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Parallel Prefix Computation and Sorting on a 
Recursive Dual-Net 
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Abstract—In this paper, we propose efficient algorithms for parallel prefix computation 
and sorting on a recursive dual-net. The recursive dual-net RDNk(B) for k > 0 has 
(2no)2K/2 nodes and d0 + k links per node, where n0 and d0 are the number of nod
es and the node-degree of the base-network B, respectively. Assume that each node 
holds one data item, the communication and computation time complexities of the 
algorithm for parallel prefix computation on RDNk(B), k > 0, are 2k+1-2+2kTcomm(0) and 2
k+1-2+2kTcomp(0), respectively, where Tcomm(0) and Tcomp(0) are the communication and 
computation time complexities of the algorithm for parallel prefix computation on the 
base-network B, respectively. The algorithm for parallel sorting on RDNk(B) is restricted 
on B = Qm where Qm is an m-cube. Assume that each node holds a single data item, 
the sorting algorithm runs in O((m2k)2) computation steps and O((km2k)2) communication 
steps, respectively. 
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1. INTRODUCTION 
The purpose of the interconnection networks (INs) is to connect processor/memory boards to-

gether to form a parallel or distributed system. In massively parallel computer systems, the in-
terconnection networks play a crucial role in issues such as communication performance, hard-
ware cost, computational complexity, and fault-tolerance. Much research has been reported in 
the literature on interconnection networks, which can be used to construct parallel computers of 
large scale [1,2,3]. 

The following two categories have attracted great research attention. One is the hypercube-
like family that has the advantage of short diameters for high-performance computing and effi-
cient communication [4,5,6,7,8]. The other is the family of 2D/3D meshes or tori that has the 
advantage of small and fixed node-degrees and easy implementation. Traditionally, most paral-
lel systems including those built by CRAY, IBM, SGI, and Intel use 3D tori or hypercubes. 

Recursive networks have also been proposed as effective interconnection networks for large-
scale parallel computers. For example, the WK-recursive network [9,10] is a class of recursive 
scalable networks. It offers a high-degree of regularity, scalability, and symmetry and has a 
compact VLSI implementation. 

Recently, because of the advance in computer technology and competition among computer mak-
ers, supercomputers containing hundreds of thousands of nodes have been constructed [11]. It was 
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predicted that the parallel systems of the next decade will contain 10 to 100 millions of nodes [12]. 
An interconnection network consists of switches with multiple communication ports and ca-

bles that connect the ports by following some topologies. For a parallel computer of a very-large 
scale, the traditional interconnection networks may no longer satisfy the requirements for high-
performance computing or efficient communication. For future generations of supercomputers 
with millions of nodes, the node-degree and the diameter will be the critical measures for the 
effectiveness of the interconnection networks. The node-degree is limited by the hardware tech-
nologies and the diameter affects all kinds of communication schemes directly. Other important 
measures include bisection bandwidth, scalability, and efficient routing algorithms. 

In this paper, we first describe a newly proposed network, called the Recursive Dual-Net 
(RDN). The RDN is based on the recursive dual-construction of a symmetric base-network. The 
dual-construction extends a symmetric network with n nodes and node-degree d to a network 
with 2n2 nodes and node-degree d + 1. The RDN is especially suitable for the interconnection 
network of parallel computers with millions of nodes. It can connect a huge number of nodes 
with just a small number of links per node and very short diameters. For example, a 2-level 
RDN with a 5-ary, 2-cube as the base-network can connect more than 3-million nodes with only 
6 links per node and its diameter equals to 22. 

RDN has been proven to have excellent topological properties including small node-degree, 
short diameter, efficient routing algorithms, and efficient communication schemes for collective 
communication. However, to be an effective, high-performance interconnection network of par-
allel computers, it is important that efficient algorithms that can perform some basic computa-
tional tasks in computer science do exist. The significant contribution of this paper is to develop 
efficient algorithms for parallel prefix computation and parallel sorting on RDN. We also dem-
onstrate certain techniques for algorithmic design on RDN that might be useful while develop-
ing efficient algorithms for other important computational problems on RDN. 

