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Abstract— Multi-frame image super-resolution focuses on
reconstructing a high-resolution image from a set of low-
resolution images with high similarity. Combining image prior
knowledge with fidelity model, the Bayesian-based methods have
been considered as an effective technique in super-resolution. The
minimization function derived from maximum a posteriori prob-
ability (MAP) is composed of a fidelity term and a regularization
term. In this paper, based on the MAP estimation, we propose
a novel initialization method for super-resolution imaging. For
the fidelity term in our proposed method, the half-quadratic
estimation is used to choose error norm adaptively instead of
using fixed L1 and L2 norms. Besides, a spatial weight matrix is
used as a confidence map to scale the estimation result. For the
regularization term, we propose a novel regularization method
based on adaptive bilateral total variation (ABTV). Both the
fidelity term and the ABTV regularization guarantee the robust-
ness of our framework. The fidelity term is mainly responsible for
dealing with misregistration, blur, and other kinds of large errors,
while the ABTV regularization aims at edge preservation and
noise removal. The proposed scheme is tested on both synthetic
data and real data. The experimental results illustrate the
superiority of our proposed method in terms of edge preservation
and noise removal over the state-of-the-art algorithms.

Index Terms— Multi-frame super-resolution, median operator
based initialization, spatial weight, half-quadratic estimation,
adaptive bilateral total variation (ABTV).

I. INTRODUCTION

SUPER-RESOLUTION (SR) has been a promising tech-
nique to increase the image resolution without modifying

the sensor of a camera. Different from single image super-
resolution, multi-frame super-resolution aims to reconstruct a
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high-resolution (HR) image from a set of low-resolution (LR)
images taken from the same scene.

In a multi-frame SR process, how to accurately extract
the image texture existing in different LR frames is a vital
challenge to reconstruct an HR image with good quality [1].
In this case, image registration and blur identification should
be taken into consideration [2], [3]. Image registration is
used to estimate the displacements among LR images, which
directly influences the quality of final output. For blur identifi-
cation, point-spread function is incorporated to model the blur
kernel. Moreover, during the reconstruction step, if the LR
images have non-redundant information, the ill-posed nature
of SR problem can be over-determined by adding more LR
images to the objective function. The pixels in LR images can
be aligned on an HR grid according to the sub-pixel shifting
with respect to the reference LR image.

However, in practical applications, the irregular pixel
movement and unknown blurring can directly influence the
super-resolved result. Moreover, the LR images are not always
non-redundant, which limits the performance of the simple
image reconstruction model. Besides, the blur kernel of a
camera is usually unknown, which makes the multi-frame
image SR more challenging.

In this work, in order to solve the above mentioned prob-
lems, we propose a new robust multi-frame SR method based
on spatially weighted half-quadratic estimation and adaptive
BTV regularization. In our proposed algorithm, there are three
major contributions which effectively improve the quality of
the final estimated HR image:

1) A novel initialization method based on median operator
is introduced. Different from the commonly used bilin-
ear and bicubic interpolation, our proposed initialization
method uses image registration techniques to align LR
images referenced by the objective LR image. After
alignment, the median operator is used to generate a
composed LR image insensitive to outliers, and then the
initial HR image is created by upsampling the composed
LR image.

2) A novel fidelity term based on spatially weighted half-
quadratic estimation is proposed. The spatial weight
matrix is determined by the frame-wise and pixel-
wise information obtained from the observation errors.
The half-quadratic estimation is used to choose error
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norm adaptively instead of using fixed L1 or L2 norm.
In our proposed method, the half-quadratic estimation is
adjusted by the spatial weight to achieve better perfor-
mance.

3) A novel adaptive BTV regularization method is proposed.
Due to the drawbacks of traditional regularization meth-
ods, an adaptive matrix is used to adjust the relevant value
in the BTV regularization. Therefore, the performance of
the BTV regularization can be controlled by this matrix
based on gradient operator.

The rest of this paper is organized as follows. Section II
reviews some related works on multi-frame SR. Section III
introduces the observation model and basic framework of
multi-frame SR. Section IV details the proposed algorithm
based on spatially weighted half-quadratic estimation and
adaptive BTV regularization. Section V presents the experi-
mental results and Section VI concludes this paper.

II. RELATED WORKS

Super-resolution techniques have been extensively studied
in the past three decades. According to the number of input
images, they can be classified into three principal categories:
single image SR, multi-frame image SR and video SR. In this
paper, we mainly focus on the multi-frame image SR.

In general, the single image SR is about recovering
high-frequency components from the observed LR image.
Yang et al. [4] proposed a typical model based on sparse
representation, which trained a joint over-complete dictio-
nary pair to reconstruct LR images. Through edge detec-
tion and feature selection, Chan et al. [5] proposed an
extended neighbor embedding based super-resolution method
to address the inappropriate choices of sizes and training
patches. Timofte et al. [6] proposed an Anchored Neighbor-
hood Regression (ANR) model to reconstruct the LR images
more efficiently by utilizing neighbor-based dictionaries. Their
subsequent A+ model [7] combined ANR and Simple Func-
tion (SF) together to further improve the quality of output
HR images. Dong et al. [8] first introduced a deep learn-
ing method for single image SR based on Convolutional
Neural Networks (CNN). The experimental results demon-
strate the effectiveness of their proposed method. For video
SR, Kapperler et al. [9] proposed a VSRnet framework which
regarded input frames as independent images and fed the
images to a SRCNN-inspired network with three specified
combination methods. Caballero et al. [10] proposed a Video
Efficient Sub-Pixel Convolutional Neural Network (VESPCN)
that applied motion compensation to input frames and utilized
subpixel-shuffle to upsample LR images. Based on VESPCN,
Tao et al. [11] proposed a novel sub-pixel motion compen-
sation (SPMC) algorithm to integrate motion compensation
and upsampling into one operation. Yang et al. [12] proposed
a spatial-temporal recurrent residual network to model inter-
frame correlation for video SR. Liu et al. [13] proposed a
temporal adaptive network and a spatial alignment network
for video SR. Both the temporal adaptation and the spatial
alignment modules were used to increase the robustness to
complex motion. Their experimental results demonstrated the

superiority of the proposed model in terms of spatial consis-
tency and temporal coherence.

