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Abstract. Three-dimensional (3D) reconstruction technology is the key technology to establish and express
the objective world by using computer, and it is widely used in real 3D, automatic driving, aerospace, naviga-
tion and industrial robot applications. According to different principles, it is mainly divided into methods based
on traditional multi-view geometry and methods based on deep learning. This paper introduces the above meth-
ods from the perspective of three-dimensional space representation. The feature extraction and stereo matching
theory of traditional 3D reconstruction methods are the theoretical basis of 3D reconstruction methods based
on deep learning, so the paper focuses on them. With the development of traditional 3D reconstruction methods
and the development of deep learning related theories, the explicit deep learning 3D reconstruction method
represented by MVSNet and the implicit 3D reconstruction method represented by NeRF have been gradually
developed. At the same time, the dataset and evaluation indicators for 3D reconstruction were introduced.
Finally, a summary of image based 3D reconstruction was provided.
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1 Introduction

3D reconstruction technology mainly obtains data informa-
tion such as laser point cloud and images through laser
scanning or cameras, then analyzes and processes the
obtained data information, and uses 3D reconstruction
related methods to model and reproduce scenes in the real
world. It has been widely used in the fields of 3D real scene
[1–3], digital twin [4–6], virtual reality [7, 8], artificial
intelligence [9–11], automatic driving [12–14], Indoor
Robots [15–18], Outdoor Robots [19–23], UAV Applica-
tions [24–27], 3D printing [28] and so on.

At present, there are many 3D reconstruction technolo-
gies, which can be divided into contact technology [28] and
non-contact technology [1–3, 7–14] based on whether the
measuring device is in direct contact with the actual target
during the mapping process. The non-contact 3D recon-
struction method can be divided into active vision method
and passive vision method according to whether the light
source is projected to obtain 3D information during the
measurement process. The specific classification is shown
in Figure 1. In the practical application process, non-
contact methods represented by laser and image technology
are the most widely used due to their excellent reconstruc-
tion effect [29–32], high reconstruction efficiency and simple

operation. According to different reconstruction principles,
image-based 3D reconstruction technologys can be divided
into 3D reconstruction algorithms based on traditional
multi-view geometry and 3D reconstruction algorithms
based on deep learning. The traditional 3D reconstruction
algorithm of Multi-View geometry, represented by sparse
point cloud reconstruction with structure from motion
(SFM) and dense point cloud reconstruction with multi-
view stereo (MVS), integrates information from multiple
images. It has great advantages in the measurement of 3D
objects and the reconstruction of highly realistic 3D models,
and is the most widely used. However, due to the removal of
some points with low confidence in the process of filtering
and fusion, the surface holes of the reconstructed model
appear, which affects the integrity of the surface reconstruc-
tion. With the development of relevant theories in the field
of deep learning, more and more researchers begin to use
convolutional neural network (CNN) to carry out 3D recon-
struction research. Since the neural radiation field (NeRF)
was proposed in 2020, the 3D reconstruction algorithm
based on deep learning has replaced the steps of MVS,
surface reconstruction and texture reconstruction in tradi-
tional methods by building a neural network, and can
directly generate a real 3D model without holes after input
of multi-view images and internal and external parameters
of the camera. Therefore, in the field of small scenes such
as indoor scenes, its reconstruction accuracy, speed and
integrity are gradually ahead of traditional methods. When* Corresponding author: liulimin0807@aeu.edu.cn
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it is applied to the 3D reconstruction of large scenes, due to
the influence of factors such as illumination, excessive
amount of network learning and image deformities, the
method based on deep learning has no advantage compared
with the traditional method in terms of reconstruction accu-
racy by improving the rendering quality.

In this paper, the development status and main techni-
cal routes of image-based 3D reconstruction technology are
introduced in detail. Firstly, explicit 3D representation and
implicit 3D representation are introduced in detail. Then, it
focuses on the technical routes, important theories, data
sets and evaluation indexes of traditional multi-view 3D
reconstruction algorithm and deep learning 3D reconstruc-
tion algorithm, and analyzes the advantages and disadvan-
tages of related technical routes in detail. Finally, according
to the development status of 3D reconstruction, the rele-
vant technical directions in the field of 3D reconstruction
are summarized and prospected.

2 Common three-dimensional expression

As a key technology in computer vision, 3D representation
can directly reflect 3D scenes by adding depth information

compared with traditional 2D representation. It is widely
used in 3D scene restoration, Simultaneous Localization
And Mapping (SLAM) [33, 34], Augmented Reality (AR)
[35] and other fields. Common 3D expressions can be
divided into explicit and implicit:

2.1 Explicit 3D representation

The explicit 3D expression includes point cloud, Volume
Pixel (voxel) and Mesh. By directly modeling the 3D scene,
it is possible to directly generate the 3D scene.

2.1.1 Point cloud

The point cloud is a collection of massive points in a certain
coordinate system, which can be obtained through Light
Detection and Ranging (Lidar), RGB D cameras, SFM
and other methods. It includes massive information such
as 3D coordinates, reflection intensity, and flight time.
Different from 2D images which need to be calculated
through multi view geometry, point clouds directly provide
3D depth information of the target scene, preserving com-
plete 3D spatial geometric information, but cannot provide
the connection relationship between points.

Fig. 1. 3D reconstruction technology.
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In 2017, Charles et al. proposed PointNet on
CVPR2017 [36], which pioneered the use of deep learning
for feature learning of point clouds without changing the
invariant characteristics of point cloud point arrangement,
and applied the learned features to 3D point cloud classifi-
cation and segmentation tasks. In 2017, Charles et al. pro-
posed PointNet++ as an improved version of PointNet
[37], which is a multi-layer neural network that mimics
CNN and designs a network structure that iteratively
extracts local features and combines multi-level encoders
to solve the problem of PointNet not extracting layer by
layer features. In 2017, Fan et al. proposed a network for
generating 3D object reconstruction point sets from a single
image on CVPR2017 [38], which solved the problem of 3D
reconstruction from a single image and generated a direct
form of output point cloud coordinates, but also shows a
strong 3D shape completion performance and a good vari-
ety of credible prediction capabilities. In 2021, Nie et al.
proposed the RfD-Net network in CVPR2021 [39], which
is a method of directly generating 3D scenes from 3D point
clouds. This method proposes the idea of first detecting and
then reconstructing. Due to the RfD-Net network’s support
for implicit learning, it can effectively complete the shape
completion task. In 2019, Lu et al. proposed a two-stage
training-intensive point cloud-generated network [40]. After
combining these two stages and fine-tuning, an end-to-end
network was obtained that can generate dense point clouds
from a single image. In 2021, Luo et al. proposed a diffusion
probability model of 3D point cloud generation in
CVPR2021 [41], which was inspired by the non-equilibrium
thermodynamic diffusion process and transformed the point
cloud generation process into a reverse diffusion process
using noise distribution to generate the required shape
distribution.

2.1.2 Voxel

Voxel is the abbreviation for Volume Pixel, which is a
regular data structure in three-dimensional space. It uses
a fixed volume cube as the smallest unit to represent an
object as an N3 three-dimensional grid, and sets the grid
state to 1 or 0 based on the occupied or idle state of the grid.

