

Journal of Information Processing Systems, Vol.7, No.2, June 2011 DOI : 10.3745/JIPS.2011.7.2.271

271

Parallel Prefix Computation and Sorting on a
Recursive Dual-Net

Yamin Li*, Shietung Peng* and Wanming Chu**

Abstract—In this paper, we propose efficient algorithms for parallel prefix computation
and sorting on a recursive dual-net. The recursive dual-net RDNk(B) for k > 0 has
(2no)2K/2 nodes and d0 + k links per node, where n0 and d0 are the number of nod
es and the node-degree of the base-network B, respectively. Assume that each node
holds one data item, the communication and computation time complexities of the
algorithm for parallel prefix computation on RDNk(B), k > 0, are 2k+1-2+2kTcomm(0) and 2
k+1-2+2kTcomp(0), respectively, where Tcomm(0) and Tcomp(0) are the communication and
computation time complexities of the algorithm for parallel prefix computation on the
base-network B, respectively. The algorithm for parallel sorting on RDNk(B) is restricted
on B = Qm where Qm is an m-cube. Assume that each node holds a single data item,
the sorting algorithm runs in O((m2k)2) computation steps and O((km2k)2) communication
steps, respectively.

Keywords— Interconnection Networks, Algorithm, Parallel Prefix Computation, Sorting

1. INTRODUCTION
The purpose of the interconnection networks (INs) is to connect processor/memory boards to-

gether to form a parallel or distributed system. In massively parallel computer systems, the in-
terconnection networks play a crucial role in issues such as communication performance, hard-
ware cost, computational complexity, and fault-tolerance. Much research has been reported in
the literature on interconnection networks, which can be used to construct parallel computers of
large scale [1,2,3].

The following two categories have attracted great research attention. One is the hypercube-
like family that has the advantage of short diameters for high-performance computing and effi-
cient communication [4,5,6,7,8]. The other is the family of 2D/3D meshes or tori that has the
advantage of small and fixed node-degrees and easy implementation. Traditionally, most paral-
lel systems including those built by CRAY, IBM, SGI, and Intel use 3D tori or hypercubes.

Recursive networks have also been proposed as effective interconnection networks for large-
scale parallel computers. For example, the WK-recursive network [9,10] is a class of recursive
scalable networks. It offers a high-degree of regularity, scalability, and symmetry and has a
compact VLSI implementation.

Recently, because of the advance in computer technology and competition among computer mak-
ers, supercomputers containing hundreds of thousands of nodes have been constructed [11]. It was

Manuscript received September 27, 2010; accepted February 13, 2011.
Corresponding Author: Yamin Li
* Dept. of Computer Science, Hosei University, Tokyo 184-8584 Japan ({yamin, speng}@hosei.ac.jp)
** Dept. of Computer Hardware, University of Aizu, Aizu-Wakamatsu 965-8580 Japan (w-chu@u-aizu.ac.jp)

Copyright ⓒ 2011 KIPS (ISSN 1976-913X)

Parallel Prefix Computation and Sorting on a Recursive Dual-Net

272

predicted that the parallel systems of the next decade will contain 10 to 100 millions of nodes [12].
An interconnection network consists of switches with multiple communication ports and ca-

bles that connect the ports by following some topologies. For a parallel computer of a very-large
scale, the traditional interconnection networks may no longer satisfy the requirements for high-
performance computing or efficient communication. For future generations of supercomputers
with millions of nodes, the node-degree and the diameter will be the critical measures for the
effectiveness of the interconnection networks. The node-degree is limited by the hardware tech-
nologies and the diameter affects all kinds of communication schemes directly. Other important
measures include bisection bandwidth, scalability, and efficient routing algorithms.

In this paper, we first describe a newly proposed network, called the Recursive Dual-Net
(RDN). The RDN is based on the recursive dual-construction of a symmetric base-network. The
dual-construction extends a symmetric network with n nodes and node-degree d to a network
with 2n2 nodes and node-degree d + 1. The RDN is especially suitable for the interconnection
network of parallel computers with millions of nodes. It can connect a huge number of nodes
with just a small number of links per node and very short diameters. For example, a 2-level
RDN with a 5-ary, 2-cube as the base-network can connect more than 3-million nodes with only
6 links per node and its diameter equals to 22.