The multi-frame SR was first addressed in paper [14] using
a frequency domain algorithm which is easy to implement
and computationally cheap. However processing multi-frame
SR in frequency domain will introduce serious visual artifacts.
Since then, many approaches have been proposed to solve the
problem. Due to the drawbacks of frequency domain based
methods, algorithms which enhance images in the spatial
domain have become increasingly popular [15], [16]. Since
super-resolution is an ill-posed problem, regularization tech-
niques are widely used to constrain the minimization function
and are also utilized as prior knowledge for the fidelity model.
The Bayesian-based spatial domain methods can effectively
solve this ill-posed problem and are widely used in image
super-resolution. Spatial domain based multi-frame image SR
usually reconstructs the HR image from the related LR images
by exploiting the sub-pixel displacements [17]. In practical
applications, except for the affine movement, the sub-pixel dis-
placements can also be partial movement, non-rigid movement
and occlusion which are difficult to estimate.

In general, the framework of multi-frame image SR in
spatial domain mainly contains the fidelity term and the
regularization term. The fidelity term is used to maintain
the fidelity between the HR frame and LR frames. And
the regularization term aims at regularizing the minimiza-
tion function. Because the noise in the observation model
usually fits the Gaussian distribution, choosing L2 norm for
the fidelity term can obtain good results. But in practical
applications, the observation model suffers from various noises
and errors introduced by inaccurate estimation of registration
and blurring kernels. Farsiu et al. first used L1 norm in
the fidelity term and achieved better results than using L2
norm [17]. Although the L1 norm is robust to outliers, it may
introduce more observation errors than L2 norm while the
estimation of images is accurate. The drawbacks of fixed
norms motivated researchers to combine the advantages of L1
and L2 norms. Some M-estimators such as Huber function [18]
were proposed to replace the fixed norms. Yue et al. [19]
proposed a locally adaptive L1, L2 norm to handle images
with mixed noises and outliers. But setting a threshold to
choose L1 or L2 norm makes the minimization function
non-derivable. Zeng and Yang [20] proposed a new adaptive
norm based on half-quadratic estimation. It combined the
advantage of L1 and L2 norms and the minimization function
can be derivable at every point. Therefore, the simple opti-
mization methods such as steepest decent still guaranteed the
convergence of the minimization function. Köhler et al. [21]
proposed an Iteratively Re-weighted (IRW) multi-frame SR
method based on MAP estimation. Two adaptive matrices were
generated to weigh the L2 norm in the fidelity term and the L1
norm in the regularization term respectively. Diverging from
the Bayesian-based methods, Huang et al. [22], [23] proposed
a novel multi-frame SR method based on bidirectional recur-
rent convolutional neural network. In the model, the traditional
recurrent full connections were replaced with weight-sharing
convolutional connections, and conditional convolutional con-
nections were added for temporal dependency modelling.

Authorized licensed use limited to: McMaster University. Downloaded on June 08,2021 at 00:17:42 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: ROBUST MULTI-FRAME SR 4973

Liao et al. [24] proposed a deep draft-ensemble learning to
address the multi-frame/video SR. In this model, multiple SR
drafts were generated to improve the motion estimation, and
a deep convolutional neural network was used to reconstruct
the super-resolved result from these SR drafts. Their method
is currently achieving the best multi-frame SR results among
deep learning based algorithms.

Within the regularization techniques, one of the com-
monly used methods is Tikhonov regularization based on L2
norm [25]. However, L2 norm is particularly sensitive to
outliers such that it can introduce some artifacts into images.
Nowadays, sparse prior is very popular in single image SR.
But for multi-frame SR, the redundant information among the
LR frames in the spatial domain is more reliable than in the
sparse domain. Total variation (TV) family such as bilateral
total variation (BTV) [17] is another popular regularization
technique. Unlike Tikhonov regularization, the BTV uses L1
norm to handle the outliers. Farsiu et al. showed that the BTV
regularization is robust to outliers and can retain more detailed
information than Tikhonov regularization.

III. PRELIMINARIES

A. Observation Model of Multi-Frame Super-Resolution

The observation model formulates the relationship between
an HR frame and a sequence of LR frames with high similarity.
Therefore, an accurate observation model is vital for the multi-
frame SR algorithm. According to the study on camera sensor,
some assumptions have been made to describe the observation
model, which directly affect the performance of the final result.

In general, the LR frames can be regarded as the correspond-
ing HR frame going through the geometric motion operator,
blurring operator and down-sampling operator successively.
Therefore, considering all the degradative operators, the obser-
vation model can be formulated as follows

Yk = DBkMkX + nk, (1)

where X is the HR frame and expressed in lexicographic order
as X = [x1, x2, . . . , xN ]T , where N is the total number of
pixels in HR frame which equals to rm×rn and r is the down-
sampling factor. Therefore, the size of X is rmrn ×1. Similar
to the definition of X, Yk = [yk,1, yk,2, . . . , yk,L ]T , which
represents the kth LR frame with the size of mn × 1, where
k = 1, 2, . . . , K . K is the number of LR frames and L =
m × n. Mk represents the geometric motion matrix between
HR frame and kth LR frame with the size of rmrn × rmrn.
Bk is the blurring matrix for the kth LR frame with the size
of rmrn × rmrn and D is the down-sampling matrix with the
size of mn × rmrn. In general, image noise should be taken
into consideration. nk represents the noise added into the kth
LR frame with the size of mn × 1.

In order to simplify Equ. (1), DBkMk can be regarded as a
system matrix Wk as proposed in paper [26]. As mentioned
above, each LR pixel can be obtained via a weighted sum
of the relevant HR pixels and the mapping weights are
saved in Wk in row-wise order. By combining the different
transformations as a united system matrix Wk , Equ. (1) can

be rewritten as follows

Yk = WkX + nk, (2)

B. Basic Framework of Multi-Frame Super-Resolution

The basic framework of multi-frame SR contains a fidelity
term and a regularization term. For the fidelity term, the M-
estimator is introduced to minimize the residual between the
estimated HR frame and the given LR frames. The regular-
ization term aims at constraining the minimization function
so that the reconstructed image can reach a robust state. The
traditional framework of multi-frame SR can be formulated as
follows

X̂ = arg min
X

{
K∑

k=1

‖Yk − WkX‖p
p + λϒ(X)

}
, (3)

where ϒ(X) is the regularization term with respect to X. K
is the total number of LR images, λ is the trade-off parameter
between the two terms and p represents the choice of Lp
norm.

