not allow such a sub-transaction to commit in the
pre-commit phase if it cannot find compensating rule(s)
for an operation. Instead, we handle noncompensable
transactions with the following policies.

e GridTS imposes commit dependence between the
sub-transaction and the global transaction, which indi-
cates that the sub-transaction actually commits only if
the global transaction commits.

e GridTS rollbacks operations taken previously but
returns the Committed message to the coordinator. Af-
ter receiving the Confirm message, it redoes and com-
mits the sub-transaction.

e GridTS rollbacks the executed operations and re-
ports a commit exception to a user. The latter decides
how to handle the exception.

J. Comput. Sci. & Technol., July 2006, Vol.21, No.4

6 Evaluation of the Coordination Algorithm
CALGT

6.1 Comparison with Other Related Work

We compare our work with other long-lived models
in the following two ways.

1. Generation of compensating transactions. Exist-
ing long-lived transactions models were generally built
on compensating transactions, both in the traditional
distributed system and in the Web Services environ-
ment. The compensating transaction was first imple-
mented in Sagas that requires application programmers
to provide compensating transactions before a trans-
action execution. BTP and WS-Transaction'41%! only
mentioned to use compensation to reverse the effects of
completed business tasks, but they did not propose how
to generate compensating transactions.

Different from these work, the GridTS proposed
in this paper can automatically generate compensat-
ing transactions. We predefine common compensat-
ing rules for data modification operations and transac-
tion coordination messages, and allow service providers
to modify and add compensating rules. In the exe-
cution of an LGT, the GridTS dynamically generates
and stores a compensating transaction for each sub-
transaction based on the compensating rules. On re-
ceiving a Confirm message, indicating that the result(s)
of the sub-transaction will not change from then, the
GridTS deletes the generated compensating transaction
from the database.

2. Number of messages. BTP has clearly influenced
heavily and positively the development of Web services
transactions!!®!. It uses Cohesion to model long-running
business activities and defines a set of messages to man-
age a Cohesion transaction. Currently, no influential
Grid transaction model can be found. We compare
the number of messages that are issued by our CALGT
with the BTP. An LGT may proceed even if some sub-
transactions fail by reselection of other services. There-
fore, we only consider the number of messages in case
that a transaction successfully commits.

In execution of the BTP protocol, a committed
transaction requires three messages by each subordinate
(enrolled, prepared and confirmed/cancelled) and four
messages by the coordinator (context, enroll, prepare
and confirm/cancel) to each subordinate. Therefore, let
n be the number of sub-transactions in a transaction
that has successfully finished. The number of messages
that cross the network in the BTP is

MBTP = Tn.

In case that a broadcast communication mechanism
is available, the 4n messages sent by the coordinator are
substituted by four broadcast messages. The number of
messages is

M), =3n+4.

Fei-Long Tang et al.: Automatic Transaction Compensation for Reliable Grid Applications 535

Our coordination algorithm CALGT, in the ab-
sence of a broadcast facility, requires two messages
from each participant to a coordinator (Enrolled and
Confirmed/Cancelled) and three messages from the co-
ordinator to each participant (CC, Enroll and Con-
frim/Cancel). Thus, the number of messages for a suc-
cessful LGT is

MCALGT = 5n.

If broadcasting of messages is available, the coordi-
nator only sends three messages for an LGT so that we
have

ME) or =2n+3.

The number of messages in CALGT, which are ex-
pressed as a fraction of the messages exchanged in BTP
or point-to-point messaging, is

_ Migrca 5

K = 2Leroa _ o
Mptp 7

If messages are exchanged in a broadcast way, we

have
b
KO MISG)TCA _2n+3

= A = .
ME(H)‘P 3n+4

An important observation is the fraction K ¢
(2/3,5/7].

From the above analysis, we can find that the num-
ber of messages exchanged in our algorithm CALGT is
less than that in BTP, no matter in point-to-point mes-
saging or broadcast way.

6.2 Performance Testing

To validate the performance of the CALGT, we have
developed a prototype system. The system was built in
a small scale intra-grid. GridTS and the associated grid
service that actually executes application operations in
a sub-transaction are installed on each node of the sys-
tem. GridTS is a persistent service, while the latter is
implemented as a transient service. GridTS creates a
Coordinator and a Participant upon receiving a request
to initiate a transaction and a CC message respectively.
The created Coordinator and Participant then interact
a set of coordination messages to control the outcome
of an LGT.

