
SPARQL2NL – Verbalizing SPARQL queries

Axel-Cyrille Ngonga
Ngomo

Universität Leipzig, IFI/AKSW
PO 100920, D-04009 Leipzig
ngonga@informatik.uni-

leipzig.de

Lorenz Bühmann
Universität Leipzig, IFI/AKSW
PO 100920, D-04009 Leipzig

buehmann@informatik.uni-
leipzig.de

Christina Unger
Bielefeld University, CITEC
Universitätsstraße 21–23,

33615 Bielefeld
cunger@cit-ec.uni-

bielefeld.de

Jens Lehmann
Universität Leipzig, IFI/AKSW
PO 100920, D-04009 Leipzig
lehmann@informatik.uni-

leipzig.de

Daniel Gerber
Universität Leipzig, IFI/AKSW
PO 100920, D-04009 Leipzig
dgerber@informatik.uni-

leipzig.de

ABSTRACT
Linked Data technologies are now being employed by a large
number of applications. While experts can query the backend
of these applications using the standard query language
SPARQL, most lay users lack the expertise necessary to
proficiently interact with these applications. Consequently,
non-expert users usually have to rely on forms, query builders,
question answering or keyword search tools to access RDF
data. Yet, these tools are usually unable to make the meaning
of the queries they generate plain to lay users, making it
difficult for these users to i) assess the correctness of the
query generated out of their input, and ii) to adapt their
queries or iii) to choose in an informed manner between
possible interpretations of their input.

We present SPARQL2NL, a generic approach that allows
verbalizing SPARQL queries, i.e., converting them into natu-
ral language. In addition to generating verbalizations, our
approach can also explain the output of queries by providing
a natural-language description of the reasons that led to
each element of the result set being selected. Our evalua-
tion of SPARQL2NL within a large-scale user survey shows
that SPARQL2NL generates complete and easily understand-
able natural language descriptions. In addition, our results
suggest that even SPARQL experts can process the natural
language representation of SPARQL queries computed by our
approach more efficiently than the corresponding SPARQL
queries. Moreover, non-experts are enabled to reliably under-
stand the content of SPARQL queries. Within the demo, we
present the results generated by our approach on arbitrary
questions to the DBpedia and MusicBrainz datasets. More-
over, we present how our framework can be used to explain
results of SPARQL queries in natural language.

Categories and Subject Descriptors
H.5.2 [Information systems]: User Interfaces—Natural
language, Theory and methods

General Terms
Algorithms, Experimentation, Theory

Keywords
Natural language generation, query verbalization, SPARQL

1. INTRODUCTION
Most Semantic Web applications rely on RDF data as well
as on the W3C standard SPARQL for querying this data.
While SPARQL has proven to be a powerful tool in the
hands of experienced users, it remains difficult to fathom
for lay users. Approaches such as question answering [5],
keyword search [4] and search by example [2] aim to hide
SPARQL and RDF from the user. Yet, these approaches
still have constructed SPARQL queries to address their data
backend, without providing lay users with a possibility to
check whether the retrieved answers indeed correspond to
the intended information need. Consider for example the
natural language question What is the birth date of Li Ling?, for
which TBSL [5] returns more than 50 possible interpretations,
including the birth date of the pole vaulter Li Ling and the
age of the sinologist Li Ling. Since each of the interpretations
is realized as a SPARQL query, a lay user cannot pinpoint
the set of results that correspond to the person he is actually
interested in, nor can he easily detect the source of possible
errors. Similar problems occur in keyword-based systems.
For example, the keywords Jenny Runacre husbands leads
to SINA [4] generating queries for the husbands of Jenny
Runacre as well as for the role of Jenny Runacre in the movie
“The Husbands”.

The rationale behind SPARQL2NL1 is to verbalize SPARQL
queries and therewith bridge the gap between the query lan-
guage understood by semantic data backends, i.e., SPARQL,

1http://aksw.org/projects/SPARQL2NL - an open source
implementation is available at https://github.com/AKSW/
SPARQL2NL

and that of the lay users, i.e., natural language. Our ap-
proach is tailored towards SPARQL constructs typically used
in keyword search and question answering, and it consists
of four main steps: a preprocessing step which normalizes
the query and extracts type information for the occurring
variables, a processing step during which a generic repre-
sentation of the query is generated, a postprocessing step
which applies reduction and replacement rules in order to
improve the legibility of the verbalization, and a realization
step which generates the final natural language representa-
tion of the query. As an exemplary use case, we integrated
SPARQL2NL into a user interface for the question answering
system TBSL to enable users to read and disambiguate the
different SPARQL queries generated when processing a ques-
tion.2 The demo of the SPARQL2NL is available online at
http://sparql2nl.aksw.org/demo. A technical description
of the approach can be found in [3].