The prefix computation is fundamental to most numerical algorithms. Let ○+  be an associa-
tive binary operation. Given n numbers c0,c1,…,cn-1, prefix computation is to compute all of the 
prefixes of the expression c0○+ c1○+ …○+ cn-1. The parallel sorting on networks is an important 
problem for many applications using parallel computer systems. For an n-cube, the best known 
deterministic sorting algorithm can sort in O(nlogn) time in the worst case [13]. However, the 
algorithm is not practical due to the hidden large constant. The most popular algorithm for paral-
lel sorting on networks is Batcher's bitonic sorting algorithm. The communication and computa-
tion time complexities of the proposed algorithm for parallel prefix computation on RDNk(B), k 
> 0, are 2k+1-2+2kTcomm(0) and 2k+1-2+2kTcomp(0), respectively, where Tcomm(0) and Tcomp(0) are the 
communication and computation time complexities of the algorithm for parallel prefix computa-
tion on the base-network B, respectively. The proposed algorithm for sorting on an RDN with an 
m-cube as its base-network is based on the bitonic sorting. In RDNk(Qm), assume that each node 
holds a single data item, the sorting algorithm runs in O((m2k)2) computation steps and 
O((km2k)2) communication steps. 

The rest of this paper is organized as follows: Section 2 describes the recursive dual-net in de-
tail. Section 3 describes the proposed algorithm for parallel prefix computation on an RDN. Sec-
tion 4 describes the presentation of an RDN with an m-cube as its base-network. Section 5 de-
scribes the proposed sorting algorithm on RDNk(Qm). Section 6 concludes the paper and presents 
some future research directions. 
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2. RECURSIVE DUAL-NETS 
Let G be an undirected graph. The size of G, denoted as |G|, is the number of vertices. A path 

from node s to node t in G is denoted by s→t. The length of the path is the number of edges in 
the path. For any two nodes s and t in G, we denote L(s,t) as the length of a shortest path con-
necting s and t. The diameter of G is defined as D(G) = max{L(s,t) | s,t∈G}. 

For any two nodes s and t in G, if there is a path connecting s and t, we say that G is a con-
nected graph. A graph is symmetric if it is connected and every node in the graph looks alike. 
Suppose that we have a symmetric graph B and there are n0 nodes in B and the node degree is d0. 
A k-level Recursive Dual-Net RDNk(B), also denoted as RDNk(B(n0)), can be recursively defined 
as follows: 

 
1. RDN0(B) = B is a symmetric graph with n0 nodes, called base-network. 
2. For k > 0, an RDNk(B) is constructed from RDNk-1(B) by a dual-construction as explained 

below (also see Fig.1). 
 
Dual-construction: Let RDNk-1(B) be referred to as a cluster of level k and nk-1 = |RDNk-1(B)| 

for k > 0. An RDNk(B) is a graph that contains 2nk-1 clusters of level k as subgraphs. These clus-
ters are divided into two sets with each set containing nk-1 clusters. Each cluster in one set is said 
to be of type 0, denoted as 0

iC  where 0≤i≤nk-1-1 is the cluster ID. Each cluster in the other set 

is of type 1, denoted as 1

jC , where 0≤j≤nk-1-1 is the cluster ID. At level k, each node in a clus-

ter has a new link to a node in a distinct cluster of the other type. We call this link cross-edge of 
level k. By following this rule, for each pair of clusters 0

iC  and 1

jC , there is a unique edge 

connecting a node in 1

jC  and a node in 1

jC , 0≤i,j≤nk-1-1. In Fig. 1, there are nk-1 nodes within 

each cluster RDNk-1(B). 
We give two simple examples of recursive dual-nets with k = 1 and 2, in which the base net-

work is a ring with 3 nodes, in Fig. 2 and Fig. 3, respectively. Fig. 2 depicts an RDN1(B(3)) net-
work. There are 3 nodes in the base-network. Therefore, the number of nodes in RDN1(B(3)) is 
2*32 = 18. The node-degree is 3 and the diameter is 4. 