GridTS provides long-lived transactional grid appli-
cations with the following interfaces:

e Begin(): initiates an LGT;

e Enroll(): notifies a grid service that has joined the

transaction for committing a sub-transaction;

e Confirm():

vice;

confirms the commit of the grid ser-

e Cancel(): requires committed sub-transactions to
execute the corresponding compensating transac-
tions;

e GetTransactionStates(): queries states of a trans-
action.

The system randomly generates transactions to sim-
ulate requests from different users. The system work-
load is modeled as the maximal number of concurrent
transactions, which are created randomly within the
interval 60ms. The number of application operations
to modify data in a sub-transaction is represented in
Tran_Size.

We measure the performance of CALGT as the av-
erage response time (ART), referring to the average re-
sponse time of all committed transactions in a given
time.

1 n
ART = n;RTl, (1)
where RT; is the response time of a finished LGT T;,
i.e., the interval from T;’s starting to coordinator’s re-
ceiving all Confirmed messages.

For each T;, the response time RT; consists of mes-
saging delay tgeiqy(7;) and transaction processing time
tprocessing (1;) within which the transaction coordination
and application operations finish, that is

RT; = tgeclay (T3) + Uprocessing (T5)- (2)

In Grid, the messaging delay tgeiay(T;) is affected
by the network status. In our experiment, tgeqy(7T})
was fixed and the change of RT; mainly resulted
from tprocessing(Ti). We were focused on testing how
tprocessing (1i) changed with the system workload.

N W AN

oS o o o 9

S © O o O
T T T T

—— Tran_size=2
—=— Tran_size=20

—_

(=

(=]
T

(=]

Average response time (ms)

4 6 8 10 12
Number of transactions

(=]
[\S]

Fig.6. Performance of the coordination algorithm CALGT.

An LGT finishes if all the confirmed sub-transactions
return Confirmed messages. We tested the average re-
sponse time of two groups of transactions, in which
Tran_Size was set to 2 and 20 respectively, as shown
in Fig.6.

The response time of two groups of transactions was
similar to each other when the maximal number of con-
current transactions was less than 7. However, in the
group whose Tran_Size was 20, the average response
time increased rapidly as the maximal number of con-
current transactions exceeded 7.

7 Conclusions and Future Work

We have proposed a transaction service and a coordi-
nation algorithm for management of long-lived business
activities in service grid, based on automatic compen-
sation. Our work has three advantages. Firstly, it can
automate the generation of compensating transactions

536

for reliable grid applications. Next, it allows users to se-
lect committed results. Finally, it is extensible because
it is built on top of a series of open standards, technolo-
gies and infrastructures. Simulation result shows the
effectiveness of the coordination algorithm.

We plan to integrate security measures with the
transaction service GridTS. Grid Security Infrastruc-
ture (GSI) will be used because it provides abilities for
authentication, authorization and communication pro-
tection, based on the public-key mechanism, and is the
de facto standard authentication method with the “sin-
gle sign-on” property. Moreover, we plan to investigate
the mechanism for combining the transaction manage-
ment with the resource scheduling and management to
enhance system efficiency.

References

[1] Foster I, Kesselman C (eds.). The Grid: Blueprint for a Fu-
ture Computing Infrastructure. Morgan Kaufmann Publisher,
USA, 1999.

Foster I, Kesselman C, Nick J, Tuecke S. Grid Services for

Distributed System Integration. Computer, 2002, 35(6): 37—

46.

[3] Foster I, Kesselman C, Tuecke S. The anatomy of the grid:
Enabling scalable virtual organizations. International Jour-
nal of Supercomputer Applications, 2001, 15(3): 200—222.

[4] Foster I. Service-oriented science. Science, May 2005,
308(5723): 814-817.

[5] Traiger 1, Gray J, Galtieri C, Lindsay B. Transactions and
consistency in distributed database systems. ACM Trans.
Database Systems, Sept. 1982, 7(3): 323-342.

