
A roofline model of energy

Jee Whan Choi

Georgia Institute of Technology
Atlanta, Georgia, USA

jee@gatech.edu

Daniel Bedard, Robert Fowler

Renaissance Computing Institute
Chapel Hill, North Carolina, USA

{danb,rjf}@renci.org

Richard Vuduc

Georgia Institute of Technology
Atlanta, Georgia, USA

richie@gatech.edu

Abstract—We describe an energy-based analogue of the time-
based roofline model. We create this model from the perspective
of algorithm designers and performance tuners, with the intent
not of making exact predictions, but rather, developing high-
level analytic insights into the possible relationships among
the time, energy, and power costs of an algorithm. The model
expresses algorithms in terms of operations, concurrency, and
memory traffic; and characterizes the machine based on a
small number of simple cost parameters, namely, the time and
energy costs per operation or per word of communication. We
confirm the basic form of the model experimentally. From this
model, we suggest under what conditions we ought to expect
an algorithmic time-energy trade-off, and show how algorithm
properties may help inform power management.

Keywords-performance analysis; power and energy model-
ing; computational intensity; machine balance; roofline model

I. INTRODUCTION

The overarching goal of this paper is to develop a simple

explanation, aimed at algorithm designers and performance

tuners, about the relationships among time, energy, and

power. For that audience, a useful model would directly

connect properties of an algorithm—such as concurrency

and locality—with architectural time and energy costs. It

would explain whether there is any difference in optimizing

an algorithm for time versus optimizing for energy, why

such differences exist, and what properties of the architec-

ture might lead to non-trivial time-energy trade-offs. We

have studied similar kinds of models in some of our prior

work [1]–[3], but thus far have not considered energy in a

formal way.

Our analysis is inspired by a similar set of thought

experiments based on “Amdahl” analysis, written by and

for architects [4]–[6]. (We review this work and numerous

other related studies in §VI.) Such analyses offer archi-

tectural insights, but abstract away essential properties of

an algorithm. By contrast, our analysis more explicitly

connects algorithmic and architectural parameters. However,

for clarity we pose and study an intentionally simple—but

not overly so—model, with some initial experimental tests

to confirm its basic form.

Below, we summarize what our model implies. These

claims both reflect familiar intuition and also yield new

or alternative explanations about time, energy, and power

relationships.

First, when analyzing time, the usual first-order analytic

tool is to assess the balance of the processing system [7]–

[12]. Recall that balance is the ratio of work the system

can perform per unit of data transfer. To this notion of

time-balance, we define an energy-balance analogue, which

measures the ratio of flops and bytes per unit-energy (e.g.,

Joules). We compare balancing computations in time against

balancing in energy. [§II]
Secondly, we use energy-balance to develop an energy-

based analogue of the time-based roofline model [12].

Because time can be overlapped while energy cannot, the

energy-based “roofline” is actually a smooth “arch line” (see

fig. 2a). Interestingly, if time-balance differs from energy-

balance, then there are distinct notions of being “compute-

bound” versus “memory-bound,” depending on whether the

optimization goal is to minimize time or to minimize energy.

We can measure this difference as a time-energy balance
gap. We also posit an analogous “powerline” model for

power. [§II, §III]
Thirdly, when a balance gap exists and energy-balance ex-

ceeds time-balance, the arch line predicts that optimizing for

energy may be fundamentally more difficult than optimizing

for time. It further suggests that high algorithmic energy-

efficiency may imply time-efficiency, while the converse—

that time-efficiency implies energy-efficiency—is not true.

[§II, §IV]

Fourthly, we test the basic form of the model using

experiments on real CPU and GPU platforms. Using our

model and these data, we show that the hypothetical balance

gap above does not yet really exist, which consequently

explains why on today’s platforms race-to-halt is likely

to work well. This raises the question for architects and

hardware designers about what the fundamental trends in

the balance gap will be: if energy-balance will exceed time-

balance in the future, race-to-halt will break. We further

use the experiments to highlight both the strengths and the

limitations of our model and analysis. [§IV, §V, §VII]

Taken together, we believe these analyses can improve our

collective understanding of the relationship among algorithm

properties and their costs in time, energy, and power.

2013 IEEE 27th International Symposium on Parallel & Distributed Processing

1530-2075/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPS.2013.77

661

Slow memory

xPU

Q transfers

W operations

Fast memory
(total size = Z)

Figure 1: A simple von Neumann architecture with a two-

level memory hierarchy. In our first analysis, suppose that an

algorithm performs W arithmetic operations and Q memory

operations, or “mops,” between slow and fast memories.

II. A BASIC MODEL AND ITS INTERPRETATION

Assume the simple architecture shown in fig. 1. This ar-

chitecture has a processing element, labeled “xPU”, as well

as two levels of memory, namely, an infinite slow memory

and a fast memory of finite capacity. This system roughly

captures everything from a single functional unit (xPU)

attached to registers (fast memory), to a manycore processor

(xPU) attached to a large shared cache (fast memory).

Further assume that the xPU may only perform operations

on data present in the fast memory. As such, an algorithm

for this architecture must explicitly move data between slow

and fast memories.

A. Algorithm characterization

Let W be the total number of “useful” operations that the

algorithm performs and let Q be the total number of words it

transfers. (Table I summarizes all of the parameters of our

model.) By useful, we mean in an algorithmic sense; for

example, we might only count flops when analyzing matrix

multiply, or comparisons for sorting, or edges traversed for

a graph traversal algorithm. For simplicity, we will assume

W is measured in units of flops. We will also refer to W as

the total work of the algorithm. Regarding Q, we will for

simplicity not distinguish between loads and stores, though

one could do so in principle. We will refer to Q as “mops”

measured in some convenient storage unit, such as a word

or a byte.

In a typical algorithm analysis, both W and Q will of

course depend on characteristics of the input, such as its

size n;1 in addition, Q will depend on the size of the fast

memory. We discuss these dependences momentarily.

For performance analysis and tuning, we may measure

the algorithm’s computational intensity, which is defined as

I ≡W/Q. Intensity has units of operations per unit storage,

such as flops per word or flops per byte. Generally speaking,

a higher value of I implies a more “scalable” algorithm. That

is, it will have more work than mops; therefore, it is more

likely to improve as the architecture’s compute throughput

increases, which happens as cores increase or SIMD lanes

widen.

Variable Description

W # of arithmetic operations, e.g., # of flops
Q # of main memory operations (“mops”)
I Intensity, or W/Q (e.g., flops per byte)

τflop Time per work (arithmetic) operation, e.g., time per flop
τmem Time per mop
Bτ Balance in time, τmem/τflop (e.g., flops per byte)
εflop Energy per arithmetic operation
εmem Energy per mop
Bε Balance in energy, εmem/εflop (e.g., flops per Joule)
ε0 Constant energy per flop

εflop + ε0 Minimum energy to execute one flop

ηflop Constant-flop energy efficiency,
εflop

εflop+ε0

π0 Constant power, e.g., Joule per second = Watts

πflop Baseline power per flop excluding constant power,
εflop

τflop

B̂ε (I) Effective energy-balance (π0 ≥ 0)

Tflops Total time to perform arithmetic
Tmem Total time to perform mops

T Total time
Eflops Total energy of arithmetic
Emem Total energy of mops
E0 Total “constant” energy
E Total energy
P Average power

Z Fast memory size (e.g., words, bytes)

Table I: Summary of model parameters

What should we expect about the value of I? Recall that

Q depends on fast memory capacity, which we denote by

Z units of storage (words or bytes), as shown in fig. 1.

