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Motivation

Most social services face the challenge of severe congestion leading to long
waiting times and ine�ciency.

• limited capacity • infeasibility of pricing • inclusionary intent
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Motivation

Given user heterogeneity, sharing wait-time information may incentivize
users with lesser need to forgo (or delay using) the service.
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Motivation

Given user heterogeneity, sharing wait-time information may incentivize
users with lesser need to forgo (or delay using) the service.

... especially useful for patients with less serious conditions who
can use it to choose when and where to seek care.
[globalnews.ca]
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Summary

Motivation
Does information design help to manage congestion and improve welfare
outcomes in social service systems?

In this talk:

• stylized queueing model serving users with heterogeneous needs.
• welfare under info. design against simple benchmarks and centralized
admission policies.

Criteria: (ex ante) Pareto dominance.

Take-away: With su�cient heterogeneity in need, information design
can be powerful in improving overall welfare outcomes.
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Related literature

We adopt the methodology of Bayesian persuasion.

Kamenica and Gentzkow (2011), Rayo and Segal (2010), Bergemann and
Morris (2016), Dughmi and Xu (2016), . . .

Information design in operations:

• Lingenbrink and Iyer (EC’17)
• Das et al. (2017)
• Drakopoulos et al. (2018), Candogan and Drakopoulos (2019), Candogan
(2019), etc.

Social goods allocation: Arnosti and Shi (2017), Leshno (2017)
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Model

Social service provider:

• unobservable FCFS queue

• single server, rate µ

Heterogeneous need for service:

• high-need (H)

: must use the service

• low-need (L)

: have an outside option

No abandonment

ui(k): utility from joining, if k users ahead
(zero utility for outside option)

outside
option

λH
λL

µ
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Resource su�ciency: λ � λH + λL ≤ µ
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Social service provider:

• unobservable FCFS queue

• single server, rate µ

Heterogeneous need for service:

• high-need (H): must use the service

• low-need (L): have an outside option

No abandonment

ui(k): utility from joining, if k users ahead
(zero utility for outside option)

outside
option

λH
λL

µ

Assumptions on utility:

• ui(k) strictly decreasing
• uL(k) − uL(k + 1) is non-increasing.
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Model

Social service provider:

• unobservable FCFS queue

• single server, rate µ

Heterogeneous need for service:

• high-need (H): must use the service

• low-need (L): have an outside option

No abandonment

ui(k): utility from joining, if k users ahead
(zero utility for outside option)

outside
option

λH
λL

µ

Low-need users are Bayesians, and
maximize expected utility.

SSP’s goal: share information to
reduce congestion. 5



Model: Signaling mechanisms

Signaling mechanism: A pair (S, σ) with

1. S � set of signals
2. σ � mapping from states to (distributions over) signals:

σ(s |n) � P(send signal s |queue size is n).
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Signaling mechanism: A pair (S, σ) with

1. S � set of signals
2. σ � mapping from states to (distributions over) signals:

σ(s |n) � P(send signal s |queue size is n).

Revelation principle: su�ces to consider S � {join, leave}, and σ such that
obedience is optimal.
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Signaling mechanism: A pair (S, σ) with

1. S � {join, leave}
2. σ � {pn : n ≥ 0} such that

Eπ[uL(X)
�� join] ≥ 0, (join)

Eπ[uL(X)
�� leave] ≤ 0. (leave)
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Model: Signaling mechanisms

Signaling mechanism: A pair (S, σ) with

1. S � {join, leave}
2. σ � {pn : n ≥ 0} such that

Eπ[uL(X)
�� join] ≥ 0, (join)

Eπ[uL(X)
�� leave] ≤ 0. (leave)

Bayesian persuasion with endogenous prior.
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Model: Signaling mechanisms

Signaling mechanism: A pair (S, σ) with

1. S � {join, leave}
2. σ � {pn : n ≥ 0} such that

Eπ[uL(X)
�� join] ≥ 0, (join)

Eπ[uL(X)
�� leave] ≤ 0. (leave)

SM � set of all obedient signaling mechanisms σ.
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Model: Welfare

Expected welfare of each type in steady-state:

WL(σ) � λL · Eπ[uL(X) · I{join}]
WH(σ) � λH · Eπ[uH(X)]

For σ, σ̂ ∈ SM, σ Pareto dominates σ̂ (σ �PD σ̂) i�

Wi(σ) ≥ Wi(σ̂), i ∈ {L,H},

with at least one inequality strict.

σ ∈ SM is Pareto dominant i� σ̂ �PD σ for all σ̂ ∈ SM.
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Benchmarks

We compare the welfare outcomes against the following benchmarks:

1. full-info mechanism
• m� � smallest queue-size where “leave” is optimal for low-need users.