For the regularization term ϒ(X), Tikhonov and TV family
are usually used as image prior knowledge. In this paper,
bilateral total variation (BTV) is adopted since it is computa-
tionally cheap and easy to implement. The formula of BTV
regularization is expressed as follows

ϒBT V (X) =
P∑

n=−P

P∑
m=−P

a|m|+|n|
∥∥∥X − Sn

xSm
y X

∥∥∥
1
, (4)

where Sn
x shifts X by n pixels in vertical direction and Sm

y
shifts X by m pixels in horizontal direction. a is a scaled
weight with the range of 0 < a < 1 and P is a parameter
used to control the decaying effect on the summation of the
BTV regularization.

The BTV regularization term preserves the image texture
by penalizing the first-order gradient magnitudes. Although it
can suppress noise, the BTV can remove a lot of texture infor-
mation as well. In order to solve this problem, we combine
the BTV regularization with the gradient operator to preserve
image texture and suppress noise simultaneously.

IV. PROPOSED MULTI-FRAME SR ALGORITHM

In this section, we introduce our proposed algorithm in
detail. For the image initialization, we use a novel method
based on the median operator to generate an outlier-insensitive
HR image as our initial setting. For the fidelity term, the half-
quadratic estimation is used to choose error norms adap-
tively. Besides, a spatial weight matrix based on frame-wise
and pixel-wise observation errors is established to scale the
result of half-quadratic estimation. For the regularization term,
we propose an adaptive BTV regularization method to sup-
press image noises and preserve image texture simultaneously.
Compared with the traditional BTV regularization method,
our proposed regularization method assigns each pixel an
adaptive weight. If a pixel is in edge areas, the corresponding
weight will be small to preserve image edges. Otherwise,
the weight will be large to suppress image noise. Therefore,
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our regularization method can adaptively suppress noise and
preserve image edges simultaneously by imposing different
weightings on different pixels.

A. Estimation of Initial High-Resolution Image

Multi-frame SR algorithm typically utilizes optimization
methods to minimize the objective function so that the final
HR image can be reconstructed when the function reaches the
minimal point. In this case, if the initial HR image is estimated
accurately, the minimization function can reach a stable state
rapidly to reconstruct the HR image with good quality. In other
words, the image initialization directly influences the quality of
final results. In traditional multi-frame SR methods, the initial
HR estimation X0 is obtained by using bicubic or bilinear
interpolation on the reference LR image. If the quality of the
reference LR image is bad, the quality of the initial HR will be
unsatisfactory. In our proposed algorithm, a novel initialization
method based on image warping and median operator is used
to solve this problem. Each LR frame is first warped according
to the shape of the reference LR frame. Then a composed
LR image is reconstructed by using median operator. Finally,
the initial HR image is obtained by interpolating the composed
LR image. Unlike the traditional initialization which only
considers the reference frame, our proposed initial method
utilizes all LR frames to generate the initial HR image.

Image warping transforms an image from one plane to
another plane based on some mathematical functions [27].
In our initialization, every non-reference LR image is warped
as the shape of the reference LR image. Therefore, the pixels
in the same location of registrated LR images have the same
details. If we choose the first LR frame Y1 as the reference
image, the warping procedure can be expressed as

Y′
k = Pw(Yk, Y1), k = 2, 3, 4, · · · , K , (5)

where Pw(·) is the projection function, which maps the non-
reference LR images to the reference image. K is the total
number of LR frames in sequence.

After the process of image warping, the LR images are
aligned and the composed LR image is generated to keep the
texture information. If the mean operator is chosen to generate
the composed LR image, the expression can be formulated as

Yc = fmean(Y1, Y′
2, Y′

3, · · · , Y′
K ), (6)

where fmean denotes the pixel-wise mean operator and
Yc represents the composed LR image. The value of the
(i, j)th pixel in composed image is calculated by

Y(i, j )
c = Y(i, j )

1 + Y′(i, j )
2 + Y′(i, j )

3 + · · · + Y′(i, j )
K

K
. (7)

Different from the mean operator, the median operator
searches the median value of pixels in the same location of
registrated LR images, which can be expressed as

Yc = fmed (Y1, Y′
2, Y′

3, · · · , Y′
K ), (8)

where fmed represents the median operator. The (i, j)th pixel
in the composed LR image is the median value of all (i, j)th
pixels in relevant LR images. Fig. 1 shows the composed LR

Fig. 1. Example of using mean and median operator to generate composed
LR image respectively. (a) Mean operator. (b) Median operator.

Fig. 2. Framework of generating initial HR image X0.

image by using mean and median operators respectively. The
LR sequence is generated by shifting, rotating and blurring
the original Cameraman image. The mixed Gaussian and
Salt&Pepper noises have also been added in each LR frame.

Comparing these two operators, the mean operator calcu-
lates the mean value of relevant LR pixels. However, due to
the different levels of distortion, the LR images are different
from each other. If we use the mean operator to reconstruct the
composed LR image, the distorted pixels will have the same
contribution to the fine pixels, which may lead to undesirable
result. Distinct from the mean operator, the median operator
extracts the median value of the corresponding pixels. Even
though there are some distorted pixels, they barely affect the
median value. Therefore, the median operator is more robust to
outliers in the sequence of corresponding pixels. Accordingly,
we choose the median operator to generate our composed LR
image.

In addition, the initial HR image is generated by interpolat-
ing the composed LR image. Since our initial algorithm can
eliminate most of outliers by searching the median value of
all relevant pixels, our initial estimation has better quality than
other methods. The whole framework of generating the initial
HR image is shown in Fig. 2.