 
Fig. 1. Build an RDNk(B) from RDNk-1(B) 
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Fig. 3 shows the RDN2(B(3)) constructed from the RDN1(B(3)) in Fig. 2. We did not show all 
of the nodes in the figure. The number of nodes in RDN2(B(3)) is 2*182 = 648. The node degree 
is 4 and the diameter is 10. 

Similarly, we can construct an RDN3(B(3)) containing 2*6482 = 839,808 nodes with a node 
degree of 5 and a diameter of 22. In contrast, the 839,808-node 3D torus machine (adopted by 
IBM Blue Gene/L [14]) is configured as 108*108*72 nodes. Its diameter is equal to 54 + 54 + 
36 = 144 with a node degree of 6. 

We can see from the recursive dual-construction described above that an RDNk(B) is a sym-
metric network with the node-degree d0+k if the base-network is a symmetric network with the 
node-degree d0. The following theorem is from [15]. 

 
Theorem 1. Assume that the base-network B is a symmetric graph with the size n0, the node-

degree d0, and the diameter D0. Then, the size of RDNk(B) is (2n0)2k/2, the node-degree is d0+k, 
the diameter is 2kD0+2k+1-2, and the bisection bandwidth is [(2n0)2k/8]. 

The cost ratio CR(G) for measuring the combined effects of the hardware cost and the soft-
ware efficiency of an interconnection network was also proposed in [15]. Let |(G)|, d(G), and 
D(G) be the number of nodes, the node-degree, and the diameter of G, respectively. We define 
CR(G) as 

 
CR(G) = (d(G)+D(G)) / log2|(G)| 

 
The cost ratio of an n-cube is 2 regardless of its size. The CRs for some RDNk(B) are shown in 

Table 1. Two small networks including 3-ary 3-cube and 5-ary 2-cube are selected as practical 
base networks. For INs of a size around 1K, we set k = 1, while for INs of a size larger than 1M, 

 
Fig. 2. An RDN1(B(3)) with B as a ring 

 

 
Fig. 3. An RDN2(B(3)) with B as a ring
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we set k = 2. The results show that the cost ratios of RDNk(B) are better than hypercubes and 3D-
tori in all cases. 

A presentation for RDNk(B) that provides a unique ID to each node in RDNk(B) is described 
as follows. Let the IDs of nodes in B, denoted as ID0, be i, 0 ≤ i ≤ n0-1. The IDk of node u in 
RDNk(B) for k > 0 is a triple (u0,u1,u2), where u0 is a 0 or 1, u1 and u2 belong to IDk-1. We call u0, 
u1, and u2 typeID, clusterID, and nodeID of u, respectively. With this ID presentation, (u,v) is a 
cross-edge of level k in RDNk(B) iff u0 ≠ v0, u1 = v2, and u2 = v1. In general, IDi, 1≤ i ≤ k, can 
be defined recursively as follows: IDi = (b,IDi-1,IDi-1), where b = 0 or 1. A presentation example 
is shown in Fig. 4. 

The ID of a node u in RDNk(B) can also be presented by a unique integer i, 0≤ i≤ (2n0)2k/2-1, 
where i is the lexicographical order of the triple (u0,u1,u2). For examples, the ID of node (1,1,2) 
in RDN1(B(3)) is 1*32 + 1*3 + 2 = 14 (see Fig. 5); the ID of node (1,(0,2,2),(1,0,1)) in 
RDN2(B(3)) is 1*182 + 8*18 + 10 = 324 + 144 + 10 = 478. 

A high-performance supercomputer based on the RDN can be implemented easily. We can 
use the Gigabit Ethernet or Infiniband products, or we can design a switch chip with multiple 
ports, as the RDN switch or router. Then we can connect ports with high-speed cables just by 
following the RDN topology. 