In 2015, Wu et al. proposed a convolutional deep belief
network called 3D ShapeNets in CVPR2015 [42], which rep-
resents geometric three-dimensional shapes as the probabil-
ity distribution of binary variables on a three-dimensional
voxel grid, and jointly recognizes and reconstructs objects
from 2.5D depth maps of a single view (such as popular
RGB-D camera). In 2016, Choy et al. proposed a new
Recurrent neural network architecture called 3D cyclic
reconstruction neural network (3D-r2n2) in ECCV2016
[43]. This network learns the mapping of object images to
their underlying 3D shapes from a large amount of synthe-
sized data without requiring any image labels or object class
labels for training or testing. It obtains one or more images
of object instances from any viewpoint and outputs the
reconstruction of the 3D scene in the form of a 3D occupied
grid. In 2018, Wu et al. proposed an algorithm called
ShapeHD in ECCV2018 that combines depth convolution
network with shape prior of adversarial learning [44]. It uses
a single image to complete the 3D reconstruction task by

combining depth Generative model with shape prior of
adversarial learning, experimental verification of the
ShapeHD single view 3D shape completion and reconstruc-
tion tasks has shown that the algorithm performs well.

2.1.3 Mesh

A mesh is composed of vertices, edges, and faces, which can
be triangles or polygons. It is a form used to represent the
surface of irregular 3D objects in computer vision. Since
triangle mesh is the smallest unit in the mesh, so any poly-
gon mesh can be represented by multiple triangle mesh.

In 2018, Kanazawa et al. proposed a single view predic-
tion framework for learning texture 3D meshes using image
sets as supervision in ECCV2018 [45]. This method allows
for training using annotated image sets, where learning
deformable models and 3D prediction mechanisms do not
rely on 3D truth or multi view image supervision, and are
not only applicable to single view scenes, but may yield
better results for multi view scenes. In 2018, Wang et al.
proposed a 3D mesh model called Pixel2Mesh in
ECCV2018 [46], which is an end-to-end deep learning archi-
tecture that can generate 3D shapes in triangular meshes
from monochromatic images. Different from the existing
methods, Pixel2Mesh network represents the 3D mesh in
the graph based Convolutional neural network, and uses
the perceptual features extracted from the input image to
generate the correct geometric shape by gradually deform-
ing the ellipsoid. In 2019, Wen et al. proposed in ICCV2019
that a 3D mesh model called Pixel2Mesh++ be generated
from multi-view images [47]. Compared with the shape
generated directly from prior information before, this paper
further improves the shape quality by using the cross-view
information of the graph convolutional network, but also
demonstrate good generalization ability across different
semantic categories, number of input images, and mesh
initialization quality.

2.2 Implicit 3D representation

The implicit 3D representation uses functions to express the
3D scene. By modeling the space occupation of the 3D
object, the explicit 3D scene can be obtained by post-
rendering and other processing, but no intermediate 3D
scene reconstruction process is required. Because the impli-
cit 3D representation uses the neural network method to
solve the problem of many holes in the traditional 3D recon-
struction, the difference between the implicit 3D representa-
tion and the traditional 3D reconstruction method is that
the expression is continuous. Common implicit 3D expres-
sion functions include Occupancy Function, Signed
Distance Field (SDF) and NeRF. In 2019, Mescheder
et al. proposes a new learning based 3D reconstruction
method called Occupancy Networks on CVPR2019 [48],
which implicit represents 3D surfaces as continuous decision
boundaries of deep neural network classifiers. Compared to
existing methods, this method encodes a description of the
3D output at infinite resolution without taking up too much
memory. In 2019, Park et al. proposed DeepSDF on
CVPR2019 [49], which utilizes a learned continuous signed
distance function (SDF) to represent a class of shapes in
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partially noisy 3D input data, achieving high-quality shape
representation, interpolation, and completion. In 2020,
Millenhall et al. proposed a 3D reconstruction method
based on neural radiation files on ECCV2020 [50], which
queries the 5D coordinates along the camera ray to synthe-
size the view, uses full connected (non convolutional) depth
network to represent the scene, and uses classic volume ren-
dering technology to project the output color and density
into the image.

3 3D reconstruction algorithm based on
traditional multi-view geometry

The 3D reconstruction technology based on traditional
multi-view geometry mainly goes through the steps of
image depth data acquisition, feature extraction, stereo
matching, 3D image reconstruction, etc., and finally trans-
forms the real target environment into a 3D mathematical
model that can be processed and expressed by computer.
According to the acquisition methods of image depth infor-
mation, it can be divided into passive vision method and
active vision method. The key and difficult point of algo-
rithm implementation is to obtain the depth information
of target scene, and then carry out stereoscopic matching
and fusion of the data, so as to realize the three-dimensional
reconstruction of the target environment. The specific idea
is to restore the depth of the object by calculating the three-
dimensional spatial position of the object image taken from
different angles, find the corresponding feature matching
relationship from the image through geometric constraints
and feature matching relationship to restore the spatial
coordinate relationship between the object and the camera,
and then carry out dense reconstruction to determine the
position and orientation of each face. This process fuses
information from multiple images and has great advantages
in 3D object measurement and highly realistic 3D model
reconstruction. Highly realistic 3D model reconstruction.

3.1 Image depth data acquisition

According to the different information acquisition mecha-
nism, stereo vision technology can be divided into monocu-
lar vision, binocular vision and multiocular vision. In
monocular vision, sparse point clouds and dense point
clouds are obtained through SFM and MVS to achieve
3D scene reconstruction. Binocular vision uses binocular
cameras with well-calibrated internal and external parame-
ters to obtain stereoscopic correction and stereoscopic
matching to generate parallax map, and calculate depth
map to generate point cloud map. The acquisition of depth
information in multiocular vision is similar to the working
principle of binocular vision, which can be captured by
images taken by multiocular cameras.

Referring to Figure 2, when the left and right cameras
observe the same three-dimensional point at the same time,
the difference between the projection points projected on
the left and right image planes is called parallax. The reason
why humans can perceive the distance of space objects is
because human eyes are a binocular stereo vision system.

Compared to monocular imaging, binocular imaging acqui-
sition is more complex, but obtaining depth information is
simpler. According to the relative position of the camera,
binocular imaging can also be divided into binocular hori-
zontal mode, binocular convergence horizontal mode, and
binocular axial mode. In practical applications, two monoc-
ular cameras can be used to work simultaneously, or one
monocular camera can be used to work separately at differ-
ent angles to complete image acquisition.

3.2 Image feature extraction

Image features are abstract expressions and descriptions of
pixels and pixel sets, which are crucial for stereo matching
of images and determining the corresponding relationships
of the same scene in different images. Common features
include: point features, line features, surface features and
body features.