RDN has been proven to have excellent topological properties including small node-degree,
short diameter, efficient routing algorithms, and efficient communication schemes for collective
communication. However, to be an effective, high-performance interconnection network of par-
allel computers, it is important that efficient algorithms that can perform some basic computa-
tional tasks in computer science do exist. The significant contribution of this paper is to develop
efficient algorithms for parallel prefix computation and parallel sorting on RDN. We also dem-
onstrate certain techniques for algorithmic design on RDN that might be useful while develop-
ing efficient algorithms for other important computational problems on RDN.

The prefix computation is fundamental to most numerical algorithms. Let ○+ be an associa-
tive binary operation. Given n numbers c0,c1,…,cn-1, prefix computation is to compute all of the
prefixes of the expression c0○+ c1○+ …○+ cn-1. The parallel sorting on networks is an important
problem for many applications using parallel computer systems. For an n-cube, the best known
deterministic sorting algorithm can sort in O(nlogn) time in the worst case [13]. However, the
algorithm is not practical due to the hidden large constant. The most popular algorithm for paral-
lel sorting on networks is Batcher's bitonic sorting algorithm. The communication and computa-
tion time complexities of the proposed algorithm for parallel prefix computation on RDNk(B), k
> 0, are 2k+1-2+2kTcomm(0) and 2k+1-2+2kTcomp(0), respectively, where Tcomm(0) and Tcomp(0) are the
communication and computation time complexities of the algorithm for parallel prefix computa-
tion on the base-network B, respectively. The proposed algorithm for sorting on an RDN with an
m-cube as its base-network is based on the bitonic sorting. In RDNk(Qm), assume that each node
holds a single data item, the sorting algorithm runs in O((m2k)2) computation steps and
O((km2k)2) communication steps.

The rest of this paper is organized as follows: Section 2 describes the recursive dual-net in de-
tail. Section 3 describes the proposed algorithm for parallel prefix computation on an RDN. Sec-
tion 4 describes the presentation of an RDN with an m-cube as its base-network. Section 5 de-
scribes the proposed sorting algorithm on RDNk(Qm). Section 6 concludes the paper and presents
some future research directions.

Yamin Li, Shietung Peng and Wanming Chu

273

2. RECURSIVE DUAL-NETS
Let G be an undirected graph. The size of G, denoted as |G|, is the number of vertices. A path

from node s to node t in G is denoted by s→t. The length of the path is the number of edges in
the path. For any two nodes s and t in G, we denote L(s,t) as the length of a shortest path con-
necting s and t. The diameter of G is defined as D(G) = max{L(s,t) | s,t∈G}.

For any two nodes s and t in G, if there is a path connecting s and t, we say that G is a con-
nected graph. A graph is symmetric if it is connected and every node in the graph looks alike.
Suppose that we have a symmetric graph B and there are n0 nodes in B and the node degree is d0.
A k-level Recursive Dual-Net RDNk(B), also denoted as RDNk(B(n0)), can be recursively defined
as follows:

1. RDN0(B) = B is a symmetric graph with n0 nodes, called base-network.
2. For k > 0, an RDNk(B) is constructed from RDNk-1(B) by a dual-construction as explained

below (also see Fig.1).

Dual-construction: Let RDNk-1(B) be referred to as a cluster of level k and nk-1 = |RDNk-1(B)|

for k > 0. An RDNk(B) is a graph that contains 2nk-1 clusters of level k as subgraphs. These clus-
ters are divided into two sets with each set containing nk-1 clusters. Each cluster in one set is said
to be of type 0, denoted as 0

iC where 0≤i≤nk-1-1 is the cluster ID. Each cluster in the other set

is of type 1, denoted as 1

jC , where 0≤j≤nk-1-1 is the cluster ID. At level k, each node in a clus-

ter has a new link to a node in a distinct cluster of the other type. We call this link cross-edge of
level k. By following this rule, for each pair of clusters 0

iC and 1

jC , there is a unique edge

connecting a node in 1

jC and a node in 1

jC , 0≤i,j≤nk-1-1. In Fig. 1, there are nk-1 nodes within

each cluster RDNk-1(B).
We give two simple examples of recursive dual-nets with k = 1 and 2, in which the base net-

work is a ring with 3 nodes, in Fig. 2 and Fig. 3, respectively. Fig. 2 depicts an RDN1(B(3)) net-
work. There are 3 nodes in the base-network. Therefore, the number of nodes in RDN1(B(3)) is
2*32 = 18. The node-degree is 3 and the diameter is 4.