Table 1. CRs for some RDNk(B) 

Network n d D CR 
10-cube 1,024 10 10 2.00 

RDN1(B(25)) 1,250 5 10 1.46 
RDN1(B(27)) 1,458 7 8 1.43 
3D-Tori(10) 1,000 6 15 2.11 

22-cube 4,194,304 22 22 2.00 
RDN2(B(25)) 3,125,000 6 22 1.30 
RDN2(B(27)) 4,251,528 8 18 1.18 
3D-Tori(160) 4,096,000 6 240 11.20 

 
Fig. 4. A presentation of RDN1(B(3)) with B as a ring 

 

 
Fig. 5. An RDN1(B(3)) with integer node ID 
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3. PARALLEL PREFIX COMPUTATION ON RECURSIVE DUAL-NETS 
Let ○+  be an associative binary operation. Given n numbers c0,c1,…,cn-1, parallel prefix com-

putation [16,17] is defined as simultaneously evaluating all of the prefixes of the expression c0○+

c1○+ …○+ cn-1. The ith prefix is si = c0○+ c1○+ …○+ ci-1. 
The parallel prefix computation can be done efficiently on a recursive dual-net. Assume that 

each node i, 0 ≤i≤nk-1, in an RDNk(B) holds a number ci. Let xi and yi are local variables in 
node i that will hold prefixes and total_sum at the end of the algorithm. The algorithm for a par-
allel prefix (or diminished prefix which excludes ci in si) computation on RDNk(B) is a recursive 
algorithm on k. We assume that the algorithm RDN_prefix(B, c, b) for prefix and diminished 
prefix computation on the base network (b = 1 for prefix and b = 0 for diminished prefix) is 
available. We describe the algorithm briefly below. 

First, through a recursive call for every cluster of level k, we calculate the local prefix xi and 
the local sum yi in node i, where local prefix and local sum are the prefixes and the sum on the 
data items in each cluster of level k. To get the prefix of the data items in other clusters, we cal-
culate the diminished prefix of all local sums of the clusters of the same type. This can be done 
by transferring the local sum to its neighbor via the cross-edge of level k, and then the prefix x'i 
and the sum y'i of all local sums of the same type can be computed by the nodes in every cluster 
of the other type via a recursive call. 

After the second recursive call, the missing parts of the prefixes are ready for the nodes in 
clusters of type 0. Then, these values are transferred back to the nodes in the cluster of the origi-
nal type via the cross-edge of level k and are added to its own local prefix. Finally, the algorithm 
adds the sum y'i of data items in the nodes in clusters of type 0 to the current prefix of every 
node j in cluster of type 1. Notice that the value y'i exists in every node j in the clusters of type 1 
when the second recursive call is done. 

The formal algorithm for parallel prefix computation on an RDN is specified in Algorithm 1. 
Examples of prefix_sum on RDN1(B) and RDN2(B) are shown in Fig. 6 and Fig. 7, respectively. 

 
Theorem 2. Assume bidirectional-channel communication model. Assume also that each 

node holds a single data item. Parallel prefix computation on RDNk(B), k > 0, can be done in 
2k+1-2+2kTcomm(0) communication steps and 2k+1-2+2kTcomp(0) computation steps, where Tcomm(0) 
and Tcomp(0) are communication and computation steps for prefix computation on the base-
network, respectively. 

 
Proof. In Step 1, the local prefix in each cluster of level k is computed. In Steps 2-4, the part 

of the prefix located in other clusters of the same type is computed. Finally, in Step 5, for clus-
ters of type 1, part of the prefix located in the clusters of type 0 is added to the nodes in the clus-
ter of type 1. It is easy to see the correctness of the algorithm. 

Next, we assume that the edges in RDNk(B) are bidirectional channels, and that at each clock 
cycle, each node can send or receive one message at most. In Algorithm 1, Step 1 and Step 3 are 
recursive calls and Step 2 and Step 4 involve one communication step each. Therefore, the com-
plexity for communication satisfies recurrence Tcomm(k) = 2Tcomm(k-1)+2. Solving the recurrences, 
we get 2k+1-2+2kTcomm(0). Similarly, Steps 4 and 5 involve one computation step each. The recur-
rence for computation time satisfies the same concurrence. 