Therefore, intensity will also depend on Z . A well-known

result among algorithm designers is that no algorithm for

n× n matrix multiply can have an intensity exceeding I =

O
(√

Z
)

[13]. Consequently, if we improve an architecture

by doubling Z , we will improve the inherent algorithmic

intensity of a matrix multiply algorithm by no more than√
2. Contrast this scenario to that of just summing all of the

elements of an array. Intuitively, we expect this computation

to be memory bandwidth-bound if the array is very large.

Indeed, it has an intensity of I = O(1), that is, a constant

independent of problem size or Z . Thus, increasing Z has

no effect on the intensity of this kind of reduction. In short,

1That is, imagine a W (n) = O(n) style of analysis. However, unlike
the traditional forms of such analysis, we will also want to characterize
constants and costs much more precisely whenever possible.

662

Table II: Sample values for model parameters,

based on best case (peak) capabilities of currently

available systems. See table I for a summary of

the definitions of these parameters.

Representative values

Variable NVIDIA “Fermi” GPU [2]

τflop (515 Gflop/s)−1 ≈ 1.9 ps per flopa

τmem (144 GB/s)−1 ≈ 6.9 ps per byteb

Bτ 6.9/1.9 ≈ 3.6 flops per byte

εflop ≈ 25 pJ per flopc

εmem ≈ 360 pJ per byte

Bε 360/25 ≈ 14.4 flops per Joule
a Based on peak double-precision floating-point

throughput.
b Based on peak memory bandwidth.
c Based on 50 pJ per double-precision fused multiply-add.

the concept of intensity measures the inherent locality of an

algorithm.

B. Time and energy costs

Next, we translate the abstract W and Q into concrete

time and energy costs. We will distinguish between the costs

of performing work versus that of data transfer. Further-

more, our model of energy cost will have two significant

differences from our model of time cost, namely, (i) time

costs may be overlapped whereas energy may not; and

(ii) we must burn constant energy, that is, we must burn

an additional amount of baseline energy throughout the

computation. These distinctions are critical, and together

determine whether or not one should expect an algorithmic

time-energy trade-off (see §VII).

More formally, suppose Tflops and Tmem are the total time

(seconds) to execute all work operations and all mops,

respectively. Further assume, optimistically, that overlap is

possible. Then, the total time T is

T ≡ max (Tflops, Tmem) . (1)

Similarly, suppose that Eflops and Emem are the total energy

(Joules) for work and mops. In addition, let E0(T) be

the constant energy of the computation. Constant energy

is the energy that must be expended for the duration of

the computation, which we will further assume is a fixed

cost independent of the type of operations being performed.

Then, our model of energy cost is

E ≡ Eflops + Emem + E0(T). (2)

Consider the component costs, beginning with time. Sup-

pose each operation has a fixed time cost. That is, let τflop

be the time per work operation and τmem be the time per

mop. We will for the moment tacitly assume throughput-
based values for these constants, rather than latency-based

values. (See table II for sample parameters.) This assumption

will tend to give a best-case analysis,2 which is only valid

when an algorithm has a sufficient degree of concurrency;

we discuss a more refined model based on work-depth in

prior work [1]. From these basic costs, we then define

the component times as Tflops ≡ Wτflop and Tmem ≡ Qτmem.

Then, under the optimistic assumption of perfect overlap,

the algorithm’s running time becomes

T = max (Wτflop, Qτmem)

= Wτflop ·max

(
1,

Bτ

I

)
, (3)

where we have defined Bτ ≡ τmem/τflop. This quantity is the

classical time-balance point, or simply time-balance [7]–

[12]. Time-balance is the architectural analogue of algo-

rithmic intensity and has the same units thereof, e.g., flops

per byte. Furthermore, if we regard Wτflop as the ideal

running time in the absence of any communication, then

we may interpret Bτ

I as the communication penalty when

it exceeds 1. We refer to this condition, I > Bτ , as a

balance principle [1]. Our algorithmic design goal is to

create algorithms that minimize time and have high intensity

relative to machine’s time-balance.

The simplest and most natural energy cost model is to

define an analogous fixed energy per work operation, εflop,

and fixed energy per mop, εmem. Additionally, suppose the

constant energy cost is linear in T , with a fixed constant
power of π0 units of energy per unit time. Then,

E = Wεflop +Qεmem + π0T

= Wεflop ·
(
1 +

Bε

I
+

π0

εflop

T

W

)
, (4)

where Bε ≡ εmem/εflop is the energy-balance point, by direct

analogy to time-balance.

Let us refine eq. (4) so that its structure more closely

parallels eq. (3), which in turn will simplify its interpretation.

Let ε0 ≡ π0 · τflop be the constant energy per flop, that is, the

energy due to constant power that burns in the time it takes

to perform one flop. Moreover, ε̂flop ≡ εflop + ε0 becomes

the actual amount of energy required to execute one flop,

given non-zero constant power. Next, let ηflop ≡ εflop/ε̂flop be

the constant flop energy-efficiency. This machine parameter

equals one in the best case, when the machine requires no

constant power (π0 = 0). Then, substituting eq. (3) into

eq. (4) yields

E = W · ε̂flop ·
(
1 +

B̂ε(I)

I

)
, (5)

where B̂ε(I) is the effective energy-balance,

B̂ε(I) ≡ ηflopBε + (1− ηflop)max (0, Bτ − I) . (6)

2Additionally, assuming throughput values for τmem implies that a
memory-bound computation is really memory bandwidth bound.

663

1/32

1/16

1/8

1/4

1/2

1

3.6 14

Arch line (GFLOP/J)
Roofline (GFLOP/s)

1/2 1 2 4 8 16 32 64 128 256 512
Intensity (flop:byte)

R
el

at
iv

e
pe

rf
or

m
an

ce
 (

51
5

G
F

LO
P

/s
 o

r
40

 G
F

LO
P

/J
)

(a) Rooflines versus arch lines. The red line with the sharp
inflection shows the roofline for speed; the smooth blue line shows
the “arch line” for energy-efficiency. The time- and energy-balance
points (3.6 and 14 FLOP:Byte, respectively) appear as vertical lines
and visually demarcate the balance gap.

1

2

4

8
3.6 14

5.0
4.0

1.0

0.5 1 2 4 8 16 32 64 128 256 512
Intensity (flop:byte)

P
ow

er
, r

el
at

iv
e

to
 fl

op
−

po
w

er

(b) A “power-line” chart shows how average power (y-axis, nor-
malized to πflop) varies with intensity (x-axis, flop:byte). Going
from bottom to top, the horizontal dashed lines indicate the flop
power (y=1), the memory-bound lower limit (y= Bε

Bτ
=4.0), and the

maximum power (y=1 + Bε
Bτ

).

Figure 2: Rooflines in time, arch lines in energy, and power lines. Machine parameters appear in table II, for an NVIDIA

Fermi-class GPU assuming constant power is 0. Dashed vertical lines show time- and energy-balance points.