Fig. 1. Build an RDNk(B) from RDNk-1(B)

Parallel Prefix Computation and Sorting on a Recursive Dual-Net

274

Fig. 3 shows the RDN2(B(3)) constructed from the RDN1(B(3)) in Fig. 2. We did not show all
of the nodes in the figure. The number of nodes in RDN2(B(3)) is 2*182 = 648. The node degree
is 4 and the diameter is 10.

Similarly, we can construct an RDN3(B(3)) containing 2*6482 = 839,808 nodes with a node
degree of 5 and a diameter of 22. In contrast, the 839,808-node 3D torus machine (adopted by
IBM Blue Gene/L [14]) is configured as 108*108*72 nodes. Its diameter is equal to 54 + 54 +
36 = 144 with a node degree of 6.

We can see from the recursive dual-construction described above that an RDNk(B) is a sym-
metric network with the node-degree d0+k if the base-network is a symmetric network with the
node-degree d0. The following theorem is from [15].

Theorem 1. Assume that the base-network B is a symmetric graph with the size n0, the node-

degree d0, and the diameter D0. Then, the size of RDNk(B) is (2n0)2k/2, the node-degree is d0+k,
the diameter is 2kD0+2k+1-2, and the bisection bandwidth is [(2n0)2k/8].

The cost ratio CR(G) for measuring the combined effects of the hardware cost and the soft-
ware efficiency of an interconnection network was also proposed in [15]. Let |(G)|, d(G), and
D(G) be the number of nodes, the node-degree, and the diameter of G, respectively. We define
CR(G) as

CR(G) = (d(G)+D(G)) / log2|(G)|

The cost ratio of an n-cube is 2 regardless of its size. The CRs for some RDNk(B) are shown in

Table 1. Two small networks including 3-ary 3-cube and 5-ary 2-cube are selected as practical
base networks. For INs of a size around 1K, we set k = 1, while for INs of a size larger than 1M,

Fig. 2. An RDN1(B(3)) with B as a ring

Fig. 3. An RDN2(B(3)) with B as a ring

Yamin Li, Shietung Peng and Wanming Chu

275

we set k = 2. The results show that the cost ratios of RDNk(B) are better than hypercubes and 3D-
tori in all cases.

A presentation for RDNk(B) that provides a unique ID to each node in RDNk(B) is described
as follows. Let the IDs of nodes in B, denoted as ID0, be i, 0 ≤ i ≤ n0-1. The IDk of node u in
RDNk(B) for k > 0 is a triple (u0,u1,u2), where u0 is a 0 or 1, u1 and u2 belong to IDk-1. We call u0,
u1, and u2 typeID, clusterID, and nodeID of u, respectively. With this ID presentation, (u,v) is a
cross-edge of level k in RDNk(B) iff u0 ≠ v0, u1 = v2, and u2 = v1. In general, IDi, 1≤ i ≤ k, can
be defined recursively as follows: IDi = (b,IDi-1,IDi-1), where b = 0 or 1. A presentation example
is shown in Fig. 4.

The ID of a node u in RDNk(B) can also be presented by a unique integer i, 0≤ i≤ (2n0)2k/2-1,
where i is the lexicographical order of the triple (u0,u1,u2). For examples, the ID of node (1,1,2)
in RDN1(B(3)) is 1*32 + 1*3 + 2 = 14 (see Fig. 5); the ID of node (1,(0,2,2),(1,0,1)) in
RDN2(B(3)) is 1*182 + 8*18 + 10 = 324 + 144 + 10 = 478.

A high-performance supercomputer based on the RDN can be implemented easily. We can
use the Gigabit Ethernet or Infiniband products, or we can design a switch chip with multiple
ports, as the RDN switch or router. Then we can connect ports with high-speed cables just by
following the RDN topology.