B. Proposed Spatially Weighted Fidelity Term Based on
Half-Quadratic Estimation

Our proposed multi-frame SR algorithm is based on
maximum a posteriori (MAP) estimation. According to the
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Bayesian theorem, the expression of MAP estimation can be
formulated as

X̂M AP = arg max
X

P(X|Y1, Y2 · · · YK )

= arg max
X

P(Y1, Y2 · · · YK |X)P(X)

P(Y1, Y2 · · · YK )
, (9)

where X represents the estimated HR image, Yk is the kth
LR image and K is the total number of LR images. Since
P(Y1, Y2 · · · YK ) has no influence on the maximization func-
tion X̂M AP , the above MAP estimation can be rewritten as

X̂M AP = arg max
X

P(Y1, Y2 · · · YK |X)P(X). (10)

In general, the observation of each LR image Yk is inde-
pendent. Therefore, Equ. (10) can be simplified to

X̂M AP = arg max
X

K∏
k=1

P(Yk |X) · P(X), (11)

where P(X) describes the prior probability for an HR image
and P(Yk |X) represents the conditional probability of the
LR image Yk given an HR image X. The distribution of
P(Yk |X) is derived from the observation model. Therefore,
if the observation error is assumed to be the independent and
identically distributed (i.i.d) Gaussian noise with zero mean,
the distribution of P(Yk|X) can be expressed as

P(Yk |X) ∝ exp

{
− (Yk − WkX)T (Yk − WkX)

2σ 2
g

}
, (12)

where σg is the standard derivation of the Gaussian noise.
In practical applications, the noises existing in LR frames
are usually mixed. Besides, inaccurate motion estimation and
invalid pixels should be taken into consideration. In order
to solve these problems, the robust SR methods based on
Laplacian distribution and M-estimators were proposed in the
papers [17], [20]. However, the distribution of the observation
error in these methods was assumed to be space invariant,
which limits their performance in real-world applications [21].
In our proposed method, the distribution of observation error
is space-variant since each image pixel is scaled by a spatial
weight respectively. For each LR frame Yk , the observation
error rk can be formulated as

rk = Yk − WkX, (13)

where rk = [rk,1, rk,2, · · · , rk,L ]T represents the residual
vector.

The half-quadratic (HQ) function was first proposed in
paper [28] as a potential function, which combines the advan-
tages of L1 and L2 norms. With the parameter α, the half-
quadratic function can reduce the effect of different kinds of
errors such as large registration errors and small Gaussian
errors. The half-quadratic estimation is defined as

f (x, α) = α
√

α2 + x2, (14)

where α is a positive constant and x represents the observation
error. The half-quadratic function is strictly convex and twice
continuously differentiable so that any convex optimization
algorithms can easily obtain the optimum value. The first

Fig. 3. Error norms. (a) Norm functions of L1, L2 and f (x, α), (b) Their
corresponding derivative norm functions.

Fig. 4. Error norms. (a) Norm functions of L1, L2, Leclerc, Lorentzian and
half-quadratic estimation, (b) Their corresponding derivative norm functions.

derivative of f (x, α) is approximately linearly proportional
to small errors and then gradually approaches to a constant.
The first derivative function with respect to x is shown below

f ′(x, α) = αx√
α2 + x2

. (15)

If α = 1, the half-quadratic function and its derivative is
shown in Fig. 3.

The derivative of half-quadratic function performs like
L2 norm when the observation errors are small, and then
gradually performs like L1 norm when the observation errors
are large to suppress the outliers such as image noise and
mis-registrations. Fig. 4 shows the norm functions and their
derivative functions of L1 norm, L2 norm, Leclerc, Lorentzian
and half-quadratic estimation respectively. The thresholds of
Leclerc and Lorentzian are both set to 1. Compared with
other M-estimators such as Leclerc and Lorentzian, the half-
quadratic estimation has the best performance.

As shown in Fig. 4, the traditional fixed norm function such
as L1 and L2 norms can not adjust their output due to different
observation errors. For the commonly used M-estimators,
the Leclerc and Lorentzian can fit L1 and L2 norms adaptively
with different inputs. However, they both have extremum
as the observation error increases, which makes them non-
monotonic. Unlike the Leclerc and Lorentzian estimators,
the half-quadratic estimation is monotonically increasing.
Therefore, it is robust to the observation errors. By using
the half-quadratic function as an adaptive norm, the spatially
weighted fidelity term is

X̂ = arg min
X

{
K∑

k=1

L∑
l=1

βk,l · αk

√
α2

k + r2
k,l

}
, (16)
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where αk is the half-quadratic parameter for kth frame and
rk,l represents the lth observation error of kth frame. βk =
[βk,1, βk,2, · · · , βk,L ]T is the spatial weight vector for the kth
observation error. In our algorithm, it is adaptively determined
by multiplying two weighting functions which control the
global weight and local weight respectively. The expression
of βk can be formulated as

βk = β
global
k · βlocal

k , (17)

where β
global
k and βlocal

k are the global and local weighting
functions respectively. For the global weighting function, since
the quality of each LR frame is different, β

global
k gives every

LR frame a global weight according to the average observation
error. The definition of the average observation error rk is
expressed as follows

rk =
L∑

l=1

|rk,l |/L, (18)

where | · | represents the absolute operator and L is the
total number of pixels in the LR frame. When the average
observation error is large, the relevant weight should be small
to decay the effect of this frame. When the error is small,
the observation model can accurately estimate the HR image
from the LR frame. Therefore, the corresponding weight
should be large. Based on the above analysis, the global
weighting function is expressed as

β
global
k = 1/rk

max(1/r)
, (19)

where r = [r1, r2, · · · , rK ]. For the local weighting function,
it is mainly used to eliminate outliers from inliers in our
algorithm. If we assume that the inlier pixels still follow the
Gaussian distribution, the weighting function βlocal

k can be
defined as [21]

βlocal
k =

⎧⎨
⎩

1 if |rk,l | ≤ cσg,
cσg

|rk,l | otherwise,
(20)

where c is a positive constant to distinguish outliers from
inliers. In our algorithm, c is set to 2. The extent of 2σg

includes nearly 95% of the whole pixels. If most of the inliers
are assumed to be within this range, the rest of them should
be outliers. In this case, lower weights are assigned to decay
the effect of these outliers. Besides, the selection of Gaussian
deviation σg is not fixed. It is automatically determined in each
iteration t . Köhler et al. [21] proposed a method to estimate
σg by using the median absolute deviation (MAD) [29] and
the MAD is derived from the weighted median operator. In our
algorithm, this method is used to estimate σg adaptively, which
can be expressed as

σ t
g = σ0 · M AD(rt−1|β t−1)

= σ0 · M E D
(∣∣rt−1 − M E D(rt−1|β t−1)

∣∣∣∣∣β t−1
)
, (21)

where β, r are the confidence matrix and residual matrix
assembled from βk and rk respectively with the column order.
Besides, σ0 is a constant scale factor, which depends on the

Fig. 5. Error norms. (a) Half-quadratic estimation f (x, α) with different α
values, (b) Their corresponding derivative functions.

distribution of the residual r. In our method, σ0 is set to
1.4826.