The rest of this paper is structured as follows: We first give an
overview of the SPARQL2NL pipeline. Then, we give some
insights into how well our approach performs with respect
to the adequacy and fluency [1] of the natural language
representations it generates. We finally give an overview of
the demo we aim to present and conclude.

2. SPARQL2NL IN A NUTSHELL
The basic processing pipeline of SPARQL2NL consists of
four main steps: pre-processing, processing, post-processing
and verbalization. In the following, we give a brief overview
of each of these steps and explain them by using the query
shown in Listing 1. For a technical description of the steps,
please see [3].

SELECT DISTINCT ?person
WHERE { ?person a dbo:Person.

{ ?person dbo:occupation res:Writer. }
UNION
{ ?person dbo:occupation res:Surfing. }
?person dbo:birthDate ?date.
FILTER (?date > "1950"^^xsd:date) .

}

Listing 1: Running example SPARQL query.

2.1 Pre-processing
The pre-processing aims to normalize the query for further
processing (normalization) and to collect information on the
type of projection variables (type extraction). To ensure that
we generate easily legible natural language representations
of SPARQL queries, we normalize the input queries fur-
ther by transforming any nesting of disjunctions, i.e. UNION

statements, and conjunctions into a disjunctive normal form
(DNF). We chose to use DNFs as this yields representations
that are faithful to the disjunctive character of unions.

The type extraction is achieved by processing the query and
finding all graph patterns ?x rdf:type C for each projection
variable ?x. If none of the statements is part of a UNION

statement, we assign the conjunction of all C to ?x. Otherwise
we assign to ?x the disjunction of all C that are such that
the UNION statements which contain ?x rdf:type C contain
no other statements. Consequently, in our example, the type
dbo:Person is assigned to the variable ?person.
2A demo can be found at http://autosparql-tbsl.
dl-learner.org.

2.2 Processing
The goal of the processing step is to generate a list of de-
pendency trees for an input query. To achieve this goal, the
query is subdivided into the three segments body, optional
and modifier, each of which is assigned its own sentence tree.
Since ASK queries only possess a subset of these features, they
can also be processed by our approach. Therefore, in the
following, we only describe how the representation of each of
these segments is generated for SELECT queries.

2.2.1 Processing triple patterns
The realization of a triple pattern s p o depends mostly on
the verbalization of the predicate p. If p can be realized
as a noun phrase, then a possessive clause can be used to
express the semantics of s p o. For example, the property
occupation in our example leads to the verbalization ?per-
son’s occupation is Surfing. In case p’s realization is a verb,
then the triple can be verbalized as a verbal phrase. For
example, if p is the verb write, then the verbalization is
?x writes ?y. As fallback, i.e., when our approach cannot
determine whether a property is a nominal or a verbal phrase,
we generate s is related to o via p.

2.2.2 Generating the segments of SPARQL queries
The main effort during the processing step is concerned with
representing the body of the query, i.e. the content of the
WHERE clause. Our approach begins by transforming the type
information retrieved by the pre-processing into a coordi-
nated phrase element. The processing then continues by
converting the content of the WHERE clause into a second co-
ordinated phrase element by making use of the fact that only
group graph patterns GP (i.e., combinations of conjunctions,
UNIONs and FILTERs) can be used within this clause. The
approach also provides means for processing FILTERs. The
OPTIONAL section is processed in a way similar to the body
and lead to another sentence while the solution modifiers
(i.e., ORDER BY, LIMIT and OFFSET) are compiled to yet an-
other sentence. In our example, the processing of the body
leads to?person’s birth date is later than 1950 and person’s
occupation is Writer or person’s occupation is Surfing.

2.3 Post-processing
The general goal of the post-processing step is to transform
the generated description such that it sounds more natural.
To achieve this goal, we use a rule-based approach. The
aggregation rules serve to cluster and order the input sen-
tences. To this end, the variables occurring in the query
are ordered with respect to the number of their occurrences,
distinguishing projection variables, i.e. variables that occur
in the SELECT clause, from all others, and assigning them
those input sentences that mention them. We process the
input trees in descending order with respect to the frequency
of the variables they contain, starting with the projection
variables and only after that turning to other variables. In
our example, the post-processing of the query leads to the
output shown in Listing 2.

This query retrieves distinct people such that
their birth date is later than 1950 and
their occupation is Writer or Surfing.

Listing 2: Verbalization of the example query.