In 1981, Moravec first applied the corner detector to
image matching [51]. In 1988, Harris and Stephens
improved the corner detector proposed by Moravec and
proposed the Harris corner detection operator [52]. Moving
the window grayscale in any direction at a corner will result
in significant changes, as the image gradient has two or
more main directions in the area near the corner, which
can be used to detect corners. In 1993, Harris applied the
Harris corner detection operator to the SFM [53], and
demonstrated its effect in 3D reconstruction and motion
tracking. Since then, Harris corner detection operator has
not only been used to detect corner points, but also to
detect image positions with large gradients in any direction
on a specific scale. However, the Harris corner detection
algorithm is very sensitive to changes in image scale due
to its inability to change the size of the template. It has poor
adaptability for corner detection at different scales and can-
not achieve good matching results. In 1999, Lowe proposed
a new image feature generation method called Scale Invari-
ant Feature Transform (SIFT) based on the behavioral
model of complex cells in the mammalian visual cortex
[54]. This method effectively recognizes scale invariant fea-
tures by using a phased filtering method to transform the
image into a large set of local feature vectors, describing
the local image region sampled relative to its scale spatial
coordinate frame. The partial invariance of local changes

Fig. 2. Parallax schematic diagram.
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is achieved by blurring the gradient position of the image.
Each local feature vector is not affected by Image scaling,
translation and rotation, and is less affected by lighting
changes, affine and 3D projection. In 2001, Mikolajczyk
et al. proposed the Harris-Laplacian operator on ICCV2001
[55], which used the normalized Laplacian operator to con-
volver images on multiple scales, and found the extreme
point of the normalized Laplacian response value in the scale
space for each pixel. In 2002, Brown and Lowe proposed a
new method [56]. First, Hough transform was used to elim-
inatemost error matches, and then RANSAC and polar con-
straints were used to deal with the remaining Outlier, which
can achieve accurate positioning of key points and solve the
problem that the paper in 1999 could not accurately locate
key points. In 2004, Lowe finally improved the SIFT descrip-
tor on the basis of the 1999 paper and formally proposed the
SIFT operator [57], which was widely used in the field of
computer vision. In this paper, the SIFT operator represents
different scale Spaces by using Gaussian ambiguity of differ-
ent parameters, and approximates the Laplacian operator
by using the Difference of Gaussian (DOG). The features
extracted by this method are invariant to the scaling and
rotation of images. Moreover, it can match the large scale
affine transformation, 3D viewpoint change, noise addition
and illumination change. In 2006, Bay et al. proposes a
new scale and rotation invariant detector and descriptor
called SURF (Speeded-UpRobust Features) [58]. Compared
with SIFT, SURF utilizes first-order Harr wavelet response
distributions in the x and y directions instead of gradients to
obtain the main direction of feature points, and uses 64D to
calculate the integral image, reducing feature calculation
and matching time and enhancing robustness. In 2006,
Rosten et al. proposed a corner detection method based on
machine learning called FAST [59], which can quickly
extract corner points but cannot effectively describe diago-
nal points, so the scale invariance of layout and rotation
invariance. In 2011, Rublee et al. proposed a BRIEF based
fast binary descriptor called ORB [60], which is two orders
of magnitude faster than SIFT and has rotation invariance
and anti-noise properties. In 2012, Cruz-Mota et al. pro-
posed a spherical coordinate SIFT algorithm for omnidirec-
tional images [61], which can generate two types of local
descriptors: local spherical descriptor and local plane
descriptor. In addition, this algorithm introduces a plane-
to-sphere mapping and gives its estimation algorithm, which
allows the object to be extracted from an omnidirectional
image given SIFT descriptor in a planar image. In 2016,
Lakshmi et al. proposed a Image registration algorithm
based on image local features [62], which is invariant to
image size, illumination, rotation and viewpoint change by
using the features extracted by SIFT operator. Compared
with previous registration algorithms, it is more robust. In
2017, Al-khafaji et al. proposed spectral spatial scale invari-
ant feature transform (SS-SIFT) [63]. As a new method to
extract significant invariant features from hyperspectral
images, it can simultaneously explore spectral and spatial
dimensions to extract spectral and Geometric transforma-
tion invariant features for hyperspectral image registration
under different spectral conditions. In 2021, Li et al. pro-
posed a feature detector called FD-TR applied to digital

image watermarking [64]. It based on scale-invariant feature
transformation and bidirectional feature regionalization, the
detector extracts key points using SIFT operators, and
proposes edge and neighbor filtering methods to generate
candidate feature points. The comparison with existing
methods shows that the proposed method has better perfor-
mance in terms of robustness and watermarking quality.
The advantages and disadvantages of the above feature
point detection algorithms are shown in Table 1 below.

3.3 Image stereo matching

Image stereo matching is the process of finding feature
points with the same name after feature extraction, estab-
lishing the corresponding relationship between the same
3D point in different images, and calculating the depth
image corresponding to the disparity [65–68]. At present,
the commonly used stereo matching methods include:
gray-based stereo matching method, feature-based stereo
matching method and deep learning-based stereo matching
algorithm. Among them, gray-scale based stereo matching
method is a region based method, which needs to consider
the relevant neighborhood properties of matching points.
Feature based image stereo matching mainly utilizes the
coordinates of inflection points and corner points, edge line
segments, and target contours in the image. The steps are
as follows:

1. Feature detection;
2. Feature matching;
3. Matching feature point pairs, using the least square

method and other methods to calculate the matching
parameters;

4. According to the transformation model, the image to
be matched is matched to the reference image to real-
ize the matching between images;

5. The depth information of the image is obtained by
calculating parallax, and the dense depth map and
dense parallax field are obtained by data interpolation.

Because the gray-based stereo matching method depends
on the statistical features of the image gray level, it is
more sensitive to the target surface structure and lighting
conditions, so it is not effective in the case of insufficient
texture information and large distortion on the surface of
spatial objects. However, feature-based stereo matching
methods have lower sensitivity to changes in ambient light-
ing and more stable performance, so it is the most widely
used.

In 2011, Mei et al. proposed a GPU-based stereo match-
ing algorithm named ADCensus in ICCV2011 [69], which
performed well in both accuracy and speed. For the four
data sets (Tsukuba, Venus, Teddy and Cones), the CPU
implementation requires 2.5 s, 4.5 s, 15 s and 15 s respec-
tively, while the GPU implementation requires only
0.016 s, 0.032 s, 0.095 s and 0.094 s respectively. The
GPU-friendly system design brings an impressive
140� speedup in the processing speed. In 2011, Bleyer
et al. proposed a local algorithm [70], which calculated a
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3D plane on each pixel by combining PatchMatch algo-
rithm (spatial propagation), graph propagation and time
propagation. By calculating plane parameters, sub pixel
precision disparity values and optimal planes can be
obtained through matching. In 2015, Han et al. proposed
an image stereo matching algorithm called MatchNet on
CVPR2015 [71], which combined the learning feature repre-
sentation and the learning feature comparison function.
This algorithm is composed of convolutional neural network
and three fully connected layer networks, which are used to
extract features and calculate the similarity between fea-
tures respectively. In 2015, Barron et al. proposed a Stereo
matching algorithm called Fast Bilateral Space Stereo algo-
rithm in CVPR2015 [72], which uses the idea of bilateral fil-
tering to obtain the minimum global matching cost and the
speed is 10–100 times faster than other matching algorithms
on the basis of obtaining higher quality defocusing effects.
The solution method of Fast Bilateral Space Stereo cannot
be applied to the deep learning process, because its cost
function cannot be derived for back propagation. In 2016,
Barron et al. proposed a new edge-perception smoothing
algorithm called Fast Bilateral Solver (FBS) algorithm
based on the idea of Fast Bilateral Space Stereo algorithm
[73]. It’s not only improves the problem that the Fast Bilat-
eral Space Stereo algorithm cannot be applied in deep learn-
ing, but also combines the flexibility and speed of simple
filtering methods, as well as the accuracy of domain specific
optimization algorithms. In 2015, Žbontar and LeCun
proposed a convolutional neural network algorithm called
MC-CNN algorithm to calculate stereo matching cost in
CVPR2015 [74]. This algorithm transforms the cost calcu-
lation of stereo matching into classification problem in