Therefore, we conclude that the prefix computation on RDNk(B) for k > 0 can be done in 2k+1  
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-2+2kTcomm(0) communication steps and 2k+1-2+2kTcomp(0) computation steps, where Tcomm(0) and 
Tcomp(0) are communication and computation steps for prefix computation on the base-network, 
respectively.  

The extension of the parallel prefix algorithm to the general case where each node initially 
holds more than one data item is straightforward. Let the size of array c be m > n. The algorithm 
consists of three stages. In the first stage, each node does a prefix computation on its own data 
set of size m/n sequentially. In the second stage, the algorithm performs a diminished parallel 
computation on the RDN as described in Algorithm 1 with b = 0 and ci equals the local sum. In 
the third stage, for each node, the algorithm combines the result from this last computation with 
the locally computed prefixes to get the final result. We show the parallel prefix computation for 
the general case in theorem 3. 

 
Theorem 3. Assume the bidirectional-channel communication model. Assume also that the 

size of the input array is m, and that each node holds m/nk numbers. Parallel prefix computation 
on RDNk(B), k > 0, can be done in 2k+1-2 + 2kTcomm(0) communication steps and 2m/nk + 2k+1-3 + 
2kTcomp(0) computation steps, where Tcomm(0) and Tcomp(0) are communication and computation 
steps for prefix computation on the base-network with each node holds one single number, re-
spectively. 
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Proof. The first and the third stages of the algorithm contains only local computations inside 

each node and the total number of computations are (m/nk) -1 and m/nk, respectively. In the sec-
ond stage, the algorithm performs parallel prefix computation on an RDN with each node hold-
ing a single number. Following Theorem 2, it requires 2k+1-2+2kTcomm(0) communication steps 
and 2k+1-2+2kTcomp(0) computation steps. Therefore, we conclude that the parallel prefix compu-
tation of array of size m > nk on RDNk(B) requires 2k+1-2+2kTcomm(0) communication steps and 
(2m/nk+2k+1-3)+2kTcomp(0) computation steps.  

 
Fig. 6. An example of prefix_sum on RDN1(B(3))
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4. A RECURSIVE DUAL-NET WITH A HYPERCUBE AS ITS BASE-NETWORK 

In this paper, we focus our design of sorting algorithm on RDNk(Qm), where the base-network 
is an m-cube Qm. First, we will describe a presentation for RDN2(Qm). 

A presentation for RDNk(Qm) that provides a unique ID to each node in RDNk(Qm) is described 
as follows. Let the ID of a node in Qm, denoted as ID0, be an m-bit number bm-1…b1b0. The IDk 
of a node u in RDNk(Qm) for k > 0 is a triple (u0,u1,u2), where u0 is a 0 or 1, u1 and u2 belong to 
IDk-1. We call u0, u1, and u2 typeID, clusterID, and nodeID of u, respectively. With this ID pres-

 
Fig. 7. An example of prefix_sum on RDN2(B(3)) 
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entation, (u,v) is a cross-edge of level k in RDNk(Qm) iff u0≠v0, u1 = v2, and u2 = v1. In general, 
IDi, 1≤i≤k, can be defined recursively as follows: IDi = (c, IDi-1,IDi-1), where c = 0 or 1. 

In this paper, we present a parallel sorting algorithm on RDN2(Qm) (k = 2). The format of the 
node ID is given in Fig. 8. 

In Fig. 8, 0

1mb
−

… 0

0b  is the node ID in Qm; (c0, 1

1mb
−

… 1

0b , 0

1mb
−

… 0

0b ) is the node ID in 
RDN1(Qm); and (c1, 3

1mb
−

… 3

0b , 2

1mb
−

… 2

0b ) is the clusterID of a node in RDN2(Qm). 
Each node in an RDN2(Qm) has m+2 links. Because 0

1mb
−

… 0

0b  is the ID of a node in the m-
cube, there is a link connecting two nodes if the IDs of the two nodes differ only in one bit posi-
tion. There are another two links (cross-edges) for each node in an RDN2(Qm). For k = 1, there is 
a link between nodes (0, 1