Table 1. CRs for some RDNk(B)

Network n d D CR
10-cube 1,024 10 10 2.00

RDN1(B(25)) 1,250 5 10 1.46
RDN1(B(27)) 1,458 7 8 1.43
3D-Tori(10) 1,000 6 15 2.11

22-cube 4,194,304 22 22 2.00
RDN2(B(25)) 3,125,000 6 22 1.30
RDN2(B(27)) 4,251,528 8 18 1.18
3D-Tori(160) 4,096,000 6 240 11.20

Fig. 4. A presentation of RDN1(B(3)) with B as a ring

Fig. 5. An RDN1(B(3)) with integer node ID

Parallel Prefix Computation and Sorting on a Recursive Dual-Net

276

3. PARALLEL PREFIX COMPUTATION ON RECURSIVE DUAL-NETS
Let ○+ be an associative binary operation. Given n numbers c0,c1,…,cn-1, parallel prefix com-

putation [16,17] is defined as simultaneously evaluating all of the prefixes of the expression c0○+

c1○+ …○+ cn-1. The ith prefix is si = c0○+ c1○+ …○+ ci-1.
The parallel prefix computation can be done efficiently on a recursive dual-net. Assume that

each node i, 0 ≤i≤nk-1, in an RDNk(B) holds a number ci. Let xi and yi are local variables in
node i that will hold prefixes and total_sum at the end of the algorithm. The algorithm for a par-
allel prefix (or diminished prefix which excludes ci in si) computation on RDNk(B) is a recursive
algorithm on k. We assume that the algorithm RDN_prefix(B, c, b) for prefix and diminished
prefix computation on the base network (b = 1 for prefix and b = 0 for diminished prefix) is
available. We describe the algorithm briefly below.

First, through a recursive call for every cluster of level k, we calculate the local prefix xi and
the local sum yi in node i, where local prefix and local sum are the prefixes and the sum on the
data items in each cluster of level k. To get the prefix of the data items in other clusters, we cal-
culate the diminished prefix of all local sums of the clusters of the same type. This can be done
by transferring the local sum to its neighbor via the cross-edge of level k, and then the prefix x'i
and the sum y'i of all local sums of the same type can be computed by the nodes in every cluster
of the other type via a recursive call.

After the second recursive call, the missing parts of the prefixes are ready for the nodes in
clusters of type 0. Then, these values are transferred back to the nodes in the cluster of the origi-
nal type via the cross-edge of level k and are added to its own local prefix. Finally, the algorithm
adds the sum y'i of data items in the nodes in clusters of type 0 to the current prefix of every
node j in cluster of type 1. Notice that the value y'i exists in every node j in the clusters of type 1
when the second recursive call is done.

The formal algorithm for parallel prefix computation on an RDN is specified in Algorithm 1.
Examples of prefix_sum on RDN1(B) and RDN2(B) are shown in Fig. 6 and Fig. 7, respectively.

Theorem 2. Assume bidirectional-channel communication model. Assume also that each

node holds a single data item. Parallel prefix computation on RDNk(B), k > 0, can be done in
2k+1-2+2kTcomm(0) communication steps and 2k+1-2+2kTcomp(0) computation steps, where Tcomm(0)
and Tcomp(0) are communication and computation steps for prefix computation on the base-
network, respectively.

Proof. In Step 1, the local prefix in each cluster of level k is computed. In Steps 2-4, the part

of the prefix located in other clusters of the same type is computed. Finally, in Step 5, for clus-
ters of type 1, part of the prefix located in the clusters of type 0 is added to the nodes in the clus-
ter of type 1. It is easy to see the correctness of the algorithm.

Next, we assume that the edges in RDNk(B) are bidirectional channels, and that at each clock
cycle, each node can send or receive one message at most. In Algorithm 1, Step 1 and Step 3 are
recursive calls and Step 2 and Step 4 involve one communication step each. Therefore, the com-
plexity for communication satisfies recurrence Tcomm(k) = 2Tcomm(k-1)+2. Solving the recurrences,
we get 2k+1-2+2kTcomm(0). Similarly, Steps 4 and 5 involve one computation step each. The recur-
rence for computation time satisfies the same concurrence.