deep learning, and applies deep learning theory to stereo
matching for the first time. In 2015, Chen et al. proposed
a data-driven stereo matching algorithm in ICCV2015
[75]. This algorithm draws on the idea of MC-CNN, uses
convolutional neural network to learn the visual similarity
relationship between corresponding image blocks, and
directly maps the intensity value to the embedded feature
space to measure pixel dissimilarity. After testing on KITTI
and Middlebury datasets, it is proved that the pixel simi-
larity measurement proposed by this algorithm is superior
to the traditional matching method. In 2016, Žbontar and
LeCun further expanded MC-CNN algorithm by using deep
learning to calculate stereo matching cost, and proposed a
fast and accurate architecture [76]. The above two network
architectures are tested on KITTI 2012, KITTI 2015 and
Middlebury dataset, which shows that convolutional neural
networks are feasible for real-time stereo matching cost
calculation and parallax estimation. In 2017, Ye et al.
proposed an efficient stereo matching algorithm based on
convolutional neural network [77], which mainly consists
of two parts: one is based on a multi-scale feature fusion
architecture, which can learn rich local information; The
other is to combine optimal disparity and suboptimal
disparity, and then use different basic learners to learn
the end-to-end disparity optimization model of contextual
information. In 2019, Zhang et al. proposed a cost aggrega-
tion network for stereo matching algorithm called GA-Net
on CVPR2019 [78]. This algorithm consists of two new neu-
ral network layers, aiming to capture the cost dependencies
of local and entire images, respectively. In 2022, Zhang et al.
proposed stereo selective whitening (SSW) loss and stereo
constrained feature (SCF) loss [79], which improved

Table 1. Advantages and disadvantages of feature point detection algorithms.

Feature point
detection algorithm

References Advantages Disadvantages

Harris Moravec [51], Harris and
Stephens [52], Harris [53]

Rotational invariance,
luminance invariance

Lack of scale invariant
properties and affine
invariance properties

SIFT Lowe [54, 57], Brown and
Lowe [56], Cruz-Mota et al.
[61], Al-khafaji et al. [63],
Li and Yuan [64]

Rotational invariance, scale
invariance, luminance
invariance, good robustness

The calculated dimension is
too large and the operation
speed is slow

Harris-Laplacian Mikolajczyk and Schmid [55] Rotational invariance, scale
invariance

Redundancy point, anti-
interference ability is not
strong, real-time performance
is poor

SURF Bay et al. [58] Compared with SIFT, the
calculation is smaller and the
speed is faster, Rotational
invariance, scale invariance,
good robustness

The computational speed is an
order of magnitude faster than
SIFT and an order of
magnitude slower than ORB

FAST Rosten and Drummond [59] Fast operation speed Easy to be affected by noise,
poor robustness, Lack of
rotation invariance

ORB Rublee et al. [60] Fast operation speed,
Rotational invariance

Lack of scale invariant
properties
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the generalization ability of stereo matching networks by
ensuring feature consistency among matched pixels. SSW
and SCF can be expressed as:

Lscf ¼ 1P
ðu;vÞ2C

Mu;v

X
ðu;vÞ2C

Lf ðu; vÞ �Mu;v ð1Þ

where Lf (u,v) stands for pixel-by-pixel contrast loss. Mu,v
represents the reserved region after the non-matching
region is removed.

Lssw ¼ 1 X
c¼1

X
c
ðbX lÞ � eM � bM��� ���

1
ð2Þ

where M̂ is a strict upper triangular matrix as the covari-
ance matrix is symmetric, C is the number of layers to
which the SSW loss is applied, and c indexes the corre-
sponding layer (i.e. conv1, conv2 � in PSMNet).

The advantages and disadvantages of the above stereo
image matching algorithms are shown in Table 2.

3.4 Common visual 3D reconstruction algorithms

Among the traditional 3D reconstruction algorithms, SFM
[80–85] and MVS [86–90] are the most widely used. In 2013,
Moulon et al. proposed a global SFM that utilizes unor-
dered image sequences for large-scale 3D reconstruction,
which ensures the robustness and accuracy of the algorithm
while ensuring scalability [80]. In 2015, Heller et al.

developed an online service platform that used SFM to
restore 3D scenes from images [81]. In 2016, Schonberger
et al. proposed an incremental SFM called COLMAP in
CPR2016 [82], which greatly improved the accuracy,
robustness and integrity of the SFM algorithm by improv-
ing the steps of triangulation and Bundle Adjustment (BA)
in incremental SFM. The BA algorithm takes the camera
attitude and the three-dimensional coordinates of the mea-
suring points as unknown parameters, takes the coordinates
of the characteristic points detected on the image for the
front intersection as the observation data, and uses the least
square method to adjust to obtain the optimal camera
parameters and the world coordinate system. In 2017, Cui
et al. proposed a hybrid SFM called HSFM in CVPR2017
[83], which takes into account efficiency, accuracy and
robustness under a unified framework, and solves the prob-
lems of low efficiency of incremental SFM and poor robust-
ness of global SFM. In 2020, Yin and Yu proposed a
monocular 3D reconstruction method based on incremental
SFM [84], which first combined SIFT and ORB features
matching as the input of sparse reconstruction, then used
the incremental SFM algorithm to obtain sparse 3D points
from the image set, and finally combined optical flow and
ORB features to reconstruct the image intensively. In
2021, Wang et al. proposed a deep neural network-based
SFM technology to solve the problem of reconstructing
3D faces from multi view facial images [85]. This algorithm
utilizes a new unsupervised 3D face reconstruction architec-
ture and achieves accurate training of facial pose and depth
maps through multi view geometric constraints. In 2006,

Table 2. Advantages and disadvantages of Stereo image matching algorithms.

Stereo image
matching algorithms

References Advantages Disadvantages

ADCensus Mei et al. [69] High matching speed, high
accuracy

The matching fuzziness in
duplicate area and similar texture
area is easy to cause mismatching

PatchMatch Bleyer et al. [70] Global matching is realized
in the inclined plane and
sub-pixel matching accuracy is
obtained

Many operations need to be
processed by a single pixel one by
one, resulting in slow running
speed and need to be carried out
in parallel

MatchNet Han et al. [71] A new deep learning network
structure with fewer descriptors
is proposed, which significantly
improves the patch-matching
effect

Image blocks can only be
processed after sampling, and it is
impossible to find and match the
whole image

Fast Bilateral Solver Barron et al. [72],
Barron and Poole [73]

Matching speed is very fast The result is easily affected by the
reference image

MC-CNN Žbontar and LeCun
[74, 76], Ye et al. [77]

The deep learning theory is
applied to stereo matching for
the first time, and the matching
accuracy is improved

The matching effect is not good
in occluded areas, untextured
areas and repetitive pattern areas

GA-Net Zhang et al. [78] The matching accuracy of
occluded area, untextured area
and reflection area is improved