The ideal energy is that of just the flops, Wε̂flop. On top of

this ideal, we must pay an effective energy communication

penalty, which B̂ε(I)/I captures. Therefore, similar to the

case of execution time, our algorithmic design goal with

respect to energy is to create work-optimal algorithms with

an intensity that is high relative to machine’s effective

energy-balance. That is, just like time there is a balance

principle for energy, B̂ε(I)� I .

When Bτ = B̂ε(I), optimizing for time and energy are

most likely the same process. The interesting scenario is

when they are unequal.

C. Rooflines in time and energy

We can visualize the balance principles of eqs. (3) and (5)

using a roofline diagram [9], [12]. A roofline diagram is

a line plot that shows how performance on some system

varies with intensity. Figure 2a depicts the simplest form

of the roofline, using the values for τflop, τmem, εflop, and εmem

shown in table II. These values were taken from Keckler et

al. for a NVIDIA Fermi-class GPU [14]; but since they did

not provide estimates for constant power, for now assume

π0 = 0. The x-axis (log base 2) shows intensity I . The

y-axis (log base 2) shows performance, normalized either

to the maximum possible speed (flops per unit time) or

maximum possible energy-efficiency (flops per unit energy)

on the platform. That is, the roofline with respect to time is

the curve given by Wτflop/T = min(1, I/Bτ) plotted against

I . Similarly the curve for energy is given by Wε̂flop/E =
1/(1+B̂ε(I)/I); since π0 = 0 by assumption, ε̂flop = εflop and

B̂ε(I) = Bε. In both cases, the best possible performance is

the time or energy required by the flops alone.

The roofline for speed (inverse time) is the red line of

fig. 2a. Since the component times may overlap, the roofline

has a sharp inflection at the critical point of I = Bτ . When

I < Bτ , the computation is memory-bound in time, whereas

I ≥ Bτ means the algorithm is compute-bound in time.

There is also a “roofline” for energy-efficiency, shown by

the smooth blue curve in fig. 2a. It is smooth since we cannot

hide memory energy and since π0 = 0. As such, we may

more appropriately refer to it as an “arch line.” Rather than a

sharp inflection, the energy-balance point I = Bε is the point

at which energy-efficiency is half of its best possible value.3

Put another way, suppose W is fixed and we increase I by

reducing Q. Then, Bε is the intensity at which the amount of

energy spent on flops equals that spent on communication. In

this sense, an algorithm may be compute-bound or memory-

bound in energy, which will differ from time when Bτ �= Bε.

D. The balance gap

The aim of rooflines and arches is to guide optimiza-

tion. Roughly speaking, an algorithm designer starts with

some baseline algorithm having a particular intensity (x-

axis value). A roofline or arch line provides two pieces of

information: (a) it suggests the target performance tuning

goal, which is the corresponding y-axis value; and (b) it

suggests by how much intensity must increase to improve

performance by a desired amount. Furthermore, it also sug-

gests that the optimization strategies may differ depending

on whether the goal is to minimize time or minimize energy.

The balance points tell part of the story. Ignoring constant

power, we expect Bτ < Bε because both the time and

energy of a mop tend to be relatively large compared to

that of a flop [14]. If so, an algorithm with Bτ < I < Bε is

3This relationship follows from the simple algebraic fact that a + b ≤
2max(a, b).

664

simultaneously compute-bound in time while being memory-

bound in energy. Furthermore, assume that increasing inten-

sity is the hard part about designing new algorithms or tuning

code. Then, Bτ < Bε suggests that energy-efficiency is even

harder to achieve than time-efficiency. The balance gap, or

ratio Bε/Bτ , measures the difficulty.

Having said that, a nice corollary is that energy-efficiency

may imply time-efficiency. That is, I > Bε implies that

I > Bτ as well. However, the converse—that time-efficiency

implies energy-efficiency—does not in general hold by sim-

ilar reasoning. Of course, roofs and arches are only bounds,

so these high-level claims are only guidelines, rather than

guaranteed relationships. Nevertheless, it may suggest that

if we were to choose one metric for optimization, energy is

the nobler goal.

If, on the other hand, Bτ > Bε, then time-efficiency

would tend to imply energy-efficiency. This condition is one

in which so-called race-to-halt strategies for saving energy

will tend to be effective [15].4

Lastly, note that the analogous conditions hold when π0 >
0, but with B̂ε(I) in place of Bε. Higher constant power

means lower ηflop; consequently, referring to eq. (6), it would

cause B̂ε(I) to be lower than Bε.

III. WHAT THE BASIC MODEL IMPLIES ABOUT POWER

Assuming our time and energy models are reasonable, we

can also make analytic statements about the average power
that an algorithm uses when running on a machine, P ≡
E/T . Define the power per flop to be πflop ≡ εflop/τflop, that is,

the power to execute a flop excluding constant power. Then,

dividing eq. (5) by eq. (3) and applying a little algebra leads

to

P =
πflop

ηflop

[
min(I, Bτ)

Bτ
+

B̂ε(I)

max(I, Bτ)

]
. (7)

The “power-line” diagram of fig. 2b depicts the most

interesting features of eq. (7), using the parameters of table II

with π0 = 0 (ηflop = 1). If the algorithm is severely memory-

bound (I → 0), then P > πflop
Bε

Bτ
. If instead the algorithm

is very compute-bound (I →∞), P decreases to its lower-

limit of πflop. The algorithm requires the maximum power

when I = Bτ . From its value there, we can conclude that

P ≤ πflop

(
1 +

Bε

Bτ

)
. (8)

That is, relative to πflop, we pay an extra factor related to the

balance gap. The larger this gap, the larger average power

will be.

4The race-to-halt strategy says that the best way to save energy is to run
as fast as possible and then turn everything off.

Peak
performance Peak TDP

Single memory (chip
(Double) bandwidth only)

Device Model GFLOP/s GB/s Watts

CPU Intel 106.56 25.6 130
Core i7-950 (53.28)

GPU NVIDIA 1581.06 192.4 130
GeForce GTX 580 (197.63)

Table III: Platforms

IV. AN EXPERIMENT

The model of §II is an hypothesis about the relationship

between intensity and performance, both in time and in

energy. This section explores whether we can observe this

relationship on actual systems.

A. Experimental Setup

Hardware: Table III shows our experimental platforms,

which include an Intel quad-core Nehalem CPU and a

NVIDIA Fermi consumer-class GPU. To measure power, we

use two tools. The first is PowerMon 2 [16], a fine-grained

integrated power measurement device for measuring CPU

and host component power. The second is a custom in-house

PCIe interposer for measuring GPU power.

Figure 3 shows how the measurement equipment connects

to the system. PowerMon 2 sits between the power supply

unit and various devices in the system. It directly measures

direct current voltage and current on up to eight individual

channels using digital power monitor integrated circuits. It

can sample at 1024 Hz per channel, with an aggregate fre-

quency of up to 3072 Hz. PowerMon 2 reports formatted and

time-stamped measurements without the need for additional

software, and fits in a 3.5 inch internal hard drive bay.

ATX PSU

PowerMon2

PCIe
Interposer

GPU

CPU

Motherboard

Input

Output

Figure 3: Placement of the measurement probes, Power-

Mon 2 and our custom PCIe interposer

Modern high-performance GPUs have high power require-

ments. Typically, they draw power from multiple sources,

including the motherboard via the PCIe connector. In order

to measure the power coming from the motherboard we

665

use a PCIe interposer that sits between the GPU and the

motherboard’s PCIe connector. The interposer intercepts the

signals coming from the pins that provide power to the GPU.