1mb
−

… 1

0b , 0

1mb
−

… 0

0b ) and (1, 0

1mb
−

… 0

0b , 1

1mb
−

… 1

0b ). For k = 2, there 
is a link between nodes (0, c1, 3

1mb
−

… 3

0b , 2

1mb
−

… 2

0b , c0, 1

1mb
−

… 1

0b , 0

1mb
−

… 0

0b ) and (1, c0, 
1

1mb
−

… 1

0b , 0

1mb
−

… 0

0b , c1, 3

1mb
−

… 3

0b , 2

1mb
−

… 2

0b ). 

Two presentation examples of RDN1(Qm) and RDN2(Qm) with m = 2 are shown in Fig. 9 and 
Fig. 10, respectively. 

The node ID in an RDN2(Qm) has 4m+3 bits. Because the sorting algorithm presented in this 
paper requires only the communication between nodes u and u(i) where the IDs of u and u(i) dif-
fer in a bit position i for i = 4m+2,…,1,0. We give a simple routing algorithm for those node 
pairs. The routing algorithm for a general case was given in [15]. 

If we use b4m+2…b0 to denote the (4m+3)-bit ID of a node in an RDN2(Qm), then 
 
▪ bm-1…b0 = 0

1m
b

−
… 0

0
b ; 

▪ b2m-1…bm = 1

1m
b

−
… 1

0
b ; 

▪ b2m = c0; 
▪ b3m…b2m+1 = 2

1m
b

−
… 2

0
b ; 

▪ b4m…b3m+1 = 3

1m
b

−
… 3

0
b ; 

▪ b4m+1 = c1; and 
▪ b4m+2 = c2. 
 
The routing algorithm between nodes u and u(i) for i = 0, 1, …, 4m+2 is simply described as 

below: 
 

 
Fig. 8. Address format of RDN2(Qm) 

 

 
Fig. 9. A presentation of RDN1(Q2) 
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▪Case 1: If m-1≥ i≥ 0, i = 2m, or i = 4m+2, nodes u and u(i) can send and receive data each 
other directly because there is a link connecting the two nodes. 

▪Case 2: If 2m-1≥ i≥ m, nodes u and u(i) can communicate along with the 2mth dimension 
first such that the bits b2m-1…bm will be exchanged to the positions bm-1…b0. Then it be-
comes the same as Case 1. The final step is to route along with the 2mth dimension again 
(exchange back). 

▪Case 3: If 4m≥ i≥ 2m+1, nodes u and u(i) can communicate along with the 4m+2nd dimen-
sion first such that the bits b4m…b2m+1 will be exchanged to the positions b2m-1…b0. Then 
it becomes the same as Case 2 or Case 1. The final step is to route along with the 4m+2nd 
dimension again (exchange back). 

 
The following example shows the routing path between nodes u = 0 0 00 00 0 00 00 and u(i) in 

an RDN2(Q2) for i = 0, 1, …, 10. 
 
0) 0 0 00 00 0 00 00 → 0 0 00 00 0 00 01 
1) 0 0 00 00 0 00 00 → 0 0 00 00 0 00 10 
2) 0 0 00 00 0 00 00 → 0 0 00 00 1 00 00 → 0 0 00 00 1 00 01 → 0 0 00 00 0 01 00 
3) 0 0 00 00 0 00 00 → 0 0 00 00 1 00 00 → 0 0 00 00 1 00 10 → 0 0 00 00 0 10 00 
4) 0 0 00 00 0 00 00 → 0 0 00 00 1 00 00 
5) 0 0 00 00 0 00 00 → 1 0 00 00 0 00 00 → 1 0 00 00 0 00 01 → 1 0 00 01 0 00 00 
6) 0 0 00 00 0 00 00 → 1 0 00 00 0 00 00 → 1 0 00 00 0 00 10 → 1 0 00 10 0 00 00 
7) 0 0 00 00 0 00 00 → 1 0 00 00 0 00 00 → 1 0 00 00 1 00 00 → 1 0 00 00 1 00 01 →  