Memory usage are too high
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Seitz et al. published an article in CVPR2006 [86], which
systematically introduced MVS algorithm from classifica-
tion, multi-view data set and evaluation of MVS algorithm,
and quantitatively compared several multi-view stereo
image reconstruction algorithms. In 2007, Sinha et al. pro-
posed a voxel based MVS method that utilizes photometric
consistency to partition voxels, which to some extent solves
the problem of low voxel resolution [87]. In 2020, Lin et al.
proposed a binocular stereo vision 3D reconstruction
method based on feature point matching [88], which utilized
binocular stereo vision, feature matching and other tradi-
tional technologies to achieve 3D scene reconstruction. In
2021, Lindenberger et al. proposed an algorithm for improv-
ing SFM accuracy using depth feature measurement in
ICCV2021 [89]. This algorithm improves motion structure
by directly aligning low-level image information from
multiple views, and optimizes feature measurement errors
based on dense features predicted by neural networks. In
2021, Zhou et al. proposed a high-precision 3D reconstruc-
tion system with good robustness to solve the problem of
insufficient model details and low accuracy [90]. This algo-
rithm starts from the incremental SFM structure and adopts
the idea of deep fusion, achieving accurate restoration of
depth map details while significantly reducing memory con-
sumption. The advantages and disadvantages of common
visual 3D reconstruction algorithms are shown in Table 3.

Because SFM can obtain camera internal and external
parameters through feature point matching, but the sparse
feature matching points make SFM can only obtain sparse
point clouds. By matching each pixel of the calibrated
image one by one, MVS can obtain the three-dimensional
coordinates of each pixel to the maximum extent and gen-
erate the dense point cloud pair. Each specific step is shown
in Figure 3.

1. Obtain sequence images through multi view shooting
and use them as input to the system;

2. Feature extraction and matching: In this process, fea-
ture points are extracted according to texture features
to estimate the internal and external parameters of
the camera, and the matching relationship between
image pixels is established;

3. Sparse reconstruction: The process of SFM is mainly
to extract sparse feature points (sparse point cloud)
from 3D scene sequence images to obtain basic geo-
metric information required for 3D reconstruction;

4. Dense reconstruction: MVS uses the information
extracted from SFM and the information in the 2D
image that has not been fully utilized to match pixels
in the image one by one and generate dense point
clouds to make the 3D model information more com-
plete. The process of MVS is to first estimate the

Table 3. Advantages and disadvantages of common visual 3D reconstruction algorithms.

Common visual 3D
reconstruction algorithms

References Advantages Disadvantages

Incremental SFM Schönberger and
Frahm [82], Yin
and Yu [84]

The performance is robust and
the reconstruction precision is
high

Affected by the initial image
on the selection and camera
add order, the cumulative
error is large and the efficiency
is not high in the
reconstruction of large scenes

Global SFM Moulon et al. [80] Not affected by the initial
image pair and the order of
camera addition, the
cumulative error is small, and
the reconstruction efficiency is
high

The robustness is not good,
and the completeness of scene
reconstruction is insufficient

Hybrid SFM Cui et al. [83] The cumulative error is small
and the robustness is good

The efficiency is not high

Voxel based MVS Sinha et al. [87] The generated point cloud is
regular and mesh is easy to
extract

Reconstruction accuracy is
related to voxel particle size,
and it is difficult to deal with
large scenes

Feature point growing
based MVS

Lin et al. [88] The point cloud has high
precision and uniform
distribution

Areas with weak textures are
prone to holes and require
reading all images at once

Depth-map merging based
MVS

Seitz et al. [86],
Lindenberger et al.
[89], Zhou et al. [90]

It can be used in parallel
computation for 3D
reconstruction of large scenes,
and the number of point
clouds obtained is large

Too dependent on
neighborhood image group
selection
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depth of each image, then fuse the depth of all
perspectives, and finally obtain the complete point
cloud and model [90]. Among them, the method based
on block matching is the most common, and it can be
applied to multi-view 3D reconstruction of large
scenes with the help of parallel operation of GPU;

5. Finally, the obtained point cloud is used to recon-
struct the surface of the object and generate texture
images, restoring the original 3D scene.

3.5 Brief summary

The traditional 3D reconstruction technology based on
multi-view geometry first collects the target image data
through the camera, then uses the image registration to
obtain the parallax image, further calculates the depth
image, and uses the traditional multi-view geometry 3D
reconstruction method or deep learning method to complete
the restoration and reconstruction of the 3D spatial infor-
mation in the target scene. The depth information obtained
by calculating parallax using stereo vision is not accurate
compared to the depth information obtained from laser
point clouds, so the reconstruction accuracy of pure visual
3D reconstruction methods is not high. Due to the different
types of cameras used in 3D visual reconstruction methods,
the reconstruction effect is also different. For example,
using a color camera to obtain information, the reconstruc-
tion effect can accurately express the color information of
the target environment. However, due to the passive acqui-
sition method used in this method, it is susceptible to the
influence of environmental light intensity; If the infrared
camera is used to collect the information of the target envi-
ronment, it is not affected by the light intensity of the tar-
get environment, and can achieve all-weather work, but it
cannot obtain the color information of the target
environment.

4 3D reconstruction algorithm based on deep
learning

The traditional reconstruction method uses luminosity con-
sistency to calculate dense 3D information, which is highly
accurate in ideal environment, but in some environments
such as weak texture, high reflection and repeated texture,
it is easy to have reconstruction difficulties or holes. The 3D
reconstruction method based on deep learning uses the
prior information to transform the 3D reconstruction prob-
lem into the process of encoding and decoding, and can real-
ize the reconstruction of the 3D scene without complex
calibration and mathematical processes [80–86].

In 2014, Eigen et al. proposed a CNN neural network
consisting of two networks to make global prediction and
local prediction for the depth of monocular images, and
used CNN neural network for 3D reconstruction for the first
time [91]. In 2015, Eigen and Fergus proposed a CNN
neural network consisting of three networks based on the
previous paper [92], which completed three tasks: monocu-
lar image depth estimation, normal vector estimation and
image semantic segmentation. In 2017, Crispell and Bazik
proposed a 3D face reconstruction method called Pix2Face
from 2D images in ICCV2017, which uses an improved
U-Net neural network architecture to estimate dense 3D
coordinates and 3D geometry [93]. In 2018, Yao et al. pro-
posed a depth prediction network based on multi-view
images called MVSNet on ECCV2018 [94]. It opens the
way for 3D reconstruction with multiple views using depth.
In 2019, Yao et al. proposed R-MVSNet on CVPR2019 [95].
This algorithm improves MVSNet by using GRU for cost
aggregation, reducing the model size without much reduc-
tion in algorithm accuracy. In 2019, Chen et al. made
improvements on the basis of MVSNet and proposed an
algorithm called Point-MVSNet on ICCV2019 [96]. This
algorithm carried out scene processing by operating point
cloud, fully combined geometric prior information and 2D
texture information to enhance point cloud features and
improve efficiency. In 2020, Zhang et al. proposed
Vis-MVSNet on BMVC2020 [97]. This algorithm improved
MVSNet and clearly inferred and integrated pixel-by-pixel
occlusion information in MVS network by matching
uncertainty estimation, significantly improving the depth
accuracy in severe occlusion scenes. In 2021, Wei et al.
proposed a novel recurrent multi-view stereo network based
on long short-term memory (LSTM) with adaptive aggre-
gation on 2021 [98]. Different from traditional 3D CNNS,
this algorithm uses a hybrid network with a cyclic structure
for cost-volume regularization, achieving high-resolution
reconstruction and finer hypothetical plane scanning.
AA-RMVSNet used a hybrid structure DHU-LSTM, which
absorbed the advantages of LSTM and U-Net, and regular-
ized the 3D matching body into a prediction depth map
containing different levels of information. After the pre-
dicted depth map was input into LSTM, the reconstruction
accuracy was maintained while the memory cost was
reduced.

