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Abstract—Multi-frame super-resolution focuses on reconstruct-
ing a high-resolution image from a set of low-resolution images
with high similarity. The minimization function derived from
maximum a posteriori probability (MAP) is composed of a
fidelity term and a regularization term. In this paper, we
propose a new fidelity term based on half-quadratic estimation
to choose error norm adaptively instead of using fixed L1 or
L2 norm. Besides, we propose a novel regularization method
which combines the advantage of Difference Curvature (DC) and
Bilateral Total Variation (BTV) to preserve the edge areas and
remove noise simultaneously. The proposed framework is tested
on both synthetic data and real data. Our experimental results
illustrate the superiority of the proposed method in terms of
edge preserving and noise removal over other state-of-the-art
algorithms.

Index Terms—Multi-frame super-resolution, difference curva-
ture, half-quadratic estimation, bilateral total variation (BTV)

I. INTRODUCTION

Super-resolution (SR) is a method to increase the image
resolution without modifying the sensor of camera. Differ-
ent from single image super-resolution, multi-frame super-
resolution focuses on reconstructing a high-resolution image
from a set of low-resolution images with high similarity. It
was first addressed in [1] using a frequency domain algorithm
which is easy to implement and computationally cheap. But
processing multi-frame super-resolution in frequency domain
will introduce serious visual artifacts. Since then, many ap-
proaches have been proposed to solve the multi-frame SR
problem. Because of the limitation of frequency domain ap-
proaches, the methods which enhance image in the spatial
domain become more and more popular [2, 3]. As super-
resolution is an ill-posed problem, regularization techniques
are widely used to constrain the minimization function and
also regarded as prior knowledge of the related frames.
By combining image prior knowledge with fidelity model,
Bayesian-based spatial domain methods can effectively solve
this ill-posed problem, which makes this kind of methods more
popular than others in the field of image super-resolution.

Spatial domain based multi-frame image super-resolution
usually reconstructs the high-resolution image from the related
low-resolution images by exploiting the subpixel displace-
ments [4]. In practical applications, the subpixel displacements
are not only simple affine motion, but also partial movement,

non-rigid movement and occlusion. Therefore, the traditional
observation models have limited performance to reconstruct
high-resolution images [5].

In general, the framework of multi-frame image super-
resolution in spatial domain contains two parts. The fidelity
term is used to keep the fidelity between the HR frame and
LR frames. And the regularization term aims at regularizing
the minimization function. Since the noise in observation
model usually fits the Gaussian distribution, choosing L2 norm
for fidelity term can obtain good results. But in practical
applications, the observation model suffers various noises and
errors introduced by inaccurate estimation of registration and
blurring kernel. Farsiu et al. firstly used L1 norm rather than
L2 norm in fidelity term and achieved better results than L2

norm [4]. However, although the L1 norm is robust for outliers,
it may introduce more observation errors than L2 norm while
the estimation of images is accurate. The drawbacks of fixed
norms motivated researchers to combine the advantage of L1

and L2 norms. Nowadays, some M-estimators such as Huber
function [6] were proposed to replace the fixed norms as
well. Yue et al. [7] proposed a locally adaptive L1, L2 norm
to handle images with mixed noises and outliers. But by
introducing a threshold to choose L1 or L2 norm, it makes the
minimization function non-derivable. Zeng et al. [8] proposed
a new method based on half-quadratic estimation to adaptively
determine the error norm and the experimental results also
illustrate the superiority of their method.

For the regularization techniques, one of the commonly
used methods is Tikhonov regularization based on L2 norm
[9]. However, L2 norm is sensitive to outliers so that it
will introduce artifacts into images. Nowadays, sparse prior
is very popular in single image super-resolution. But for
multi-frame super-resolution, using the redundant information
among the low-resolution frames in spatial domain is more
reliable than using it in sparse domain. Besides, Total variation
(TV) family such as bilateral total variation (BTV) [4] are
popular regularization techniques. Farsiu et al. showed the
BTV could preserve more detail information than Tikhonov
regularization and be robust to outliers.

In this paper, we propose a novel robust multi-frame super-
resolution method. There are two major contributions which
effectively improve the quality of the final estimated HR
images:
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1) A new fidelity term based on half-quadratic estimation is
proposed. In our fidelity term, the half-quadratic estima-
tion is used to choose error norm adaptively according
to the change of averaged observation errors rather than
employing the traditional fixed L1 or L2 norm.