Measurement method: The GPU used in our study

draws power from two 12 Volt connectors (8-pin and 6-

pin) that come directly from the ATX Power Supply Unit

(PSU), and from the motherboard via the PCIe interface,

which supply 12 V and 3.3 V connectors. When performing

GPU benchmarking, PowerMon 2 measures the current

and voltage from these four sources at a regular interval.

For each sample, we compute the instantaneous power by

multiplying the measured current and voltage at each source

and then sum over all sources. We can then compute the

average power by averaging the instantaneous power over all

samples. Finally, we compute the total energy by multiplying

average power by total time. In this setup, we are able to

largely isolate GPU power from the rest of the system (e.g.,

host CPU).

The PSU provides power to our CPU system using a 20-

pin connector that provides 3.3 V, 5 V and 12 V sources

and a 4-pin 12 V connector. As with the GPU, PowerMon 2

measures current and voltage from these four sources; we

compute the average power and total energy in the same

manner as above. For our CPU measurements, we physically

remove the GPU and other unnecessary peripherals so as to

minimize variability in power measurements.

In the experiments below, we executed the benchmarks

100 times each and took power samples every 7.8125 ms

(128 Hz) on each channel.

B. Intensity microbenchmarks

We implemented microbenchmarks that allow us to vary

intensity, and tuned them to achieve very high fractions of

peak FLOP/s or bandwidth as predicted by the roofline. We

then measured the time and power as described above to

see to what extent they behave as our model predicts. The

results appear in fig. 4, with measured data (shown as dots)

compared to our model (shown as a solid line). We describe

these benchmarks and how we instantiated the model below.5

The GPU microbenchmark executes a mix of independent

fused multiply-add operations (FMA flops, counted as two

flops each) and memory load operations. We auto-tuned

this microbenchmark to maximize performance on the GPU

by tuning kernel parameters such as number of threads,

thread block size, and number of memory requests per

thread. The GPU kernel is fully unrolled and its correctness

verified by inspecting the PTX code and comparing the

computed results against an equivalent CPU kernel. The

CPU microbenchmark evaluates a polynomial and is writ-

ten in assembly, tuned specifically to maximize instruction

throughput on a Nehalem core. Changing the degree of the

polynomial effectively varies the computation’s intensity.

5http://code.google.com/p/a-roofline-model-of-energy-ubenchmarks/.

NVIDIA GTX 580 Intel Core i7-950

εs 99.7 pJ / FLOP 371 pJ / FLOP
εd 212 pJ / FLOP 670 pJ / FLOP

εmem 513 pJ / Byte 795 pJ / Byte
π0 122 Watts 122 Watts

Table IV: Fitted energy coefficients. Note that εmem is given

in units of picoJoules per Byte. As it happens, the π0

coefficients turned out to be identical to three digits on the

two platforms.

The kernel is parallelized using OpenMP to run on all 4

cores. Although the CPU and GPU benchmarks differ, their

intent is simply to permit varying of intensity and achieving

performance as close to the roofline as possible. As such,

what they compute is not as important as being highly-tuned

and having controllable intensity.

Figure 4 shows that both microbenchmarks achieve per-

formance close to the roofline in most cases. Refer specif-

ically to the “Time” subplots, where the roofline is drawn

using peak GFLOP/s and bandwidth numbers from table III.

For instance, the double-precision version of the GPU bench-

mark achieves up to 170 GB/s, or 88.3% of system peak

when it is bandwidth bound, and as much as 196 GFLOP/s,

or 99.3% of system peak when it is compute bound. For

single precision, the kernel performs up to 168 GB/s and

1398 GFLOP/s respectively. However, the kernel’s perfor-

mance departs from the roofline significantly near the time-

balance point. We explain this phenomenon in terms of our

model when discussing fig. 5 (see §V-B).

The CPU microbenchmark achieves up to 18.7 GB/s and

99.4 GFLOP/s, or 73.1% and 93.3% of peak in single pre-

cision performance. The achieved bandwidth is comparable

to that of the STREAM benchmark6 and the lower fraction

of peak bandwidth observed is typical for CPU systems.

Double-precision performance is 18.9 GB/s (73.8%) and

49.7 GFLOP/s (93.3%), respectively.
Model instantiation: To instantiate eq. (3), we estimate

time per flop and time per mop using the inverse of the

peak manufacturer’s claimed throughput values as shown in

table III. For the energy costs in eq. (5), such specifications

do not exist. Therefore, we estimated them using linear

regression on our experimental data.7 In particular, the data

points are a series of 4-tuples (W,Q, T,R), where we

choose W and Q when running the microbenchmark, T is

the measured execution time, and R is a binary variable set

to 0 for single-precision and 1 for double-precision. We use

linear regression to find the coefficients of the model,

E

W
= εs + εmem

Q

W
+ π0

T

W
+ΔεdR, (9)

which yields the energy per single-precision flop, εs; energy

per single-precision word, εmem; constant power, π0; and

6streambench.org
7We use the standard regression routine in R, r-project.org.

666

NVIDIA GTX 580
(GPU−only)

Intel i7−950
(Desktop)

●

●

●

●
● ● ● ● ● ● ●

1.0

Peak
= 200 GFLOP/s

●

●

●

●
● ● ● ●

●

● ●

2.4 (const=0)0.79

Peak
= 1.2 GFLOP/J

●

●

●

●

●

●

●

●
● ● ●● ● ● ● ● ● ● ● ●●●

2.1

Peak
= 53 GFLOP/s

●

●

●

●

●

●

●
●

● ● ●● ● ● ● ● ● ● ● ●●●

1.2 (const=0)1.1

Peak
= 0.34 GFLOP/J

1/16

1/8

1/4

1/2

1

1/16

1/8

1/4

1/2

1

T
im

e
E

nergy

1/4 1/2 1 2 4 8 16 1/4 1/2 1 2 4 8 16
Intensity (double−precision FLOP : Byte)

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

(a) Double-precision

NVIDIA GTX 580
(GPU−only)

Intel i7−950
(Desktop)

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
● ● ●

8.2

Peak
= 1600 GFLOP/s

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

● ● ●

5.1 (const=0)4.5

Peak
= 5.7 GFLOP/J

●

●

●

●

●
●

●
●

●●●● ● ● ● ● ●●●●●●

4.2

Peak
= 110 GFLOP/s

●

●

●

●

●
●

●
●

●●●● ● ● ● ● ●●●●●●

2.1 (const=0)2.1

Peak
= 0.66 GFLOP/J

1/64

1/32

1/16

1/8

1/4

1/2

1

1/64

1/32

1/16

1/8

1/4

1/2

1

T
im

e
E

nergy

1/4 1/2 1 2 4 8 16 32 64 1/4 1/2 1 2 4 8 16 32 64
Intensity (single−precision FLOP : Byte)

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

(b) Single-precision

Figure 4: Measured time and energy for a synthetic benchmark corroborates the basic form of model, eqs. (3) and (5). We

show the true energy-balance point as well as the energy-balance if π0 = 0. The impact of constant energy can be profound:

although the GPU double-precision case has Bε > Bτ , the effective energy-balance point B̂ε at y = 1
2 on the arch line is

less than the time-balance. In other words, in this case time-efficiency implies energy-efficiency because of constant power,

which further suggests that “race-to-halt” is a reasonable energy-saving strategy; were π0 → 0, the situation could reverse.