1 0 00 00 0 01 00 → 0 0 01 00 0 00 00 
8) 0 0 00 00 0 00 00 → 1 0 00 00 0 00 00 → 1 0 00 00 1 00 00 → 1 0 00 00 1 00 10 →  

1 0 00 00 0 10 00 → 0 0 10 00 0 00 00 
9) 0 0 00 00 0 00 00 → 1 0 00 00 0 00 00 → 1 0 00 00 1 00 00 → 0 1 00 00 0 00 00 
10) 0 0 00 00 0 00 00 → 1 0 00 00 0 00 00 
 
Theorem 4. In the bidirectional channel communication model, the communication between 

 
Fig. 10.  A presentation of RDN2(Q2) 
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nodes u and u(i) in RDNk(Qm), where the addresses of u and u(i) differ in ith bit position for 0≤ i < 
2km+2k-1 takes at most tk = 2k + 1 steps. 

 
Proof. For k = 0, an RDN is an m-cube, since there is a direct link in every dimension, the 

communication takes only one step. 
For k = 1, a node address has 2m+1 bits. The routing in each bit of the clusterID (m bits) takes 

two more steps: one for going to another type and one for coming back. Therefore, it takes three 
steps. 

Assume it is true for k-1. For k, the clusterID has 2k-1m + 2k-1-1 bits. Routing in each bit of this 
part takes two more steps. Therefore, the communication time is tk = tk-1+ 2 = 2(k-1) + 3 = 2k + 1. 
Therefore, the theorem is correct.  

 
 

5. PARALLEL SORTING ON RECURSIVE DUAL-NETS 
In this section, we present a new sorting algorithm on RDNk(Qm) based on parallel bitonic 

sorting. Bitonic sorting repeatedly merges two bitonic sequences to form a larger bitonic se-
quence. A bitonic sequence is a sequence of values (a0,a1,…,an-1) with the property that either 
(1) there exists an index i, where 0≤ i≤ n-1, such that (a0,…,ai) is monotonically increasing and 
(ai+1,…,an-1) is monotonically decreasing, or (2) there exists a cyclic shift of indices so that (1) is 
satisfied. For example, (2,3,8,13,15,14,7,0) is a bitonic sequence because it first increases and 
then decreases. 

Let s = (a0,a1,…,an-1) be a bitonic sequence such that a0≤ a1≤ …≤ an/2-1 and an/2≥ an/2+1≥ …
≥ an-1. The bitonic sequence s can be sorted by a bitonic split operation which halves the se-
quence into two bitonic sequences s1 and s2 such that all the values of s1 are smaller than or 
equal to all the values of s2 [18]. That is, the bitonic split operation performs: 

s1 = (min{a0,an/2},…,min{an/2-1,an-1}); 
s2 = (max{a0,an/2},…,max{an/2-1,an-1}). 
For example, the bitonic sequence mentioned above s = (2,3,8,13,15,14,7,0) will be divided 

into two bitonic sequences s1 = (2,3,7,0) and s2 = (15,14,8,13). Note that both the s1 and s2 are 
bitonic sequences. Thus, given a bitonic sequence, we can use bitonic splits recursively to obtain 
short bitonic sequences until we obtain sequences of size one, at which point the input bitonic 
sequence is sorted. This procedure of sorting a bitonic sequence using bitonic splits is called a 
bitonic merge (BM). 

Given a set of elements, we must transform them into a bitonic sequence. This can be done 
recursively by doubling the size of the bitonic sequence. The bitonic sorting network for sorting 
N numbers consists of log2N bitonic sorting stages, where the ith stage is composed of N/2i al-
ternating increasing and decreasing bitonic merges of size 2i. 

Fig. 11 shows the block structure of a bitonic sorting network of size N = 16. ○+ BM[k] and 
○- BM[k] denote increasing and decreasing bitonic merging networks of size k, k = 2, 4, 8, 16, 
respectively. The last merging network (○+ BM[16]) sorts the input. 