2.4 Verbalization
The verbalization is the final step of SPARQL2NL. The
goal of this step is to transform all the information gen-
erated in the previous steps and to generate natural lan-
guage. Classes and resources are verbalized by using their
label. If no label is available, then we use the local name
of the resource or class as label. Literals are verbalized in
accordance with their type. For example, while "Albert

Einstein"@en is verbalized as Albert Einstein, we ver-
balize the literal "123"^^<http://dbpedia.org/datatype/
squareKilometre> as 123 square kilometres. Properties
are more tedious to verbalize as they can be either nominal
or verbal phrases. Here we rely on WordNet synsets to derive
the correct verbalization.

3. USER STUDY
3.1 Experimental Setup
In our user study, we evaluated the whole SPARQL2NL
pipeline, in order to clarify the following two questions:

1. Are the SPARQL2NL verbalizations correct, and are
they easy to understand?

2. Do the verbalizations help users that are not familiar
with SPARQL, i.e. can they use the verbalizations
efficiently and effectively?

We used the 200 DBpedia queries provided by the QALD-2
benchmark, all of which our approach was able to translate
into natural language. We ran both a controlled and an
uncontrolled survey. The survey consists of three different
tasks with 10 randomly selected queries each. At the start
of the survey users can indicate whether or not they are
SPARQL experts. If not, only Task 3 was presented, other-
wise they were asked to complete all three tasks. In Task
1, the survey participant is presented a SPARQL query and
its SPARQL2NL verbalization, and is asked to judge the
verbalization regarding fluency and adequacy [1]. In Task
2, the participant is presented a SPARQL query as well as
five different possible answers and has to select the correct
one. Task 3 is similar to Task 2, with the difference that the
natural language verbalizations of the SPARQL query and a
verbalization of the triples were presented.

3.2 Results
The controlled survey phase was carried out by 10 persons.
As these participants were monitored by one of the authors,
we used it for time measurements on the three different
tasks. The maximum (minimum) time required was 17 (7)
minutes, 13 (6) minutes and 12 (4) minutes for Tasks 1, 2
and 3, respectively. We then ran a public survey with 115
participants of which 39 stated they were experts in SPARQL.
We used our initial time measurements to filter out those
survey participants in the public evaluation. To this end, we
decided to admit a time window of 5-18 minutes for Task 1
and 3-15 minutes for Tasks 2 and 3.

The results of the first task showed the fluency of the natural
language descriptions to be 4.56 ± 1.29, where in expres-
sions of the form x ± y, x denotes the average value and
y denotes the standard deviation. The majority of natural

0 50 100 150 200 250

Number of Survey Answers

1

2

3

4

5

6

A
d
e
q
u
a
cy

0 20 40 60 80 100 120

Number of Survey Answers

1

2

3

4

5

6

Fl
u
e
n
cy

Figure 1: Adequacy and fluency results in survey

0 5 10 15 20

time in minutes (purple = standard deviation)

SPARQL

SPARQL (filtered)

NL

NL (filtered)

NL (SPARQL experts)

NL (SPARQL experts, filtered)

0 0,2 0,4 0,6 0,8 1 1,2 1,4

error rate

SPARQL

NL

NL (SPARQL experts)

Figure 2: Time and error rate analysis

language descriptions were understandable, where 94.1% of
the cases achieved a rating of 3 or higher. The adequacy of
the verbalizations was judged to be 5.31 ± 1.08, which we
consider a positive result. Details for the results of Task 1
are depicted in Figure 1. For Tasks 2 and 3, our main goal
was to directly compare the results of users dealing with
SPARQL queries against the results of users dealing with
natural language descriptions. Regarding efficiency, partic-
ipants required 11.68 ± 6.46 minutes to complete Task 2.
Applying the time window mentioned above, the required
time drops to 9.89 ± 3.48. For Task 3 we obtained execution
times of 10.28 ± 7.03 without filtering, and 8.37 ± 2.63 with
time filtering. Using a paired t-test with 95% confidence
interval, the difference between the time required for Tasks 2
and 3 is statistically significant. Note that even the SPARQL
experts were faster when being presented the natural lan-
guage description, with 8.22 ± 3.34 minutes without time
window filter and 7.79 ± 2.83 with time window filter.