In 2022, Peng et al. proposed a coarse-to-fine framework
called UniMVSNet on CVPR2022 [99]. This framework
combines the advantages of regression and classification
problems applied in depth estimation, and redefines depth
estimation as a multi-label classification task, so that it
can achieve accurate prediction of depth while maintaining
robustness. In 2020, Millenhall et al. proposed a 3D recon-
struction method based on NeRF on ECCV2020 [50]. The
input of this method is a function including 5D vector,

Fig. 3. 3D reconstruction process.
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and the radiation field approximated by fully connected
neural network is used to implicitly express the 3D scene.
The proposal of NeRF greatly promoted the development
of 3D scene implicit representation technology. In 2021,
Yen-Chen et al. proposed an anti-radiation attitude estima-
tion method called iNeRF based on NeRF. This method can
use NeRF to realize 6DOF attitude estimation with com-
plex geometric shapes and objects in the case of mesh-free
and RGB-only [100]. Ma et al. proposed a neural network
framework based on NeRF called Deblur-NeRF [101]. By
using Deformable Sparse Kernel, the fuzzy kernel with spa-
tial variation was modeled by deformable sparse kernel
deformed at each spatial position, so that clear NeRF could
be reconstructed even under fuzzy input. In 2022, Xu et al.
proposed a Point-based Neural Radiance Fields 3D recon-
struction algorithm called Point-NeRF on CVPR2022
[102], which integrates NeRF with deep MVS. This method
uses MVS to generate point clouds, and then uses NeRF to
quickly generate three-dimensional scenes on the basis of
the generated point clouds, and the reconstruction effect
exceeds the visual quality of NeRF. In 2023, Jiang et al.
put forward a 3D reconstruction method called AligNeRF
on CVPR2023 [103]. This method uses high-resolution data
to train NeRF, adding and recovering more high-frequency
detail than the most advanced NeRF models without signif-
icantly increasing the cost of training and testing. In 2023,
Xu et al. proposed a grid-guided neural radiation field for
large-scale scenes on CVPR2023 [104]. By combining NeRF
and grid, this method can effectively encode local and global
scene information, and finally achieve high visual fidelity
rendering of ultra-large urban scenes. In 2020, Stucker
and Schindler proposed a method for dense 3D reconstruc-
tion of scenes using deep learning in CVPR2020 [105]. This
method uses traditional stereo matching algorithms for
approximate 3D reconstruction, and trains deep neural net-
works through residual learning to enhance the reconstruc-
tion effect. Among them, ResNet based on residual learning
was proposed by He Kaiming et al in 2015 [106]. Using the
assumption that the optimal function is similar to the linear
function, the residual function modeled by adding the input
(identity function) to the output of the network can effec-
tively solve the problem of gradient disappearance or nega-
tive optimization, and greatly accelerate the training speed
of the network. In 2021, Peng et al. proposed a new view
synthesis technology named Neural Body in CVPR2021
[107], which can better capture human actions with fewer
input viewpoints and solve the problem that NeRF cannot
process dynamic scenes. In 2021, Choe et al. proposed a
deep fusion network called VolumeFusion for 3D scene
reconstruction in ICCV2021 [108], which refers to tradi-
tional 3D reconstruction technology and has advantages
compared with traditional 3D reconstruction algorithms
and deep learning algorithms. In 2021, Wang et al. pro-
posed a transformers based multi-view 3D reconstruction
algorithm in ICCV2021 [109], which integrates feature
extraction and view fusion into a Transformer network
and studies the relationship between images by using
self-attention among multiple unordered input images. In
2022, Huang et al. proposed a 2D convolutional network
and 3D neural radiation field mutual learning method on

CVPR2022 [110]. This algorithm utilizes neural radiation
fields to express the continuous and dense features of 3D
scenes, resulting in high-quality 3D consistent stylization
effects for the reconstructed scenes.

Specific research ideas include the following three:

1. The depth learning method is introduced into the
traditional 3D reconstruction algorithm for
improvement;

2. Deep learning 3D reconstruction algorithm and tradi-
tional 3D reconstruction algorithm are integrated to
complement each other’s advantages;

3. Imitate animal vision and directly use depth learning
algorithm for 3D reconstruction.

Traditional 3D reconstruction methods usually include
SFM, MVS, surface reconstruction, and texture mapping.
However, obtaining multiple images of the same object
through an accurately calibrated camera is not practical
in some cases, and sometimes the problem of surface empti-
ness of the reconstructed model may occur due to the
absence of the viewing angle image. The 3D reconstruction
method based on deep learning uses prior knowledge to
build a neural network to replace the three steps of MVS,
surface reconstruction and texture mapping in the tradi-
tional method, overcoming the problem that the traditional
method is prone to surface voids.

5 Dataset introduction

This section introduces datasets that are widely used in
image-based 3D reconstruction, and the relevant data sets
are shown in Table 4. According to different data sources,
data sets can be divided into real acquisition and synthesis.

In 2012, Geiger et al. proposed a dataset called KITTI
dataset based on autonomous driving scenarios on
CVPR2012 [111–113], which can be applied to tasks such
as stereo vision, optical flow, visual odometry, SLAM,
and 3D object detection. In 2014, Jensen et al. proposed a
dataset containing 80 large variability scenes [114, 115].
Each scene in this dataset is obtained by a 6-axis industrial
robot, and consists of 49 or 64 precise camera positions and
reference structured light scanning. In 2015, Chang et al.
proposed a dataset consisting of 3D CAD models of objects
called ShapeNet [116, 117], which includes ShapeNetCore
and ShapeNetSem sub datasets. The dataset contains over
3,000,000 models, of which 220,000 are divided into 3135
categories and provide many semantic labels for each 3D
model. In 2017, Dai et al. proposed a richly annotated
RGB-D video dataset called ScanNet on CVPR2017
[118]. This dataset contains 2.5 million images from 1513
scenes with estimated calibration parameters, 3D camera
pose, surface reconstruction, semantic segmentation, tex-
ture mesh, dense object level semantic segmentation, and
labels for aligning CAD models. In 2017, Knapitsch et al.
proposed a 3D reconstruction dataset based on video
images called Tanks and Temples dataset [119], which
includes a total of 14 scenes, including objects such as tanks
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and artillery, as well as large indoor environments such as
auditoriums and museums. In 2017, Schöps et al. proposed
the ETH3D dataset in CVPR2017 [120], which was used to
evaluate binocular stereo vision and multi-view stereo
vision methods, providing the first handheld multi-view
stereo vision benchmark using consumer-grade cameras
(professional Nikon D3X DSLR camera), as well as in line
evaluation and algorithm comparison. In 2018, Huang
et al. proposed the ApolloScape dataset in CVPR2018
[121, 122], which consists of simulation dataset, demonstra-
tion dataset, and labeling dataset, and can be applied to
tasks such as target recognition and segmentation, stereo
vision, semantic segmentation, etc. In 2019, Behley et al.
proposed the SemanticKITTI dataset in ICCV2019 [123,
124], annotating all sequences in the KITTI dataset. In
2020, Yao et al. proposed the BlendedMVS dataset for
MVS network training in CVPR2020 [125], which includes
unstructured camera poses and provides training images
and ground truth depth maps. In 2020, Yu et al. proposed
the BDD100K dataset in CVPR2020 [126], which has 100K
videos and 10 tasks including image labeling and semantic
segmentation, among which 100K videos are divided into
training set (70K), verification set (10K) and test set
(20K). In 2020, Caesar et al. proposed the nuScenes dataset
on CVPR2020 [127], which fully annotated the 3D bound-
ing boxes and 8 attributes of 23 types of objects, with 7
times the number of labels and 100 times the number of
images compared to the KITTI dataset. The datasets
described above are shown in Table 1 below. As a very
important part of the evaluation system of 3D reconstruc-
tion algorithm, the datasets also brings some problems to
the development of 3D reconstruction algorithm. Firstly,
the current use of datasets to evaluate the performance of