Additionally, the parameter αk can be adaptively chosen.
In general, accurate registration of sub-pixel displacement and
estimation of the Point Spread Function (PSF) are difficult to
achieve in real applications. For each LR frame, the accuracy
level of the PSF estimation and the registration may be
different. The frame with large residual error should have
less contribution to the final recovered HR image. In contrast,
if the frame has small observation error, it should have more
contribution to the final result. Thus, the parameter αk should
be adaptively determined according to the observation error of
each LR frame.

Fig. 5 shows the performance of the half-quadratic esti-
mation with respect to some different α values. When the
parameter α tends to 0, the half-quadratic function performs
like L1 norm. With increasing parameter α, the adaptive
error norm performs gradually close to L2 norm. In order
to define the accuracy level of each LR frame, the averaged
observation error rk shown in Equ. (18) is used. In general,
rk has a small value when the estimation of HR image is
accurate. In this case, the observation error fits the Gaussian
distribution. The parameter ak should be large to perform like
L2 norm. In contrast, for those LR frames with outliers and
mis-registrations, rk is large. The parameter ak should be small
to perform like L1 norm which can suppress these kinds of
errors. Consequently, the parameter αk should be positive and
inversely proportional to rk , which is defined as

αk = max(rk)

rk
. (22)

C. Proposed Adaptive BTV Regularization Term

The traditional regularization terms such as Tikhonov and
TV family can not distinguish edges. Therefore, although
the noise is eliminated, the texture is suppressed as well,
which limits the performance of these traditional regularization
methods.

In our proposed regularization term, we introduce an adap-
tive weight matrix WG with the same size as the HR image.
Therefore, every element in BTV regularization is controlled
by a relevant weight. The adaptive BTV regularization term
can be expressed as

ϒ(X) = WG

P∑
n=−P

P∑
m=−P

a|m|+|n|
∥∥∥X − Sn

x Sm
y X

∥∥∥
1
, (23)
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Fig. 6. Visualization of the adaptive weight WG for BTV regularization in
different iterations. (a) Ground truth, (b) In the first iteration, (c) In the last
iteration.

where P is a control parameter and a is a scaled weight
with the range of 0 < a < 1, which controls the decaying
effect to the summation. In our experiment, a and P are set
to 0.7 and 2 respectively. The weight matrix WG should have
small values in edge areas to preserve the detailed information.
In order to extract image edges, the gradient operator is used
in our algorithm, which can be formulated as

G =
√

I2
x + I2

y, (24)

where Ix and Iy are the first-order gradients of the estimated
HR image in the vertical and horizontal directions respectively.
G is the gradient operator which extracts edges from the
HR image. From the above analysis, WG should be inversely
proportional to G. Thus, we define the weight matrix WG as

WG = 1

w +
√

G
Gmax

, (25)

where w is a positive constant as a tuning parameter to adjust
the extent of WG. The default value of w is 0.5 in our
algorithm. Gmax represents the maximum value of G and G

Gmax
scales G to the range of 0 to 1. The square root operator is
used to extend the difference among the values.

The weight matrix WG is adaptively updated in every
iteration according to the recent estimation of HR image. Fig. 6
shows the visualization of the adaptive weight WG in the first
and last iterations. The adaptive weight has a small value
in image texture areas and a large value in other areas to
preserve the edges and eliminate noises adaptively. Due to the
blurring effect, the extraction of image texture is inaccurate at
first. But after some iterations, the blurring effect is gradually
eliminated so that the edge extraction becomes progressively
more accurate.

Compared to the traditional regularization, the proposed
adaptive BTV regularization term preserves image edges and
suppresses noise simultaneously according to a weight matrix
based on a gradient operator.

D. Framework of Our Proposed Algorithm

In our proposed framework, the spatially weighted fidelity
term based on half-quadratic estimation and the proposed
adaptive BTV (ABTV) regularization term are combined to
estimate the HR image from a sequence of LR frames. Fig. 7
shows the whole framework of our proposed multi-frame SR
algorithm.

Fig. 7. Framework of proposed multi-frame super-resolution algorithm.

The initial step of our proposed algorithm mainly generates
a composed LR image as a reference to initialize the HR image
X. The composed LR image has less outliers and more detailed
information than any original LR image. The main procedure
contains the spatially weighted fidelity term and the proposed
ABTV regularization term. The final estimated HR image is
reconstructed when the objective function has the minimum
value. Therefore, the recovered HR image is formulated as

X̂ = arg min
X

{ K∑
k=1

L∑
l=1

βk,l · αk

√
α2

k + r2
k,l

+ λ · WG

P∑
n=−P

P∑
m=−P

a|m|+|n|
∥∥∥X − Sn

x Sm
y X

∥∥∥
1

}
, (26)

where λ is the trade-off parameter to control the balance
between the fidelity term and regularization term. Since the
first-order gradient of objective minimization function f (x) is
needed in the optimization step, the expression of the first-
order derivative function with respect to X is calculated as

f ′(X)