2) A novel Difference Curvature based BTV regularization
method (DCBTV) is proposed. Due to the drawbacks of
traditional regularization methods, Difference Curvature
is adopted to adjust the relevant value in the BTV reg-
ularization, which improves the regularized performance
in terms of edge preserving and noise removal.

The rest parts of this paper are organized as follows. Section
II introduces the observation model and basic framework of
multi-frame image super-resolution. Section III details the
proposed algorithm which uses half-quadratic estimation for
the fidelity term and Difference Curvature for the BTV regu-
larization term. Section IV illustrates the experimental results
and Section V concludes this paper.

II. PRELIMINARIES

A. Observation Model of Multi-Frame Super-Resolution

Observation model formulates the relationship between the
high-resolution frame and low-resolution frames. In general,
low-resolution frames can be regarded as the corresponding
high-resolution frame going through the geometric motion
operator, blurring operator and down-sampling operator suc-
cessively. Therefore, the observation model can be formulated
as

Yk = DBkMkX + nk, (1)

where X is the HR frame and expressed in lexicographic order
as X = [x1, x2, ..., xN ]T , where N is the total number of
pixels in HR frame which equals to rm × rn and r is the
downsampling factor. Therefore, the size of X is rm×rn×1.
Similar to the definition of X, Yk = [yk,1, yk,2, ..., yk,L]T ,
which represents the kth LR frame with the size of mn × 1,
where k = 1, 2, ...,K. K is the number of LR frames and L =
m × n. Mk represents the geometric motion matrix between
HR frame and kth LR frame with the size of rm × rn ×
rm×rn. Bk is the blurring matrix for the kth LR frame with
the size of rm × rn × rm × rn and D is the downsampling
matrix with the size of mn×rm×rn. In general, image noise
should be taken into consideration as well. nk represents the
noise added into the kth LR frame with the size of mn× 1.

B. The Basic Framework of Multi-Frame Super-Resolution

The basic framework of multi-frame super-resolution con-
tains fidelity term and regularization term. For the fidelity
term, M-estimator minimizes the residual between the esti-
mated HR frame and given LR frames. The regularization term
is used to constrain the minimization function. The traditional
framework of multi-frame super-resolution can be formulated
as

X̂ = argmin
X

{
K∑
k=1

‖DBkMkX−Yk‖pp + λΥ(X)

}
, (2)

where Υ(X) is the regularization term with respect to X. λ is
the trade-off parameter between the two terms and p represents
the choise of Lp norm.

For the regularization term Υ(X), image prior knowledge
such as Tikhonov regularization and total variation (TV)
family are widely used. Equ. (3) shows the expression of the
traditional BTV regularization.

ΥBTV (X) =

P∑
l=−P

P∑
m=0

β|m|+|l|
∥∥X− SlxS

m
y X

∥∥
1
, (3)

where Slx shifts X by l pixels in horizontal direction and Smy
shifts X by m pixels in vertical direction. β is a scaled weight
with the range of 0 < β < 1 and P is a control parameter
which controls the decaying effect to the summation of the
BTV regularization.

III. PROPOSED MULTI-FRAME SUPER-RESOLUTION
ALGORITHM

In this section, we introduce our proposed algorithm in
detail. For the fidelity term, the half-quadratic estimation is
used to make norm choice adaptive instead of using fixed L1

or L2 norm. For the regularization term, a novel regularization
method based on Difference Curvature is proposed to constrain
the minimization function.

A. Half-Quadratic Estimation Based Adaptive Fidelity Term

Due to the drawbacks of fixed norms, the half-quadratic
function was proposed in [8, 10] to combine the advantage of
L1 and L2 norms, which is defined as

f(x, α) = α
√
α2 + x2, (4)

where α is a positive constant. For each LR frame, x represents
the observation error which equals to (DBkMkX−Yk). The
first derivative of f(x, α) with respect to x is shown as:

f ′(x, α) =
αx√
α2 + x2

. (5)

Fig. 1. shows the superiority of half-quadratic function com-
pared with other M-estimators such as Leclerc and Lorentzian
when the thresholds are all set to 1.