3D reconstruction algorithms has led to many algorithms
only performing well on images in the dataset or similar
images, while performing poorly on image categories that
are not present in the dataset, resulting in poor generaliza-
tion ability of existing 3D reconstruction methods. In addi-
tion, the images in the data set are generally single images
without background, but they are more complex in the real
environment. Therefore, it is necessary to combine image
segmentation and recognition technology with 3D recon-
struction to improve the generalization ability of 3D recon-
struction technology.

6 Evaluation index

6.1 Mean square error (MSE)

In the field of 3D reconstruction, the mean square error
(MSE) represents the symmetric surface distance between
the 3D reconstructed shape and the real shape, and repre-
sents the difference between the reconstructed result and
the real shape, which is defined as follows:

MSE ¼ 1
m � n

Xm�n

i

ðI i �KiÞ2; ð3Þ

where the image size is m � n, Ii and Ki represent the pre-
dicted and true value of each pixel, respectively.

6.2 Peak signal-to-noise ratio (PSNR)

PSNR is the ratio of the maximum possible power of a sig-
nal to the destructive noise power that affects its accuracy.
It can be used to quantify image reconstruction quality in

Table 4. Common datasets.

Dataset Release
time

Data source Number of models Label
category

KITTI 2012 Camera, LiDAR, GPS 389 stereo images and optical flow
pairs, labels for over 200k 3D targets

2D/3D

DTU 2016 Camera, structured light scanner 80 scenes with a total of 3920 views 3D
ShapeNet 2015 CAD synthesis Over 3 million models 3D
ScanNet 2017 RGB-D camera 1513 scenes with a total of 2.5 million

images
3D

Tanks and
Temples

2017 Cameras, industrial laser
scanners

14 scenes, including objects such as
tanks and artillery

3D

ETH3D 2017 Professional DSLR camera, multi
camera shooting platform, laser
scanner

13 training sets and 12 testing
scenarios, 5 training and 5 testing
videos, 27 training and 20 testing
frames

3D

ApolloScape 2018 Camera, LiDAR 110K frames 2D/3D
Semantic KITTI 2019 LiDAR, GPS 28 labeling categories 3D
BlendedMVS 2020 Camera 113 3D models, totaling 17,818 images 3D
BDD100K 2020 Camera, GPS 100,000 HD videos 2D
nuScenes 2020 Cameras, Radar, LiDAR 1000 scenes tagged with 23 object

categories totaling 14 million 3D tag
boxes

2D/3D
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the field of image processing, and can be defined by mean
squared error. The expression is as follows:

PSNR ¼ 10� log10
MAX2

I

MSE

� �

¼ 20� log10
MAXIffiffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

; ð2Þ

where MAXI represents the maximum pixel value in the
image (if 8 bit represents the image pixel value, MAXI
is 255).

6.3 Structural similarity (SSIM)

SSIM is an indicator for measuring the similarity between
two images, which can be calculated using mean, standard
deviation, and covariance to represent the similarity of
luminance, contrast, and structure respectively. The expres-
sion is as follows:

S x; yð Þ ¼ l x; yð Þa�c x; yð Þb�s x; yð Þc; ð5Þ
where l(x,y), c(x,y) and s(x,y) represent luminance, contrast
and structural features respectively; a, b and c represent the
proportion of the above three features respectively.

Luminance l(x,y) is measured by the gray mean value lx
and ly of the reconstructed model and the real model. The
comparison function is expressed as:

l x; yð Þ ¼ 2lxly þ C 1

l2
x þ l2

y þ C 1
: ð6Þ

In the above formulas, lx and ly are expressed as:

lx ¼
1
N

XN
i¼1

xi; ð7Þ

ly ¼
1
N

XN
i¼1

yi: ð8Þ

In the above formulas, xi and yi respectively represent the
gray values of the reconstructed model and the real model
at i.

c(x,y) is the contrast measured by the gray standard
deviation rx and ry between the reconstructed model and
the real model. The contrast function is expressed as follows:

c x; yð Þ ¼ 2rxry þ C 2

r2
x þ r2

y þ C 2
: ð9Þ

In the above formulas, rx and ry are expressed as:

rx ¼ 1
N � 1

XN
i¼1

ðxi � lxÞ2
 !1

2

; ð10Þ

ry ¼ 1
N � 1

XN
i¼1

ðyi � lyÞ2
 !1

2

: ð11Þ

The structural similarity S(x,y) can be obtained by normal-
izing (x � lx)/rx and (y � ly)/ry. Using correlation coeffi-
cient measurement, S(x,y) can be expressed as follows:

S x; yð Þ ¼ rxy þ C 3

rxry þ C 3
; ð12Þ

where the covariance is rxy ¼ 1
N�1

PN
i¼1

ðxi � lxÞðyi � lyÞ,
C3 = C2/2.

C1 and C2 are defined in formulas (11) and (12) as pos-
itive constants that prevent the formula from having a zero-
division exception setting, which can be expressed as:

C 1 ¼ ðK 1LÞ2; ð13Þ

C 2 ¼ K 2Lð Þ2: ð14Þ
Among them, the default values of K1 and K2 are 0.01 and
0.03 respectively, and L = 2B � 1 is the range of dynamic
values of pixels.

Let a, b, c equal to 1, put the formulas (4), (7), (10) into
(3) to get the following formula:

S x; yð Þ ¼ 2lxly þ C 1

� �
2rxy þ C 2

� �
lx

2 þ ly
2 þ C 1

� �
rx

2 þ ry
2 þ C 2

� � : ð15Þ

6.4 Mean structural similarity (MSSIM)

The sliding window is used to divide the image intoN image
blocks with H � W size. After weighted calculation of the
mean, variance and covariance of each image block, the
SSIM of each image block is calculated and its average
value is taken as an index to measure the similarity between
the two images, which is called MSSIM.

The mean is calculated as follows:

lx ¼
XH
i¼1

XW
j¼1

wijXði; jÞ; ð16Þ

ly ¼
XH
i¼1

XW
j¼1

wijY ði; jÞ: ð17Þ

In the above formulas, X(i,j) and Y(i,j) respectively repre-
sent the gray values of the reconstructed model and the real
model at (i,j), W(i,j) represents the weight of the image
block at (i,j) when calculating the MSSIM.