Δεd, which is the additional energy required for a double-

precision flop over a single-precision flop.8 That is, the

energy per double-precision flop is εd ≡ εs + Δεd. We

summarize the fitted parameters in table IV. We then plug

these coefficients into eq. (5) to produce the model energy

curves shown in fig. 4. These curves visually confirm that

the fitted model captures the general trend in the data. We

analyze these curves in more detail in the next section (§V).

V. DISCUSSION, APPLICATION, AND REFINEMENT

A. The fitted parameters

Keckler et al. provide some information about GPU

energy [14], providing a way to sanity-check and clarify

what the fitted parameters in table IV represent.

First, Keckler et al. state that the energy cost of the

floating-point unit that performs one double-precision FMA

is about 50 pJ, or 25 pJ per flop; our estimate in table IV

is about eight times larger. This discrepancy arises because

the 50 pJ FMA cost excludes various instruction issue

and microarchitectural overheads (e.g., registers, component

interconnects), which our measurement implicitly includes.

Based on our estimates, these overheads account for roughly

187 pJ/flop.

Secondly, the discussion of Keckler et al. on memory

access costs suggests a baseline memory-energy cost of

253–389 pJ per Byte. This cost includes dynamic random

access memory (DRAM) access costs, interface costs, and

wire transfer. However, this estimate ignores instruction

overheads and possible overheads due to cache. Recall

that we estimated the instruction overhead for a floating

point instruction to be roughly 187 pJ, or approximately

8Normalizing the regressors by W produces high-quality fits, with R2

(residual) coefficient near unity at p-values below 10−14.

47 pJ/Byte in single–precision. Adding this number to the

baseline produces an estimate of 300–436 pJ/Byte. We also

have to account for the costs of storing and reading the

data from the L1 and L2 caches as it travels up the memory

hierarchy. From the paper by Keckler et al., we can estimate

this cost to be approximately 1.75 pJ/Byte per read/write

for both L1 and L2 (assuming they are both implemented

using static random access memory (SRAM)), or a total of 7

pJ/Byte for both L1 and L2 read and write traffic. This brings

the total cost estimate to 307–443 pJ/Byte. Our estimate of

εmem is larger, which may reflect additional overheads for

cache management, such as tag matching.

There is no information provided to check the constant

power value; for reference, we measured GPU idle power

(powered on but with nothing running) to be 39.6 Watts. As

such, our constant power estimate accounts for much more

than just idle power.

Not surprisingly, the estimates of CPU energy costs for

both flops and memory are higher than their GPU coun-

terparts. Flop energy costs are higher due to the higher

complexity of a CPU processing core relative to its GPU

counterpart; similarly, memory energy costs are higher due

in large part to a greater distance between the processor and

memory in the CPU system relative to the GPU system.

Also, the CPU used in our experiments was built using an

older process technology. All of these characteristics have a

profound impact on the balance gap, discussed next.

B. Balance gaps and power caps

Consider the rooflines and arch lines of fig. 4. In all

cases, the time-balance point exceeds the y=1/2 energy-

balance point, which means that time-efficiency will tend to

imply energy-efficiency. That is, once the microbenchmark

is compute-bound in time (I > Bτ), it is also within a

667

NVIDIA GTX 580
(GPU−only)

Intel i7−950
(Desktop)

●

● ●

●

●

●

●
●

●

● ●

1.0
2.4 (const=0)0.79

120 W120 W

160 W160 W

220 W220 W222220

260 W260 W2

●
●

●
●

●
●

●
●

● ● ●● ● ● ● ● ● ● ● ●●●

2.1
1.2 (const=0)1.1

120 W120 W120 W

140 WW140 W140 W140 W
160 W160 W

180 W180 W180 W

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

P
ow

er

1/4 1/2 1 2 4 8 16 1/4 1/2 1 2 4 8 16
Intensity (FLOP : Byte)

P
ow

er
 (

no
rm

al
iz

ed
 to

 fl
op

+
co

ns
t)

(a) Double-precision

NVIDIA GTX 580
(GPU−only)

Intel i7−950
(Desktop)

● ●

● ●
●

●
● ●●

●

●

●
● ● ●

● ● ●

8.2
5.1 (const=0)4.5

WWW120 W120 W0120 WW

WW220 W0220 W2220 W220 W02 WWW220 W

WW280 W280 W02 W

WW380 W0380 W3 W

●
●

●
●

●
●

●
●

●●●●
● ● ● ● ●●●●●●

4.2
2.1 (const=0)2.1

WW120 W0120 WW

WW140 W040 W140 W014 WW140 W

WW160 W160 W0 W

WW180 W180 W0 W

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

P
ow

er

1/4 1/2 1 2 4 8 16 32 64 1/4 1/2 1 2 4 8 16 32 64
Intensity (FLOP : Byte)

P
ow

er
 (

no
rm

al
iz

ed
 to

 fl
op

+
co

ns
t)

(b) Single-precision

Figure 5: Measured power for the microbenchmark corroborates the “powerline” model. On the GTX 580 platform, NVIDIA

reports a limit of 244 Watts, which explains the discrepancy between the observed data and the predicted powerline in the

single-precision GTX 580 case.

factor of two of the optimal energy-efficiency. We believe

this observation explains why race-to-halt can be such an

effective energy-saving strategy [15].

If architects could drive π0 → 0, then the situation

could reverse—see the double-precision GPU case, where

the “const=0” energy-balance line in the bottom-left subplots

of fig. 4a denotes this scenario. However, for the Intel

platform, even having π0 = 0 does not invert the balance

gap. Instead, as table IV suggests, εflop and εmem on the Intel

platform are closer than they are on the NVIDIA platform.

An important question then is to what extent π0 will go

toward 0 and to what extent microarchitectural inefficiences

will reduce.

As noted previously, the single-precision GPU perfor-

mance in fig. 4b does not track the roofline closely in the

neighborhood of Bτ . The reason is that our model has an

important limitation: we do not incorporate explicit power

caps. To see this effect, refer to the powerlines of fig. 5

as well as the theoretical illustration of fig. 2b. Our model

demands that power increase sharply as I approaches Bτ

(see §III). For instance, on the GPU in single-precision, our

model says we will need 387 Watts on the GPU as shown in

fig. 5b. This scenario would cause excessive thermal issues,

and indeed the GTX 580 has a maximum power rating of

244 Watts, which our microbenchmark already begins to

exceed at high intensities. Thus, incorporating power caps

will be an important extension for future work.

C. Applying and refining the model: FMMU on the GPU

Beyond the microbenchmark, we apply our model to

the fast multipole method (FMM), an O(n) approximation

method for n-body computations, which normally scales as

O(n2) [17]. We specifically consider the most expensive

phase of the FMM, called the U-list phase (FMMU), and

target GPUs. Our interest here is whether we can estimate

time and energy using our model.