Finally we also compared the error rates of participants
in Tasks 2 and 3, i.e. the number of incorrect answers per
questions, see Figure 2. It turned out that almost all errors
occurred with two specific queries, both due to bugs in
the implementation of SPARQL2NL. We fixed these issues
in an updated version of SPARQL2NL and ran an internal
evaluation again using the new verbalizations. 13 participants
from the AKSW and CITEC research groups, excluding the
authors, took part in this validation phase. The error rate for
the natural language expressions (0.12± 0.35) is only slightly
higher (+0.05) compared to the SPARQL expressions for
SPARQL experts (0.07 ± 0.25). Moreover, SPARQL2NL
achieves a fluency of 5.05 ± 1.01 and adequacy of 5.60 ± 0.85.
We therefore conclude that the SPARQL2NL translations
can be read efficiently and understood by both experts and
non-experts.

4. DEMO DESCRIPTION
In the demonstration, we aim to highlight the contribution
of SPARQL2NL, i.e.,

1. the verbalization of SPARQL queries of different com-
plexity,

Figure 3: Screenshot of the SPARQL2NL online
demo at http://sparql2nl.aksw.org/demo.

2. the domain-independence of the approach,

3. the use of SPARQL2NL for explaining the results of
SPARQL queries and

4. the integration of SPARQL2NL in question answering
tools.

Consequently, we will demo SPARQL2NL both as in a stan-
dalone demo as well as integrated in a question answering
tool.

The standalone part of the demo consists of the interface
shown in Figure 3. The user begins by selecting the dataset
against which he wants the SPARQL query to be ran (see
1©). In our demo, we show results on the DBpedia and

MusicBrainz Datasets. Now in 2©, the user can give in a
SPARQL query for which a verbalization is required. For
example, he might choose to give in the query shown in
Listing 1.

Clicking on the “Translate” button leads to the SPARQL2NL
being ran and the query being verbalized. The verbalization
of query is shown in 3©. In our example, SPARQL2NL
returns the verbalization shown in Listing 2.

In addition to viewing the verbalization of the query, the
user can choose to run the query by clicking on the “Run”
button. This leads to the results of the query (as far as some
exist) being displayed in tabular format in 4©. Each of the
rows of the table is clickable. Upon a selection of a result and
a click on the “Explain” button, the RDF statements that
led to the row being included in the result set are retrieved
from the endpoint selected by the user. These results are
verbalized by SPARQL2NL. Verbalizing RDF triples makes
use of the fact that each RDF statement can be regarded as
a variable-free triple pattern. The verbalized RDF triples
are finally displayed in the panel marked with 5©. In our
example, the verbalization of the results for Ian Cairns leads
to the following explanatory statements:

• Ian Cairns’ occupation is Surfing.

• Ian Cairns’ occupation is Writer.

• Ian Cairns’ birth date is January 24, 1952.

• Ian Cairns is a person.

In addition to the standalone demo, we will present the bene-
fits of SPARQL2NL by showing its integration into TBSL [5]
as shown in Figure 4. Here the user can give in a natural-
language question such as for example Books written by

Dan Brown in the search field (1©). TBSL then generate
possible interpretations of user query in the form of several
SPARQL queries. In the case of our example query, TBSL
generate semantically very different SPARQL queries due to
written by and Dan Brown each matching several resources
from DBpedia. TBSL uses SPARQL2NL to verbalize each
of the interpretations it generates and displays as well as
tries out the highest scored interpretation first (see 2©). If
the interpretation is incorrect, the user can choose to click
on the “Wrong!” button to see alternative interpretations of
his natural-language query, which are displayed in the “Did
you mean?” box (see 3©). He can then select the natural-
language representation that is most accurate and run this
query without ever having to deal with SPARQL or RDF.

Figure 4: Screenshot of the TBSL online demo at
http://autosparql-tbsl.dl-learner.org/.

5. REFERENCES
[1] George Doddington. Automatic evaluation of machine

translation quality using n-gram co-occurrence statistics.
In Proceedings of HLT, pages 138–145, 2002.

[2] Jens Lehmann and Lorenz Bühmann. Autosparql: Let
users query your knowledge base. In Proceedings of
ESWC 2011, 2011.

[3] Axel-Cyrille Ngonga Ngomo, Lorenz Bühmann,
Christina Unger, Jens Lehmann, and Daniel Gerber.
Sorry, i don’t speak sparql – translating sparql queries
into natural language. In Proceedings of WWW, 2013.

[4] Saeedeh Shekarpour, Sören Auer, Axel-Cyrille Ngonga
Ngomo, Daniel Gerber, Sebastian Hellmann, and Claus
Stadler. Keyword-driven sparql query generation
leveraging background knowledge. In ACM/IEEE WI,
2011.

[5] Christina Unger, Lorenz Bühmann, Jens Lehmann,
Axel-Cyrille Ngonga Ngomo, Daniel Gerber, and Philipp
Cimiano. Template-based question answering over RDF
data. In Proceedings of WWW, 2012.