� min{k : uL(k) < 0}.

2. no-info mechanism
• pn � p ∈ [0, 1] for all n

3. Admission policies
• Protocols ψ � {pn}n≥0 that need not honor obedience constraints.
• AP � set of all admission policies ψ. Note: SM ⊂ AP.
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Structural results



Structure of signaling mechanisms

Theorem
A Pareto dominant signaling mechanism has a threshold structure.
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m

join (pn � 1) leave (pn � 0)mix

pm � x

m + x

0 1 2
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Structure of signaling mechanisms

Theorem
A Pareto dominant signaling mechanism has a threshold structure.

...
m

join (pn � 1) leave (pn � 0)mix

pm � x

m + x

0 1 2

Proof: Perturb a non-threshold mechanism for Pareto improvement.

9



Structure of signaling mechanisms

Theorem
A Pareto dominant signaling mechanism has a threshold structure.

...
m

join (pn � 1) leave (pn � 0)pm � x

m + x
0 1 2

Notation: threshold σ � m + x if pm � x ∈ [0, 1].

9



Structure of signaling mechanisms

Theorem
A Pareto dominant signaling mechanism has a threshold structure.

...
m

join (pn � 1) leave (pn � 0)pm � x

m + x
0 1 2

Notation: threshold σ � m + x if pm � x ∈ [0, 1].

Analogous result for Pareto dominant admission policies ψ ∈ AP.
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Structure of signaling mechanisms

Theorem
A Pareto dominant σ has a threshold below the full-info threshold m�.

... ...

σ

m�0 1

Proof: full-info Pareto dominates any mechanism with σ > m�.
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Structure: Pareto dominance

Theorem
If the obedience constraint (leave) does not bind for σ ∈ SM, then

σ is Pareto dominated in AP �⇒ σ is Pareto dominated in SM

Note: (leave) does not bind ⇐⇒ Eπ[uL(X)
�� leave] < 0.

Intuition:

• For any σ ∈ SM with σ ≤ m� �⇒ (join) does not bind.
• If (leave) does not bind, σ ∈ int(SM).
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Simple mechanisms: No information

Under no-info, all low-need users take the same action in equilibrium.

- pn � p for all n

The only possibility for a Pareto dominant equilibrium is pn � 0 for all n.

�⇒ If some low-need users join under no-info, then no-info is Pareto
dominated.

Theorem: If λH < λ̄, then no-info is Pareto dominated.
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Simple mechanisms: Full information

Under full-info, low-need users leave if and only if queue size is greater
than m�.

�⇒ Eπ[u(X)|leave] < 0, and (leave) does not bind for full-info.

Thus, if full-info is Pareto dominated in AP, then it is Pareto dominated
in SM.

Theorem: Under su�cient demand for service, full-info is
Pareto-dominated.
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Comparison with admission policies

Assumption: uL(n) � uH(n) � 1 − c(n + 1) for all n ≥ 0.

- Linearity + homogeneity of inside option.

Weighted welfare: W(σ, θ) � θ ·WL(σ) + (1 − θ) ·WH(σ)

ap(θ) � argmax
σ∈AP

W(σ, θ), sm(θ) � argmax
σ∈SM

W(σ, θ).

Lemma: ap(θ) ≤ sm(θ) ≤ m�.

... ... ...

ap(θ) sm(θ)

m�0 1

Users fail to internalize the negative externality. (Naor 1969)
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Achieving �rst-best

Theorem
For any λH > 0, there exists a θ̄ � θ(λH) ≥ 0 such that

1. for θ < θ̄, sm(θ) is independent of θ
2. for θ ≥ θ̄, sm(θ) � ap(θ);
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For small weights, the welfare outcome is �xed by the binding of (leave).
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Theorem
For any λH > 0, there exists a θ̄ � θ(λH) ≥ 0 such that

1. for θ < θ̄, sm(θ) is independent of θ
2. for θ ≥ θ̄, sm(θ) � ap(θ);

For large weights, neither obedience constraint binds.

• Low-need users strictly prefer to follow the recommendation.

Information design plays a purely coordinating role to achieve �rst-best.
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Conclusion

Information design provides Pareto improvement in welfare of all types
over the simple mechanisms no-info and full-info

1. If λH < λ̄, then no-info is Pareto dominated.
2. With enough demand, full-info is Pareto dominated.
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Conclusion

Information design provides Pareto improvement in welfare of all types
over the simple mechanisms no-info and full-info

1. If λH < λ̄, then no-info is Pareto dominated.
2. With enough demand, full-info is Pareto dominated.

Under su�cient heterogeneity, information design can coordinate users’
actions to achieve the �rst-best:

- same welfare outcomes as centralized admission policies
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Thank you!

full paper: https://arxiv.org/abs/2005.07253
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