Algorithm 1 FMMU algorithm

1: for each target leaf node, B do
2: for each target point t ∈ B do
3: for each neighboring source node, S ∈ U(B) do
4: for each source point s ∈ S do
5: (δx, δy, δz) = (tx − sx, ty − sy, tz − sz)
6: r = δ2

x + δ2
y + δ2

z

7: w = rsqrtf(r) {Reciprocal square-root}
8: φt+ = ds ∗ w {ds and φt are scalars}

The FMMU algorithm: The FMMU phase appears as

pseudocode in Algorithm 1. The n points are arranged into

a spatial tree, with leaf nodes of the tree containing a subset

of the points. For every leaf node B, FMMU iterates over

its neighboring leaf nodes. The list of neighbors is called

the “U-list,” denoted as U(B). The node B is the target
node, and each neighbor S ∈ U(B) is a source node. For

each pair (B,S), FMMU iterates over all pairs of points

(t ∈ B, s ∈ S) and updates φt, a value associated with the

target point t. According to lines 5-8, each pair of points

involves 11 scalar flops, where we count “reciprocal square-

root” (1/
√
r) as one flop. Furthermore, each leaf contains

O(q) points for some user-selected q; the number of flops

is therefore O(q2) for every O(q) points of data, with q
typically on the order of hundreds or thousands. Thus, the

FMMU phase is typically compute-bound.

From prior work, we happen to have generated approxi-

mately 390 different code implementations of this bench-

mark [18]. These variants use a variety of performance

optimization techniques and tuning parameter values.

Initial fitting: Initially, we used eq. (2) to estimate

the total energy of each implementation. We derived the

number of flops from the input data and the number of bytes

read from the DRAM using hardware counters (L2 read

668

misses) provided in NVIDIA’s Compute Visual Profiler [19].

However, when compared to measured data, our energy

estimates were lower by 33% on average.

Accounting for cache access: We attributed this differ-

ence to cache access costs. To account for such costs, we

used our reference implementation of FMMU , which relies

only on L1 and L2 caches for data reuse. That is, it does

not use shared or texture memory or register-level blocking.

By measuring the number of bytes read from the L1 and

L2 caches using counters and then dividing the difference
between measured energy and energy estimated using eq. (2)

by this number, we estimated a cache access energy cost to

be 187 pJ/Byte. (This estimate does not of course distinguish

between different levels of cache access.) When we used this

estimate for all the other FMMU variations that only use L1

and L2 caches (about 160 such kernels), our new energy

estimates had a median error of 4.1%. For future work, we

plan to study this in greater detail and derive individual costs

of loading data from L1, L2, texture and shared memory.

VI. RELATED WORK

The perspective of this paper is algorithms, rather than

architecture, systems, or embedded software, where time,

power, and energy are traditionally studied (see the survey

of Kaxiras et al. [20].) Our model is perhaps most similar to

a recent technical report by Demmel et al. [21]. However, our

model is more parsimonious and, as such, clarifies a number

of issues such as the notion of a balance gap or why race-to-

halt works on current systems. At a more technical level, we

also differ in that we assume computation-communication

overlap and have furthermore tried to validate the basic form

of our model with experiments.

Additional algorithmic theory work: The algorithms

community has also considered the impact of energy con-

straints, particularly with respect to exploiting scheduling

slack. There have also been numerous other attempts to

directly explore the impact of energy constraints on algo-

rithms. These include new complexity models, including

new energy-aware Turing machine models [22]–[25]; this

body of work addresses fundamental theoretical issues but

is hard to operationalize for practical algorithm design and

tuning. Other algorithmic work takes up issues of frequency

scaling and scheduling [26], [27]. Such models are partic-

ularly useful for exploiting slack to reduce energy by, for

instance, reducing frequency of non-critical path nodes.

Systems-focused frequency scaling: In more practical

software-hardware settings, the emphasis is usually on re-

ducing energy usage through Dynamic Voltage and Fre-

quency Scaling (DVFS). DVFS attempts to minimize energy

consumption with little or no impact in performance by

scaling down the frequency (and therefore the voltage) when

processor speed does not limit performance [28]–[32]. This

work suggests a different flavor of time-energy trade-off,

which comes from the superlinear scaling of power and

energy with frequency, than what we consider in this paper.

Among these, Song et al. propose a particulary notable

iso-energy-efficiency model for determining the problem

size and clock frequency to achieve a desired level of

energy-efficiency on a system of a particular size (number

of processors or nodes) [32]. It is, however, not explicit

about algorithmic features such as intensity. Like some of

the theory work, much of this DVFS research focuses on

predicting slack in the application which allows cores to be

clocked down to save power. The perspective is systems-

centric, and does not really attempt to provide programmers

or algorithm designers with any insight into what they can

do to make programs more energy efficient.

Profiling and observation-based studies: There are a

number of empirical studies of time, power, and energy in

a variety of computational contexts, such as linear algebra

and signal processing [33]–[38]. One notable example is the

work of Dongarra et al., which observes the energy benefits

of mixed-precision [33].

Esmaeilzadeh et al. measure chip power for a variety of

applications, with a key high-level finding being the highly

application-dependent behavior of power consumption [38].

They create abstract profiles to capture the differing char-

acteristics of these applications. However, they do not as-

cribe specific properties of a computation in a way that

programmers or algorithm designers can use to understand

and change time-energy behavior.

Tools: Although we adopted PowerMon 2 as our mea-

surement infrastructure, there are numerous other possibil-

ities. Perhaps the most sophisticated alternative is Power-

Pack [36], a hardware-software “kit” for power and energy

profiling. However, the infrastructure is relatively elabo-

rate and expensive to acquire, in contrast to PowerMon

2. In future studies, we expect to be able to use even

simpler measurement methods based on vendor-provided

hardware support. These include Intel hardware counters for

power [39] and NVIDIA’s Management Library for power

measurement [40].

Other modeling approaches: The direct inspiration for

this paper comes from studies of architecture-cognizant

extensions to Amdahl’s Law, balance, and the time-based

roofline [1], [4]–[12].

However, there are numerous other approaches. For in-

stance, numerous recent studies have developed detailed

GPU-specific models [41]–[43]; though these models are ca-

pable of directly predicting time, they require detailed char-

acterizations of the input program and/or intimate knowledge

of the GPU microarchitecture. As such, it is non-trivial

to translate the output of these models into actionable

algorithmic or software changes. There are also numerous

models that try to incorporate power and energy [31], [32],

[44]–[47]. However, like the time-based models, much of

this work is systems-centric, abstracting away algorithmic

properties.

669

Metrics: Our models reason directly about the basic

measures of time, energy, and power. When considering

trade-offs and multiobjective optimization, other metrics

may be better suited. These include the energy delay product

(EDP) and generalizations [48], [49], FLOP/s per Watt (i.e.,

flops per Joule) [50], and The Green Index [51].

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In our view, the most interesting outcome of our analysis

is the balance gap, or the difference between the classical

notion of time-balance, Bτ , and its energy analogue, Bε.

We believe balance gaps have important consequences for

algorithms, as we sketch below. Today, Bτ > Bε, due largely

to constant power and other microarchitectural inefficiencies;

consequently, race-to-halt strategies will be the most reason-

able first-order technique to save energy. Will this change

significantly in the future?

Work-communication trade-offs: Suppose in the future

that there is a significant balance gap, with Bε > Bτ and

π0 = 0. An interesting class of algorithms to consider are

those exhibiting a work-communication trade-off. That is,

denote an abstract algorithm by the pair (W,Q), where

the algorithm performs W flops and Q mops. A “new”

algorithm (fW, Q
m) exhibits a work-communication trade-

off with respect to the baseline (W,Q) if f > 1 and m > 1.