(a) (b)

Fig. 1. Error norms. (a) The norm functions of L1, L2, Leclerc, Lorentzian
and half-quadratic estimation, (b) Their corresponding derivative norm func-
tions.

As shown in Fig. 1, although the Leclerc and Lorentzian
could fit L1 and L2 norm adaptively according to different
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inputs, they both have extreme points which make them non-
monotonic. Unlike the Leclerc and Lorentzian estimators, the
half-quadratic estimation is monotonically increasing. Besides,
when the observation error is small, the derivative of half-
quadratic function performs like L2 norm. Subsequently, with
the increase of the observation error, the function gradually
performs like L1 norm to suppress outliers. Our adaptive
fidelity term is defined as

X̂ = argmin
X

K∑
k=1

αk

√
α2
k + (DBkMkX−Yk)

2
. (6)

For each low-resolution frame, αk is adaptively determined
according to the averaged observation error which is defined
as Ek = ‖DBkMkX0 −Yk‖1/L, where X0 is the initial
HR estimation and L stands for the total number of pixels
in each LR frame. In general, Ek has a small value when
the estimation of HR image is accurate. In this case, the
observation error fits the Gaussian distribution. The parameter
αk should be large to perform like L2 norm. In contrast, for
those LR frames with outliers and mis-registrations, Ek is
large. The parameter αk should be small to perform like L1

norm to suppress these kinds of errors. Therefore, we define
that αk is inversely proportional to Ek as

αk =
max(Ek)

Ek
. (7)

B. Difference Curvature Based BTV Regularization Term

Traditional regularization terms have limited ability to dis-
tinguish image edges from noise. Chen et al. [11] proposed a
new edge indicator called Difference Curvature to distinguish
them effectively. It motivates us to combine the traditional
BTV regularization with this new edge indicator to suppress
noise and preserve edges adaptively. The definition of Differ-
ence Curvature is

D = ||Iηη| − |Iξξ||, (8)

Iηη =
I2xIxx + 2IxIyIxy + I2yIyy

I2x + I2y
, (9)

Iξξ =
I2yIxx − 2IxIyIxy + I2xIyy

I2x + I2y
, (10)

Table I shows the performance of Iηη , Iξξ and D in various
areas of a distorted image.

TABLE I
THE PERFORMANCE OF Iηη , Iξξ AND D IN VARIOUS AREAS

Various areas Iηη Iξξ D
Edge Large Small Large
Flat Small Small Small

Isolated noise Large Large Small

In Table I, Iηη , Iξξ and D are normalized within [0, 1].
‘Large’ means that the parameter value is larger than 0.5. And
‘Small’ means that the parameter value is smaller than 0.1.
The parameter values between 0.1 and 0.5 are not defined in

our algorithm. In general, Iηη has large value in noise and
edge areas but Iξξ only has large value in noise areas. The
new edge indicator D takes the advantage of the difference
between them. After subtracting |Iξξ| from |Iηη|, the indicator
D only has large value in edge areas. Therefore, D has good
ability to distinguish edges from noise. After above analysis,
our proposed Difference Curvature based BTV regularization
(DCBTV) could be formulated as

ΥD(X) =

P∑
l=−P

P∑
m=−P

β|m|+|l|WD

∥∥X− SlxS
m
y X

∥∥
1
, (11)

where WD is the weight matrix and defined as

WD =
1

w +
√

D
Dmax

, (12)

where w is a positive constant which is set to 0.5 in our
experiment and Dmax is the maximum value of D.

Equ. (13) describes the minimization function of the whole
framework.

X̂ =argmin
X

K∑
k=1

αk

√
α2
k + (DBkMkX−Yk)

2
+

λ

P∑
l=−P

P∑
m=−P

β|m|+|l|WD

∥∥X− SlxS
m
y X

∥∥
1
,

(13)

where λ is the trade-off parameter to control the balance
between the fidelity and regularization term.