A bitonic sorting example on a 4-cube is shown in Fig. 12. The computational complexity for 
sorting N = 2n numbers in an n-cube is O(n(n+1)/2) = O(n2). Similarly, the communications take 
O(n2) steps. 

We assume that each node in RDNk(Qm) holds a single element (number). The sorting algo-
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rithm compares and exchanges elements so that, at the end, all the elements are in the ascending 
order arranged by their addresses. 

The parallel sorting on an RDN is based on bitonic sorting on hypercubes. The basic opera-
tion is compare-and-exchange: Nodes u and u(i) whose addresses differ in the ith bit position for 
0≤ i < 2km+2k-1 send their elements to each other. Nodes u and u(i) retain the smaller number 
and bigger number, respectively, if u < u(i). However, there may be no direct links in some di-
mensions between nodes u and u(i) in an RDN.  

The node address has 2km+2k-1 bits (dimensions) and there are only k+m links per node in 
RDNk(Qm). For k = 2, there are four m-bit fields and three single-bit fields. We build a path be-
tween nodes u and u(i) for 0≤ i < 2km+2k-1 in seven cases (one for each field). The sorting algo-
rithm on RDN2(Qm) is formally given in Algorithm 2. 

There are four parameters in the algorithm: my_id is the binary node address; my_number is 
the number residing in the node; m is the dimension of the hypercube; and result is the sorted 
number. The sorted numbers are in the same order as the node addresses. The outer for loop 
generates bitonic sequences in the dimension order of i = 0 to 4m+2. Each iteration of the loop 
doubles the size of the bitonic sequences. The bitonic merge is done by the inner for loop, which 

 
Fig. 11. A bitonic sorting network of size 16

 
Fig. 12. Bitonic sorting on a 4-cube
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takes the order of j = i to 0. In the current step j, nodes u and u(j) exchange their numbers with 
each other through the path and compare the two numbers, where the addresses of nodes u and 
u(j) differ only in the dimension j. After the comparison, node u keeps the number as result based 
on the following rule: If the value of the jth bit of the address differs from the value of i+1st bit 
of the address, the node keeps the maximum of the two numbers; minimum otherwise. 

 
Theorem 5. In the bidirectional channel communication model, bitonic sorting on RDNk(Qm) 

with 2 2 12
k kmN + −=  nodes can be done in O((m2k)2) computation steps and O((mk2k)2) com-
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munication steps, respectively. 
Proof. The Algorithm 2 performs bitonic sorting on RDN2(Qm). The outer for loop generates bi-

tonic sequences in the dimension order of i = 0 to 4m+2. Each iteration of the loop doubles the size 
of the bitonic sequences. The bitonic merge is done by the inner for loop. At each iteration of the 
loop, a compare-and-exchange operation is executed between nodes u and u(j) through a path of 
length at most five (from Theorem 4). There are seven cases since there are four m-bit fields and 
three single-bit fields in the node address for k = 2. It is not difficult to extend Algorithm 2 to 
RDNk(Qm) for k > 2. Since bitonic sorting is used, the computation time is O((m2k)2) as that on an 
n-cube, where n = 2km+2k 1. From Theorem 4, the worst-case for communication time between 
the pair u and u(j) is 2k+1. Therefore, the upper bound of the communication time is O((mk2k)2).  

 
 

6. CONCLUDING REMARKS 
In this paper, we presented efficient algorithms for parallel prefix computation and parallel 

sorting on RDN2(B). The algorithm for parallel sorting is restricted on the case B = Qm. One of 
the further research topics on RDN is to extend the algorithm for parallel sorting to a general 
RDNk(B) assuming that parallel sorting on B can be done efficiently. 

The recursive dual-net is a potential candidate for the supercomputers of future generations. It 
has many interesting properties that are very attractive as an interconnection network of massively 
parallel computers. To design efficient algorithms for basic computational problems on an inter-
connection network is an important issue. The other research topics may include the design of effi-
cient algorithms for numerical computations and the fault tolerant routing on recursive dual-nets. 
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