A natural question to ask in our model is the following:

under what conditions on f and m should we expect a

speedup, a “greenup” (improvement in energy-efficiency),

both, or neither?

For example, let Ef,m be the energy of the new algorithm

so that E1,1 is the energy of the baseline. Denote the

greenup, analogous to a speedup, by ΔE ≡ E1,1/Ef,m.

One can easily show that a general condition for a greenup

ΔE > 1 is

f < 1 +
m− 1

m

Bε

I
, (10)

where I is that of baseline. This condition has a hard upper-

limit. In particular, even if we can eliminate communication

entirely (m → ∞), the amount of extra work is bounded

by f < 1 + Bε

I . When the baseline algorithm is already

compute-bound in time, so that I ≥ Bτ , then f < 1 + Bε

Bτ
.

One can imagine more analyses and experiments to deter-

mine when such a greenup will also accompany a speedup,

which we are purusing as a part of our on-going work.

Some of this additional analysis appears in our companion

technical report [52].

Limitations: The model is just a first-cut at bridging

algorithm and architecture analysis. Regarding its limita-

tions, these are the most important in our view. First, we

have suppressed latency costs, under the assumption of

sufficient concurrency; we have considered such costs in

prior work [1] and plan to extend it for energy. Secondly,

we consider just the two-level memory hierarchy; however,

our analysis in §V suggests how to incorporate such costs,

thereby improving model accuracy and enabling deeper

inferences about architecture. Thirdly, we ignored power

caps, which can cause our analysis to overestimate power

consumption and performance (§V). Having said that, at

least the predictions appear empirically to give upper-bounds

on power and lower-bounds on time. In spite of these lim-

itations, we hope algorithm designers, performance tuners,

and architects will find it an interesting starting point for

identifying potential new directions lying at the intersection

of algorithms and architecture.

Acknowledgements

This paper is an abridged version of a longer technical

report [52].

We thank Marat Dukhan for his CPU polynomial code, as

well as Kenneth Czechowski and Aparna Chandramowlish-

waran for their comments, encouragement, and feedback.

Thanks also to Hyesoon Kim for the PCIe interposer. This

work was supported in part by the National Science Foun-

dation (NSF) under NSF CAREER award number 0953100

and joint NSF 0903447 and Semiconductor Research Corpo-

ration (SRC) Award 1981; the U.S. Dept. of Energy (DOE),

Office of Science, Advanced Scientific Computing Re-

search under award DE-FC02-10ER26006/DE-SC0004915,

and the Scientific Discovery through Advanced Computing

(SciDAC) program under award DE-FC02-06ER25764 and

DE-FG02-11ER26050/DE-SC0006925; and grants from the

Defense Advanced Research Projects Agency (DARPA)

Computer Science Study Group program. Any opinions,

findings and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily

reflect those of NSF, DOE, or DARPA.

REFERENCES

[1] K. Czechowski, C. Battaglino, C. McClanahan,
A. Chandramowlishwaran, and R. Vuduc, “Balance principles
for algorithm-architecture co-design,” in Proc. USENIX
Wkshp. Hot Topics in Parallelism (HotPar), Berkeley, CA,
USA, May 2011.

[2] R. Vuduc and K. Czechowski, “What GPU computing means
for high-end systems,” IEEE Micro, vol. 31, no. 4, pp. 74–78,
July/August 2011.

[3] K. Czechowski, C. McClanahan, C. Battaglino, K. Iyer, P.-
K. Yeung, and R. Vuduc, “On the communication com-
plexity of 3D FFTs and its implications for exascale,” in
Proc. ACM Int’l. Conf. Supercomputing (ICS), San Servolo
Island, Venice, Italy, June 2012.

[4] M. D. Hill and M. R. Marty, “Amdahl’s Law in the
Multicore Era,” Computer, vol. 41, no. 7, pp. 33–38, Jul.
2008.

[5] D. H. Woo and H.-H. S. Lee, “Extending Amdahl’s Law
for energy-efficient computing in the many-core era,” IEEE
Computer, vol. 41, no. 12, pp. 24–31, Dec. 2008.

670

[6] T. Zidenberg, I. Keslassy, and U. Weiser, “Multi-Amdahl:
How Should I Divide My Heterogeneous Chip?” IEEE
Computer Architecture Letters, pp. 1–4, 2012.

[7] H. T. Kung, “Memory requirements for balanced computer
architectures,” in Proceedings of the ACM Int’l. Symp. Com-
puter Architecture (ISCA), Tokyo, Japan, 1986.

[8] W. D. Hillis, “Balancing a Design,” IEEE Spectrum, 1987.

[9] R. W. Hockney and I. J. Curington, “f1/2: A parameter
to characterize memory and communication bottlenecks,”
Parallel Computing, vol. 10, no. 3, pp. 277–286, May 1989.

[10] G. E. Blelloch, B. M. Maggs, and G. L. Miller, “The hidden
cost of low bandwidth communication,” in Developing a
Computer Science Agenda for High-Performance Computing,
U. Vishkin, Ed. New York, NY, USA: ACM, 1994, pp. 22–
25.

[11] J. McCalpin, “Memory Bandwidth and Machine Balance in
High Performance Computers,” IEEE Technical Committee
on Computer Architecture (TCCA) Newsletter, Dec. 1995.

[12] S. Williams, A. Waterman, and D. Patterson, “Roofline:
An insightful visual performance model for multicore
architectures,” Communications of the ACM, vol. 52, no. 4,
p. 65, Apr. 2009.

[13] H. Jia-Wei and H. T. Kung, “I/O complexity: The red-blue
pebble game,” in Proceedings of the thirteenth annual ACM
symposium on Theory of computing - STOC ’81. New York,
New York, USA: ACM Press, May 1981, pp. 326–333.

[14] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and
D. Glasco, “GPUs and the Future of Parallel Computing,”
IEEE Micro, vol. 31, no. 5, pp. 7–17, Sep. 2011.

[15] M. A. Awan and S. M. Petters, “Enhanced Race-To-Halt: A
Leakage-Aware Energy Management Approach for Dynamic
Priority Systems,” in 2011 23rd Euromicro Conference on
Real-Time Systems. IEEE, Jul. 2011, pp. 92–101.

[16] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield,
“PowerMon 2: Fine-grained, integrated measurement,”
RENaissance Computing Institute, University of North
Caroliina, Chapel Hill, NC, USA, Tech. Rep., 2009.

[17] L. GREENGARD and V. ROKHLIN, “A fast algorithm
for particle simulations,” Journal of Computational Physics,
vol. 73, no. 2, pp. 325–348, Dec. 1987.

[18] A. Chandramowlishwaran, J. W. Choi, K. Madduri, and
R. Vuduc, “Towards a communication optimal fast multipole
method and its implications for exascale,” in Proc. ACM
Symp. Parallel Algorithms and Architectures (SPAA), Pitts-
burgh, PA, USA, June 2012, brief announcement.

[19] NVIDIA, “Compute Visual Profiler,” 2012.

[20] S. Kaxiras and M. Martonosi, Computer Architecture Tech-
niques for Power-Efficiency, 1st ed. Morgan and Claypool
Publishers, 2008.

[21] J. Demmel, A. Gearhart, O. Schwartz, and B. Lipschitz,
“Perfect strong scaling using no additional energy,” University
of California, Berkeley, CA, USA, Tech. Rep., 2012.