=
K∑

k=1

βk · αk
WT

k (WkX − Yk)√
α2

k + (WkX − Yk)
2

+ λWG

×
P∑

n=−P

P∑
m=−P

a|m|+|n|(I − S−m
y S−n

x )sign(X − Sn
x Sm

y X),

(27)

where f ′(X) denotes the derivative of f (X). I is an identity
matrix. S−n

x and S−m
y are the transposes of matrices Sn

x and
Sm

y . They shift image X in the opposite directions as Sn
x and

Sm
y do respectively.
The quality of estimated HR image is gradually improved

with the increase of iterations. For the multi-frame SR prob-
lem, there are many optimization methods to solve the min-
imization problem such as Steepest Decent (SD) [30] and
Conjugate Gradient (CG) [31]. In our proposed algorithm,
we use Scaled Conjugate Gradient (SCG) to solve the function
expressed in Equ. (26). Compared with other optimization
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Algorithm 1 Proposed Multi-Frame Image Super-Resolution

methods, the SCG can adaptively adjust the step size according
to the approximative speed in the gradient direction [32].
Moreover, the convergence of SCG is faster than SD and CG
due to the scaled step size. The SCG optimization is terminated
if the maximum iteration is reached or the maximum absolute
difference between Xt and Xt−1 is lower than the terminal
parameter η, which can be expressed as

max
i=1,··· ,N

|Xt
i − Xt−1

i | < η, (28)

where η is set to 10−4. The proposed multi-frame SR algo-
rithm can be summarized in Algorithm 1.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct experiments to test the perfor-
mance of our proposed multi-frame SR algorithm. we first
compare the quality of our initial HR image with other tradi-
tional methods. Then the performance of spatially weighted
half-quadratic estimation is shown in detail. Furthermore,
the proposed method and other 7 multi-frame SR methods are
used to estimate the HR images from two kinds of LR frames.
One kind of the LR frames are synthetically generated from
known HR images and the other kind is directly photographed
from the low-resolution cameras [33].

A. Experimental Setup

In practice, the performance of SR methods cannot be
numerically evaluated since the ground truth HR images are
always not available. In our experiment, the proposed method
is first tested on synthetic data since the ground truth images
for synthetic LR frames are available. We generate 16 LR

TABLE I

AVERAGE PSNR/SSIM RESULTS FOR SYNTHETIC DATA (GENERATED
FROM SET 5 AND SET 14) WITH RESPECT TO DIFFERENT

λ PARAMETERS UNDER RATIO = 2

frames from one HR image and the displacement of every
frame is simulated as a rigid motion. Therefore, the HR image
is displaced by uniform distributed random translations and
rotations. The range of random translations is from −2 to 2
pixels and the rotation angles are randomly changing from
−1◦ to 1◦. Then the displaced HR frames are blurred by a
4 × 4 Gaussian kernel with σ = 0.4 and subsampled with
factor r . Gaussian noise and Salt&Pepper noise are added in
the simulated LR sequence simultaneously as mixed noises to
increase the difficulty of accurate estimation. The variance of
additive Gaussian noise and Salt&Pepper noise are both set to
0.02. Besides, the PSNR and SSIM are used to measure the
quality of our estimated HR images.

In our experiments, the first frame of LR sequence is chosen
as our reference frame and the initial HR image is obtained by
our novel initialization method. The intensity range of our test
images is set to [0, 1]. For color images, we use RGB model as
our color model and apply our algorithm to all channels. The
regularization parameter λ is a vital parameter used to balance
the fidelity term and the regularization term. The value of
λ is determined empirically based on numerous experiments.
In our experiments, we first generated many synthetic data by
using Set 5 [34] and Set 14 [35] datasets. Then, the most
appropriate λ value can be found by identifying the value
that produces the best performance. Table I demonstrates that
when the λ is set to 0.0005, the proposed method has the best
performance in terms of PSNR/SSIM values. Therefore, λ is
set to 0.0005 in our experiments. SCG is used to minimize
the objective function. The termination criterion is set to
η = 10−4. Since the minimization function usually converges
within 25 iterations, the maximum iteration number is set to
TS = 25. In general, the sampling factor is commonly set to 2.
Therefore, we present the simulated images with r = 2 in our
expriments. For the images with higher zoom factors such as
3 and 4, we present them in real data experiments. For motion
estimation, the Enhanced Correlation Coefficient (ECC) [36],
[37] is used to estimate the subpixel movement between two
LR frames.

B. Quality of the Estimated Initial HR Image

In our proposed algorithm, we use a novel method to
estimate the initial HR image. Different from the traditional
methods that only initialize the HR image from one LR frame,
our proposed method estimates the initial HR image based on
more comprehensive information by considering the warped
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TABLE II

PSNR AND SSIM RESULTS FOR SET 5 AND SET 14 WITH
DIFFERENT INITIALIZATIONS UNDER GAUSSIAN NOISE

AND SALT&PEPPER NOISE (RATIO = 2)

Fig. 8. The comparison of different initial estimations under Gaussian
noise. (a) First frame of LR sequence. (b) Bilinear interpolation. (c) Bicubic
interpolation. (d) Our initialization. (e) Original Lena image.

LR sequence. The LR frames are first warped according to
the shape of the reference LR image. Then a median operator
is used to eliminate the noise and reconstruct a composed LR
image. Finally, the initial HR image is obtained by bicubic
interpolation.

We use the synthetic data generated by Set 5 and Set
14 datasets to illustrate the superiority of the proposed ini-
tialization method. Bilinear and bicubic interpolations are
used for comparisons. The way to generate the synthetic
data is consistent with Section V-A except that the Gaussian
noise with a variance of 0.05 and Salt&Pepper noise with
a variance of 0.02 are added respectively. Table II gives
the values of PSNR and SSIM on two datasets for different
initializations with noise added. Table II demonstrates that
our proposed initialization has higher PSNR and SSIM values
than the conventional interpolation methods, which shows the
robustness from leveraging all LR frames to compensate noise
effects.

Fig. 8 and Fig. 9 show the visual comparison of our novel
initialization, bilinear interpolation and bicubic interpolation
under Gaussian noise and Salt&Pepper noise respectively.
From the two figures, the conventional interpolation meth-
ods have limited performance to suppress the noise effects.
Conversely, our novel initialization is quite robust to noises
and does not introduce any unnatural artifact from the median

Fig. 9. The comparison of different initial estimations under Salt&Pepper
noise. (a) First frame of LR sequence. (b) Bilinear interpolation. (c) Bicubic
interpolation. (d) Our initialization. (e) Original Lena image.

based noise compensation. Generated by our proposed initial-
ization method, the initial HR image has superior quality that
helps the subsequent reconstruction steps.

C. Performance Analysis

In this section, we discuss and justify the concrete improve-
ment of our innovation terms including the novel initialization
method (INIT), the spatial weighted half-quadratic estimation
(SWHQ) and the adaptive BTV regularization (ABTV). All the
three innovation terms are stepwise added to the basic multi-
frame SR framework, which uses the bicubic interpolation
as its initialization, half-quadratic estimation as its fidelity
term and BTV as its regularization. We generated five image
sequences by using Set 5 dataset and named them with Baby,
Bird, Butter f ly, K id, Woman to test the performance of
each innovation term.