In order to solve this minimization function, the Scaled
Conjugate Gradients (SCG) is used to find the optimized X̂
and the termination criterion is set to ηt = 10−3 in our
experiment. f ′(X) is the first-order derivative function of Equ.
(13) with respect to X which is formulated as

f ′(X) =

K∑
k=1

αk(DBkMk)T (DBkMkX−Yk)√
α2
k + (DBkMkX−Yk)

2
+ λ

P∑
l=−P

P∑
m=−P

β|m|+|l|WD(I− S−my S−lx )sign(X− SlxS
m
y X),

(14)

where I is an identity matrix. For convenience, DBkMk can
be regarded as a system matrix Wk proposed in [12].

IV. EXPERIMENTAL RESULTS

In this section, we use both synthetic and real data to
illustrate the performance of our proposed algorithm. Due to
space limitation, we only give the results of four sets. The
synthetic data was generated by a HR frame and the real data
was provided by MDSP dataset [13]. For the synthetic data,
the HR image was displaced by random translation matrices
and rotation matrices to generate 16 frames. The displaced
HR frames were blurred by a 4 × 4 Gaussian kernel with
σ = 0.4 and then subsampled with factor of r = 2. Then we
corrupted them with mixed noises containing Gaussian noise
(σG = 0.02) and Salt&Pepper noise (σSP = 0.02). In order
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2. Super-resolution results for the corrupted ‘Cameraman’ image with mixed noise (r = 2). (a) Ground truth, (b) LR image (first frame), (c) L2 + Tikhonov
[9] (PSNR:24.77,SSIM:0.58), (d) L2 + BTV [4] (PSNR:25.30,SSIM:0.76), (e) L1 + BTV [4] (PSNR:27.38,SSIM:0.84), (f) BEP [8] (PSNR:28.77,SSIM:0.87),
(g) IRWSR [5] (PSNR:28.09,SSIM:0.86), (h) Proposed (PSNR:29.41,SSIM:0.88).

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Super-resolution results for the corrupted ‘Lena’ image with mixed noise (r = 2). (a) Ground truth, (b) LR image (first frame), (c) L2 + Tikhonov
(PSNR:27.33,SSIM:0.91), (d) L2 + BTV (PSNR:29.43,SSIM:0.94), (e) L1 + BTV (PSNR:29.69,SSIM:0.94), (f) BEP (PSNR:30.77,SSIM:0.96), (g) IRWSR
(PSNR:31.98,SSIM:0.97), (h) Proposed (PSNR:33.19,SSIM:0.98).

(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Super-resolution results for ‘Adyoron’ data (r = 3). (a) LR image (first frame), (b) L2 + Tikhonov, (c) L2 + BTV, (d) L1 + BTV, (e) BEP, (f)
IRWSR, (g) Proposed.

(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Super-resolution results for ‘Book’ data (r = 3). (a) LR image (first frame), (b) L2 + Tikhonov, (c) L2 + BTV, (d) L1 + BTV, (e) BEP, (f) IRWSR,
(g) Proposed.

to simulate inaccurate estimation of subpixel movement, the
reconstruction procedure did not handle the rotation transfor-
mation, which introduces the displacement error on purpose. In
the DCBTV regularization, β is set to 0.6 and P is set to 2. The
assessment metrics we use to compare our proposed algorithm
with others are PSNR (dB) and SSIM. Fig. 2 and Fig. 3
show that our proposed algorithm could effectively suppresse
the mixed noises and displacement errors. Meanwhile, it
preserves the more texture information than other state-of-the-
art algorithms. The PSNR and SSIM values also demonstrate
the outperformance of our proposed algorithm. For the real
data provided by MDSP dataset, the camera motion and the
PSF kernel are unknown. We assume that the real PSF kernel
is a 4 × 4 Gaussian kernel with σ = 0.4. For the motion
estimation, the ECC [14] method is employed to align the LR

frames. Super-resolved Adyoron and Book images are shown
in Fig. 4 and Fig. 5 respectively under r = 3. Compared with
other algorithms, our proposed algorithm has less noise and
preserves more detail information in edge areas.

V. CONCLUSION

In this paper, we proposed a robust multi-frame super-
resolution algorithm with adaptive norm choice and regular-
ized by the Difference Curvature based BTV regularization
(DCBTV). In our experimental results, both synthetic data
and real data are tested to illustrate the performance of our
algorithm. Due to the improvements of fidelity term and
regularization term, our final results have better quality in
visual comparison and higher values in PSNR and SSIM
compared with other state-of-the-art methods.
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