[22] A. Tyagi, “Energy-Time Trade-offs in VLSI Computations,”
in Foundations of Software Technology and Theoretical
Computer Science, vol. LNCS 405, 1989, pp. 301–311.

[23] A. J. Martin, “Towards an energy complexity of computation,”
Information Processing Letters, vol. 77, no. 2–4, pp. 181–187,
Feb. 2001.

[24] R. Jain, D. Molnar, and Z. Ramzan, “Towards a model
of energy complexity for algorithms,” in IEEE Wireless
Communications and Networking Conference, 2005. IEEE,
2005, pp. 1884–1890.

[25] B. D. Bingham and M. R. Greenstreet, “Computation with
Energy-Time Trade-Offs: Models, Algorithms and Lower-
Bounds,” 2008 IEEE International Symposium on Parallel
and Distributed Processing with Applications, pp. 143–152,
Dec. 2008.

[26] V. A. Korthikanti and G. Agha, “Analysis of Parallel
Algorithms for Energy Conservation in Scalable Multicore
Architectures,” in 2009 International Conference on Parallel
Processing. Vienna, Austria: IEEE, Sep. 2009, pp. 212–219.

[27] G. Aupy, A. Benoit, and Y. Robert, “Energy-aware
scheduling under reliability and makespan constraints,”
INRIA, Grenoble, France, Tech. Rep. October, 2011.

[28] R. Ge, X. Feng, and K. W. Cameron, “Performance-
constrained distributed dvs scheduling for scientific
applications on power-aware clusters,” in Proceedings
of the 2005 ACM/IEEE conference on Supercomputing, ser.
SC ’05. Washington, DC, USA: IEEE Computer Society,
2005, pp. 34–.

[29] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah,
R. Springer, B. L. Rountree, and M. E. Femal, “Analyzing
the energy-time trade-off in high-performance computing
applications,” IEEE Trans. Parallel Distrib. Syst., vol. 18,
no. 6, pp. 835–848, Jun. 2007.

[30] Y. Jiao, H. Lin, P. Balaji, and W. Feng, “Power and perfor-
mance characterization of computational kernels on the gpu,”
in Green Computing and Communications (GreenCom), 2010
IEEE/ACM Int’l Conference on Int’l Conference on Cyber,
Physical and Social Computing (CPSCom), dec. 2010, pp.
221 –228.

[31] R. Ge and K. Cameron, “Power-aware speedup,” in In
Proceedings of the 21st IEEE International Parallel and
Distributed Processing Symposium (IPDPS 07), 2007.

[32] S. Song, M. Grove, and K. W. Cameron, “An iso-energy-
efficient approach to scalable system power-performance
optimization,” in Proceedings of the 2011 IEEE International
Conference on Cluster Computing, ser. CLUSTER ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp.
262–271.

671

[33] J. Dongarra, H. Ltaief, P. Luszczek, and V. M. Weaver,
“Energy footprint of advanced dense numerical linear algebra
using tile algorithms on multicore architecture,” in The 2nd
International Conference on Cloud and Green Computing,
Nov. 2012.

[34] X. Feng, R. Ge, and K. Cameron, “Power and energy profiling
of scientific applications on distributed systems,” in Proceed-
ings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), april 2005, p. 34.

[35] G. Bosilca, H. Ltaief, and J. Dongarra, “Power profiling
of Cholesky and QR factorizations on distributed memory
systems,” Computer Science - Research and Development,
pp. 1–9, 2012.

[36] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and
K. Cameron, “Powerpack: Energy profiling and analysis of
high-performance systems and applications,” IEEE Transac-
tions on Parallel and Distributed Systems (TPDS), vol. 21,
no. 5, pp. 658–671, May 2010.

[37] H. Ltaief, P. Luszczek, and J. Dongarra, “Profiling
high performance dense linear algebra algorithms on
multicore architectures for power and energy efficiency,”
Computer Science - Research and Development, pp. 1–11,
10.1007/s00450-011-0191-z.

[38] H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and
K. S. McKinley, “Looking back and looking forward: power,
performance, and upheaval,” Commun. ACM, vol. 55, no. 7,
pp. 105–114, Jul. 2012.

[39] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and
E. Weissmann, “Power-management architecture of the intel
microarchitecture code-named sandy bridge,” IEEE Micro,
vol. 32, no. 2, pp. 20–27, March-April 2012.

[40] NVIDIA, “NVML API Reference Manual,” 2012.

[41] S. Hong and H. Kim, “An analytical model for a GPU
architecture with memory-level and thread-level parallelism
awareness,” in Proceedings of the 36th annual International
Symposium on Computer Architecture (ISCA). New York,
NY, USA: ACM, 2009, pp. 152–163.

[42] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp,
and W. mei W. Hwu, “An adaptive performance modeling
tool for GPU architectures,” SIGPLAN Not., vol. 45, no. 5,
pp. 105–114, Jan. 2010.

[43] Y. Zhang and J. D. Owens, “A quantitative performance
analysis model for gpu architectures,” in Proceedings
of the 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, ser. HPCA ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp.
382–393.

[44] C. Lively, X. Wu, V. Taylor, S. Moore, H.-C. Chang, C.-Y.
Su, and K. Cameron, “Power-aware predictive models of
hybrid (MPI/OpenMP) scientific applications on multicore
systems,” Computer Science - Research and Development,
pp. 1–9, 2011, 10.1007/s00450-011-0190-0.

[45] B. Subramaniam and W.-C. Feng, “Statistical power and
performance modeling for optimizing the energy efficiency of
scientific computing,” in Proceedings of the 2010 IEEE/ACM
Int’l Conference on Green Computing and Communications
& Int’l Conference on Cyber, Physical and Social Computing,
ser. GREENCOM-CPSCOM ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 139–146.

[46] S. Hong and H. Kim, “An integrated GPU power and
performance model,” SIGARCH Comput. Archit. News,
vol. 38, no. 3, pp. 280–289, Jun. 2010.

[47] C. Su, D. Li, D. Nikolopoulos, K. Cameron, B. de Supinski,
and E. Leon, “Model-based, memory-centric performance
and power optimization on numa multiprocessors,” in IEEE
International Symposium on Workload Characterization, Nov.
2012.

[48] R. Gonzalez and M. Horowitz, “Energy dissipation in gen-
eral purpose microprocessors,” IEEE J. Solid-State Circuits,
vol. 31, no. 9, pp. 1277–1284, sep 1996.

[49] C. Bekas and A. Curioni, “A new energy-aware performance
metric,” in Proceedings of the International Conference
on Energy-Aware High-Performance Computing (EnA-HPC),
Hamburg, Germany, Sep. 2010.

[50] S. Sharma, C.-H. Hsu, and W.-C. Feng, “Making a case for
a Green500 list,” in 20th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), April 2006.

[51] B. Subramaniam and W.-C. Feng, “The Green Index: A metric
for evaluating system-wide energy efficiency in HPC sys-
tems,” in 8th IEEE Workshop on High-Performance, Power-
Aware Computing (HPPAC), Shanghai, China, May 2012.

[52] J. W. Choi and R. Vuduc, “A roofline model of energy,”
Georgia Institute of Technology, School of Computational
Science and Engineering, Atlanta, GA, USA, Tech. Rep. GT-
CSE-12-01, December 2012.

672