Table III gives the performance comparison in terms
of PSNR and SSIM. In the table, all the methods use
the same parameter setting as determined in Section V-A
For the Bicubic + H Q + BT V and I N I T + H Q + BT V
methods, the concrete improvement of our initialization
method is justified since the only difference between
them is their initializations. The I N I T + SW H Q + BT V
method improves the image quality by 0.51 dB over the
I N I T + H Q + BT V method in PSNR. With the comparison
of I N I T + H Q + ABT V and I N I T + H Q + BT V meth-
ods, the average PSNR improvement is 0.44 dB by replacing
the BTV regularization with the ABTV regularization. The
total average improvement of the I N I T + SW H Q + ABT V
method is 0.71 dB over the I N I T + H Q + BT V method.
Furthermore, we use the bicubic interpolation as the ini-
tialization method to analyse the performance of the
SWHQ and ABTV terms without good initialization.
In this case, the Bicubic + SW H Q + ABT V method has
an average improvement of 3.10 dB in PSNR over the
Bicubic + H Q + BT V method, which confirms the good
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TABLE III

PSNR AND SSIM RESULTS TO ILLUSTRATE THE GOOD PERFORMANCE OF OUR PROPOSED INNOVATION TERMS

Fig. 10. Ten images for synthetic data. (a) Motorbike. (b) Butterfly. (c) Lena. (d) Hat. (e) Parrot. (f) Raccoon. (g) Cameraman. (h) House. (i) Pepper.
(j) Barbara.

performance of the SWHQ fidelity term and the ABTV
regularization.

D. Experiments on Synthetic Data

In our experiments, 10 commonly used HR images are
chosen to generate our synthetic LR sequences, which are
shown in Fig. 10. For all of our synthetic data, the mixed
noises are added. Table IV demonstrates the quantitative
comparisons of 8 different algorithms using PSNR and SSIM
metrics. These 8 algorithms are bicubic interpolation, L2 +
Tikhonov [25], L2 + BTV [17], L1 + BTV [17], the deep
draft-ensemble learning based SR (DeepSR) [24], the Bilateral
Edge Preserving (BEP) algorithm [20], the Iteratively Re-
weighted (IRW) algorithm [21] and our proposed algorithm.
For DeepSR, the proposed initialization is used to eliminate
noise effect in LR frames since deep learning based SR
methods usually do not consider the effect of mixed noises on
synthetic data. From Table IV, our proposed method has the
highest PSNR and SSIM values in most cases, which validates
the superiority of our algorithm.

Except for numerical comparison, Fig. 11, Fig. 12 and
Fig. 13 present the visual comparison of our algorithm and
other 7 algorithms. From these figures, the L2 based methods
such as L2+T ikhonov and L2+BT V have poor performance
to suppress the Salt&Pepper noise and registration errors.
On the contrary, L1 + BT V is more robust to them. Therefore,
compared with L2 + T ikhonov, the results of L1 + BT V
have better quality in most cases. Benefit from using the
adaptive error norm in its fidelity and regularization terms,
the BEP algorithm has ability to suppress both Salt&Pepper
and Gaussian noise. Our experiments show that the results
of BEP method are better than the traditional fixed-norm
methods, but some noises still exist due to its simple initial
estimation. In general, CNN and RNN based methods are quite
robust to scaling and translation, but not robust to noise and
rotation. One reason is that it is difficult to contain all noise
degrees and rotation angles in their training dataset due to
its finite size. In our experiments on synthetic data, mixed
noises and rotations are used to make the SR problem more
challenging, which makes the CNN based DeepSR method
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TABLE IV

PSNR/SSIM RESULTS OF MULTI-FRAME SUPER-RESOLVED IMAGES FROM 8 DIFFERENT ALGORITHMS UNDER RATIO = 2 AND MIXED NOISES

Fig. 11. Visual comparison of multi-frame super-resolved results from different methods for Cameraman image with mixed noises. (a) Reference LR image.
(b) Bicubic interpolation. (c) L2 + Tikhonov (d) L2 + BTV. (e) L1 + BTV. (f) DeepSR. (g) BEP. (h) IRW. (i) Proposed. (j) Ground truth.

not perform well. As an iteratively re-weighted SR method,
the IRW algorithm has the best performance of suppressing
mixed noises and preserving image edges compared with the
existing SR algorithms.

Therefore, we will only describe the visual comparison
between our proposed algorithm and the IRW algorithm. For
all the places in the test images, our algorithm performs
better or equally well. For example, in Cameraman image,
some noises remain in background area for the IRW algorithm.
However, our algorithm eliminates most of the noises and

smooths the background. For Barbara image, the IRW algo-
rithm has many artifacts on the scarf. In contrast, our algorithm
recovers the detailed information correctly. For Motorbike
image, above the brand ‘CR’, our algorithm generates the three
vertical lines more clearly than the IRW algorithm.

E. Computational Complexity Analysis

In this section, we perform the detailed analysis of the
computational complexity of our proposed method and the
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Fig. 12. Visual comparison of multi-frame super-resolved results from different methods for Barbara image with mixed noises. (a) Reference LR image.
(b) Bicubic interpolation. (c) L2 + Tikhonov (d) L2 + BTV. (e) L1 + BTV. (f) DeepSR. (g) BEP. (h) IRW. (i) Proposed. (j) Ground truth.

Fig. 13. Visual comparison of multi-frame super-resolved results from different methods for Motorbike image with mixed noises. (a) Reference LR image.
(b) Bicubic interpolation. (c) L2 + Tikhonov (d) L2 + BTV. (e) L1 + BTV. (f) DeepSR. (g) BEP. (h) IRW. (i) Proposed. (j) Ground truth.