[6] Gray J. The transaction concept: Virtues and limitations. In
Proc. the 7th International Conference on Very Large Data
Bases, Cannes, France, Sept. 1981, pp.144—-154.

[7] Gray J. Notes on database operating systems. Operating sys-
tems: An advanced course. Lecture Notes in Computer Sci-
ence 60, Berlin, Springer-Verlag, 1978, pp.393—481.

[8] Garcia-Molina H, Salem K. SAGAS. In Proc. The 1987 ACM

SIGMOD International Conference on Management of Data,

California, United States, May, 1987, pp.249-259.

Liang D, Tripathi S. Performance analysis of long-lived trans-

action processing systems with rollbacks and aborts. IEEFE

Transactions on Knowledge and Data Engineering, Oct.

1996, 8(5): 802-815.

[10] Garcia-Molina H, Gawlick D, Klein J et al. Modeling long-
running activities as nested sagas. Bulletin of the IEEE Tech-
nical Committee on Data Engineering, 1991, 14(1): 14-18.

[11] Chrysanthis P, Ramamriham K. ACTA: The SAGA Con-
tinues. Chapter 10 of Transactions Models for Advanced
Database Applications. Morgan Kaufmann, 1992.

[12] Wachter H, Reuter A. Contracts: A Means for Extending Con-
trol Beyond Transaction Boundaries. Advanced Transaction
Models for New Applications, Morgan Kaufmann, 1992.

[13] Dalal S, Temel S, Little M et al. Coordinating business trans-
actions on the Web. [EEFE Internet Computing, 2003, 7(1):
30-39.

[14] Ceponkus A, Cox W, Brown G et al.
tion protocol V1.0. 2002, http://www.oasis-open.org/co-
mmittees/download.php.

[2

[9

Business transac-

J. Comput. Sci. & Technol., July 2006, Vol.21, No.4

[15] Cabrera F, Copel G, Coxetal B. Web Services Transac-
tion (WS-Transaction), August 2002, http://www.ibm.com/
developerworks/library /ws-transpec.

[16] Tang F L, Li M L, Cao J. A transaction model for grid com-
puting. In Proc. The 5th International Workshop on Ad-
vanced Parallel Programming Technologies, Lecture Notes in
Computer Science 2834, Sept. 2003, pp.382—-386.

177 LiML, WauM Y, LiY et al. ShanghaiGrid: An information
services grid. Concurrency and Computation: Practice and
Exzperience, Jan. 2006, 18(1): 111-135.

[18] Li M L, Liu H, Tang F L et al. ShanghaiGrid in action: The
first stage projects towards digital city and city grid. Inter-
national Journal of Grid and Utility Computing, 2005, 1(1):
22-31.

[19] Tang F L, Li M L, Joshua Huang Z X et al. Real-time transac-
tion processing for autonomic grid applications. Engineering
Applications of Artificial Intelligence, 2004, 17(7): 799-807.

Fei-Long Tang received his
Ph.D. degree in computer science and
technology from Shanghai Jiaotong
University in 2005. From May 2004
to June 2005, he researched on grid
computing and e-business in the E-
Business Technology Institute, the
University of Hong Kong.
search interests include grid comput-
ing, Web services, computer network
and distributed computing, especially on grid transaction
and reliability analysis.

His re-

Ming-Lu Li is a full professor
and deputy director of Department of
Computer Science and Engineering,
Shanghai Jiaotong University, China.
He also is a director of Grid Comput-
ing Center of Shanghai Jiaotong Uni-
versity, Grid expert of Ministry of Ed-
ucation, P.R. China, and expert-in-
chief of ShanghaiGrid, an influential
Grid project in China. His research
interests mainly include grid computing, Web services, ser-
vice computing and multimedia computing.

4
L LN

Joshua Zhexue Huang is assis-
tant director at the E-Business Tech-
nology Institute (ETI), honorary pro-
fessor at the Department of Mathe-
matics of the University of Hong Kong
(HKU) and visiting professor at the
School of Computer Science of Harbin
x Institute of Technology of China. He

has contributed to the development of
a series of k-means type algorithms
in data mining, including k-modes, fuzzy k-modes and k-
prototypes which are being widely used in research and real
world applications.
data mining algorithms, text mining, parallel data mining
and business intelligence service grid.

His current research interests include