The variance is calculated as follows:

rx ¼
XH
i¼1

XW
j¼1

wijðXði; jÞ � lxÞ
 !1

2

; ð18Þ

ry ¼
XH
i¼1

XW
j¼1

wijðY i; jð Þ � lyÞ
 !1

2

: ð19Þ
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The covariance is calculated as follows:

rxy ¼
XH
i¼1

XW
j¼1

wij X i; jð Þ � lxð Þ Y i; jð Þ � ly

� �
: ð20Þ

Formulas (13)–(18), MSSIM can be expressed as:

MSSIM ¼ 1
N

XN
k¼1

Sðxk ; ykÞ

¼ 1
N

XN
k¼1

ð2lxklyk
þ C 1Þð2rxkyk þ C 2Þ

ðlxk
2 þ lyk

2 þ C 1Þðrxk
2 þ ryk

2 þ C 2Þ :

ð21Þ

6.5 Learned perceptual image patch similarity (LPIPS)

LPIPS is an index to measure image similarity [128]. The
specific process is as follows: Firstly, deep neural networks
(VGG, Alexnet, Squeezenet, etc.) are used to extract fea-
tures from two inputs (x, x0). The output of each layer is
activated and normalized, denoted as (ŷl ; ŷl0). Then, the
weight is assigned by multiplying the vector w points to
calculate L2 distance. Finally, the average is taken and
the sum is calculated layer by layer. The specific calculation
process is shown in Figure 4 and formula (20):

d x; x0ð Þ ¼
X
l

1
HlW l

X
h;w

wl� ŷlhw � ŷl0hw
� ��� ��2

2
ð22Þ

The LPIPS uses deep convolutional neural network learn-
ing (unsupervised, self-supervised and supervised models)
to extract features. By calculating the differences of
extracted features, LPIPS can obtain image block similar-
ity, which can better simulate the measurement of image
similarity by human visual perception system.

6.6 Chamfer distance (CD)

CD can be used as an evaluation index of 3D reconstruction
model in 3D space, which is obtained by calculating the dis-
tance between two target point sets. It can be used as a loss
function for a 3D reconstruction network and is defined as
follows:

dCDðS1; S2Þ ¼ 1
S1

X
x�s1

min
y�s2

x � yk k22 þ
1
S1

X
y�s2

min
x�s1

y � xk k2
2
:

ð23Þ

S1 and S2 respectively represent two groups of point clouds,
and the above two items respectively represent the sum of
the minimum distance between any point in a point cloud
and another point cloud. The smaller the distance, the bet-
ter the three-dimensional reconstruction effect.

6.7 F-score

F-score is an evaluation index that can be used as a classi-
fication method in machine learning, and can also be used
as an evaluation index of 3D reconstruction algorithm. It
is related to accuracy rate and recall rate. The calculation
formula is as follows:

F ¼ a2 þ 1ð ÞP � R
a2 � P þ R

: ð24Þ

When a = 1, F is F1, also known as the balanced F fraction.
a = 1 means that P and R have equal weights in the
weighted harmonic average, so it is impossible to compare
when the distance thresholds used by different methods
are different. F1 is represented by:

F1 ¼ 2� P � R
P þ R

; ð25Þ

where P is the accuracy rate, representing the proportion
of the number of positive cases with correct classification
to the number of predicted positive cases; R is the recall
rate, representing the proportion of the number of cor-
rectly classified positive cases to the number of all positive
cases, defined as follows:

P ¼ TP
TP þ FP

; ð26Þ

R ¼ TP
TP þ FN

; ð27Þ

where TP, FP and FN are defined by the confusion
matrix, as shown in Table 5.

6.8 Intersection over union (IoU)

IoU refers to the proportion of intersection and union of pre-
dicted and actual frames, which is usually used in the eval-
uation of voxel models in the field of 3D reconstruction. In
the field of 3D reconstruction, after voxelizing the 3D

Fig. 4. Computing distance from a network.
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model, the IoU of reconstructed volume A and real volume
B is calculated as the evaluation index of the 3D reconstruc-
tion algorithm, and the calculation formula is as follows:

IoU ¼ A
T
B

A
S
B
: ð28Þ

6.9 Cross entropy (CE)

The average value of cross entropy loss is defined as follows:

CE ¼ � 1
N

XN
i¼1

xi log yi þ 1� xið Þ log 1� yið Þð Þ; ð29Þ

where N represents the number of voxels in the 3D recon-
struction process or the number of points in the point
cloud; xi and yi represent the true value and predicted
value at i respectively. If the cross entropy is lower, the
reconstruction effect is better.

6.10 Earth mover’s distance (EMD)

In 2000, Rubner et al. proposed a similarity measurement
method for image retrieval [129–133], which transformed
similarity measurement into a transportation problem.
They proposed a histogram similarity measurement method
that converts the minimum cost of one normalized distribu-
tion into another as an indicator of similarity between two
distributions. If the cost is smaller, the similarity is better.
In the field of image processing, the EMD idea can be used
to evaluate the similarity between two images. Its idea is to
calculate the minimum cost of converting from one image to
another as the EMD, which represents the similarity
between the two images. The smaller the EMD value, the
greater the degree of similarity between the two images.
Applying EMD to the field of 3D reconstruction [94], the
similarity between the reconstruction model and the true
value can be obtained by calculating the EMD value.
EMD is defined as follows:

dEMDðS1; S2Þ ¼ min
;:S1!S2

X
x�S1

x � ;ðxÞk k2: ð30Þ

6.11 Brief summary

With the further development of 3D reconstruction technol-
ogy, the evaluation system of 3D reconstruction algorithm
needs to be further improved. First of all, some evaluation
indexes of 3D reconstruction are only applicable to some
specific tasks, such as loU is only applicable to voxel models,
and F1 scores cannot be compared when different methods
use different distance thresholds. Moreover, most of the
current 3D reconstruction evaluation indexes only focus

on the evaluation of 3D reconstructed shapes and ignore
the evaluation of texture information. This evaluation
index system limits the development of improved 3D recon-
struction technology of texture information. Therefore, it is
necessary to improve the generalization ability of the exist-
ing 3D reconstruction evaluation system.

7 Summary and outlook

Starting with the application of 3D reconstruction tech-
nology, this paper systematically introduces the data
acquisition mechanism and expression mode of 3D recon-
struction. Then, for image-based 3D reconstruction technol-
ogy, the technical roout, important theories, data sets and
evaluation indicators of traditional multi view 3D recon-
struction algorithm and deep learning 3D reconstruction
algorithm are systematically discussed, and the advantages
and disadvantages of relevant Technology roadmap are
analyzed in detail. Finally, based on the development status
of 3D reconstruction, the relevant technical directions in the
field of 3D reconstruction are summarized and prospected.

In this paper, a lot of papers about 3D reconstruction
methods are introduced from the perspective of three-
dimensional space expression. The traditional methods are
becoming more and more mature, but the reconstruction
model is prone to holes, texture aliasing and low resolution.
The deep learning method represented by NeRF can realize
photo-level scene synthesis, and has obvious advantages in
detail restoration and no holes, etc. Although it has short-
comings such as generalization ability and real-time perfor-
mance, real-time integration of virtual and reality can be
gradually realized with the development of graphics proces-
sor technology and related theories.
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