TABLE V

COMPUTATIONAL COMPLEXITY ANALYSIS OF OUR PROPOSED METHOD AND THE COMPARED METHODS

compared methods in terms of run-time. The run-time eval-
uation was implemented on a laptop computer with the Intel
i7-4710HQ CPU and NIVIDIA GeForce GTX 860M GPU
established on the Matlab environment. The test LR sequence
has 16 frames, each of which is a color image with size
of 128×128×3 and the SR ratio is set to 2. Table V gives
the run-time complexity of our proposed method and the
compared methods. Compared with the state-of-the-art SR
methods such as the DeepSR, BEP and IRW, the proposed
method has lower computational complexity since our good
initialization method can accelerate the convergence of the

objective minimization function. DeepSR has the highest
computational complexity since multiple SR drafts have to
be generated to obtain the final result. The L2 + T ikhonov,
L2 + BT V and L1 + BT V methods have lower computational
complexity than our proposed method. However, the quality of
our super-resolved images is much better than theirs in terms
of both visual evaluation and PSNR/SSIM results.

F. Robustness Analysis

In this section, we analyse and justify the robustness of our
proposed method when the input LR sequences are corrupted

Authorized licensed use limited to: McMaster University. Downloaded on June 08,2021 at 00:17:42 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: ROBUST MULTI-FRAME SR 4983

Fig. 14. Visual comparison of multi-frame super-resolved results from different algorithms for text frames (r = 3). (a) Reference LR image. (b) Bicubic
interpolation. (c) L2 + Tikhonov. (d) L2 + BTV (e) L1 + BTV. (f) DeepSR. (g) BEP. (h) IRW. (i) Proposed.

Fig. 15. Visual comparison of multi-frame super-resolved results from different algorithms for adyoron frames (r = 3). (a) Reference LR image. (b) Bicubic
interpolation. (c) L2 + Tikhonov. (d) L2 + BTV. (e) L1 + BTV. (f) DeepSR. (g) BEP. (h) IRW. (i) Proposed.

with different degrees of blurring and noising respectively.
The other parameters have the same values as the previous
experiments. Two robust SR methods, the BEP and IRW
methods, are compared with our proposed method. The test
synthetic data is generated by Bird image from Set 5. Table VI
demonstrates the SR results with different blurring parameter
σ from 0.2 to 0.6. Although the quality of estimated SR
image gradually decreases when the σ increases, the other two
robust methods show larger reduction. Our proposed method
has the best performance of robustness under blur corruption
in terms of PSNR and SSIM results compared with the
others. In Table VII, we use mixed noises including Gaussian
noise and Salt&Pepper noise to test the performance of the

three robust methods under noise corruption. The variance of
mixed noises is set from 0.01 to 0.05 respectively. Compared
with the other two methods, our proposed method has the
best performance of suppressing the mixed noises, which
demonstrates the robustness of our method in terms of noise
corruption.

G. Experiments on Real Data

In this section, we use real data to test our pro-
posed algorithm in practical applications. The real data
obtained from Multi-Dimensional Signal Processing Research
Group (MDSP) [33] is the most widely used dataset to test

Authorized licensed use limited to: McMaster University. Downloaded on June 08,2021 at 00:17:42 UTC from IEEE Xplore.  Restrictions apply. 



4984 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 10, OCTOBER 2018

Fig. 16. Visual comparison of multi-frame super-resolved results from different algorithms for book frames (r = 3). (a) Reference LR image. (b) Bicubic
interpolation. (c) L2 + Tikhonov. (d) L2 + BTV. (e) L1 + BTV. (f) DeepSR. (g) BEP. (h) IRW. (i) Proposed.

Fig. 17. Visual comparison of multi-frame super-resolved results from different algorithms for disk frames (r = 4). (a) Reference LR image. (b) Bicubic
interpolation. (c) L2 + Tikhonov. (d) L2 + BTV. (e) L1 + BTV. (f) DeepSR. (g) BEP. (h) IRW. (i) Proposed.

TABLE VI

PSNR/SSIM RESULTS WITH DIFFERENT BLURRING DEGREES

the performance of multi-frame SR methods. Since this data
set is shot by real camera, there are no ground truth images.
Therefore, the image assessment matrices such as PSNR
and SSIM can not be used to evaluate the quality of real

TABLE VII

PSNR/SSIM RESULTS WITH DIFFERENT NOISE DEGREES

images. In this paper, we only use visual comparison to assess
image quality for real data. Moreover, for real data, the PSF
kernel is unknown. To simplify this blind deblurring problem,
we assume the unknown PSF kernel is a 4×4 Gaussian kernel
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Fig. 18. Visual comparison of multi-frame super-resolved results from different algorithms for EIA frames (r = 4). (a) Reference LR image. (b) Bicubic
interpolation. (c) L2 + Tikhonov. (d) L2 + BTV. (e) L1 + BTV. (f) DeepSR. (g) BEP. (h) IRW. (i) Proposed.

with σ = 0.4. This PSF kernel is determined empirically based
on numerous experiments via visual comparison.

For the real data, large scale factors such as 3 and 4 are
used to reconstruct our HR images. Fig. 14, Fig. 15 and
Fig. 16 show the visual comparison of super-resolved results
of text, adyoron and book respectively from different multi-
frame SR methods with the scale factor of 3. In Fig. 17 and
Fig. 18, the results of disk and EIA are presented with the scale
factor of 4. Compared with other 7 methods, our estimated
HR images can effectively suppress the errors caused by
noise, registration and bad estimation of unknown PSF kernels.
Besides, the detailed information in real images is preserved
well, which shows that our super-resolved images have better
quality in visual comparison.

VI. CONCLUSIONS

In this paper, we proposed a robust multi-frame image SR
algorithm based on spatially weighted half-quadratic estima-
tion and adaptive BTV regularization. A novel initial method
based on median operator is used to generate an outlier-
insensitive HR image as the initial value. For the fidelity term,
the half-quadratic estimation is introduced to choose norm
adaptively instead of using fixed L1 and L2 norms. Besides,
a spatial weight matrix is used as a confidence map to scale
the result of half-quadratic estimation. For the regularization
term, an adaptive regularization method based on bilateral
total variation (BTV) is proposed to suppress image noise
and preserve image edges simultaneously. Both the simulated
data and real data are tested to evaluate the performance of
the proposed method. The experimental results demonstrate
that our method outperforms the state-of-the-art algorithms
with better visual quality and higher values in quality metrics.
As for future work, we are trying to extend our algorithm to
blind SR.
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