Therefore, we conclude that the prefix computation on RDNk(B) for k > 0 can be done in 2k+1

Yamin Li, Shietung Peng and Wanming Chu

277

-2+2kTcomm(0) communication steps and 2k+1-2+2kTcomp(0) computation steps, where Tcomm(0) and
Tcomp(0) are communication and computation steps for prefix computation on the base-network,
respectively.

The extension of the parallel prefix algorithm to the general case where each node initially
holds more than one data item is straightforward. Let the size of array c be m > n. The algorithm
consists of three stages. In the first stage, each node does a prefix computation on its own data
set of size m/n sequentially. In the second stage, the algorithm performs a diminished parallel
computation on the RDN as described in Algorithm 1 with b = 0 and ci equals the local sum. In
the third stage, for each node, the algorithm combines the result from this last computation with
the locally computed prefixes to get the final result. We show the parallel prefix computation for
the general case in theorem 3.

Theorem 3. Assume the bidirectional-channel communication model. Assume also that the

size of the input array is m, and that each node holds m/nk numbers. Parallel prefix computation
on RDNk(B), k > 0, can be done in 2k+1-2 + 2kTcomm(0) communication steps and 2m/nk + 2k+1-3 +
2kTcomp(0) computation steps, where Tcomm(0) and Tcomp(0) are communication and computation
steps for prefix computation on the base-network with each node holds one single number, re-
spectively.

Parallel Prefix Computation and Sorting on a Recursive Dual-Net

278

Proof. The first and the third stages of the algorithm contains only local computations inside

each node and the total number of computations are (m/nk) -1 and m/nk, respectively. In the sec-
ond stage, the algorithm performs parallel prefix computation on an RDN with each node hold-
ing a single number. Following Theorem 2, it requires 2k+1-2+2kTcomm(0) communication steps
and 2k+1-2+2kTcomp(0) computation steps. Therefore, we conclude that the parallel prefix compu-
tation of array of size m > nk on RDNk(B) requires 2k+1-2+2kTcomm(0) communication steps and
(2m/nk+2k+1-3)+2kTcomp(0) computation steps.

Fig. 6. An example of prefix_sum on RDN1(B(3))

Yamin Li, Shietung Peng and Wanming Chu

279

4. A RECURSIVE DUAL-NET WITH A HYPERCUBE AS ITS BASE-NETWORK

In this paper, we focus our design of sorting algorithm on RDNk(Qm), where the base-network
is an m-cube Qm. First, we will describe a presentation for RDN2(Qm).

A presentation for RDNk(Qm) that provides a unique ID to each node in RDNk(Qm) is described
as follows. Let the ID of a node in Qm, denoted as ID0, be an m-bit number bm-1…b1b0. The IDk
of a node u in RDNk(Qm) for k > 0 is a triple (u0,u1,u2), where u0 is a 0 or 1, u1 and u2 belong to
IDk-1. We call u0, u1, and u2 typeID, clusterID, and nodeID of u, respectively. With this ID pres-

Fig. 7. An example of prefix_sum on RDN2(B(3))

Parallel Prefix Computation and Sorting on a Recursive Dual-Net

280

entation, (u,v) is a cross-edge of level k in RDNk(Qm) iff u0≠v0, u1 = v2, and u2 = v1. In general,
IDi, 1≤i≤k, can be defined recursively as follows: IDi = (c, IDi-1,IDi-1), where c = 0 or 1.

In this paper, we present a parallel sorting algorithm on RDN2(Qm) (k = 2). The format of the
node ID is given in Fig. 8.

In Fig. 8, 0

1mb
−

… 0

0b is the node ID in Qm; (c0, 1

1mb
−

… 1

0b , 0

1mb
−

… 0

0b) is the node ID in
RDN1(Qm); and (c1, 3

1mb
−

… 3

0b , 2

1mb
−

… 2

0b) is the clusterID of a node in RDN2(Qm).
Each node in an RDN2(Qm) has m+2 links. Because 0

1mb
−

… 0

0b is the ID of a node in the m-
cube, there is a link connecting two nodes if the IDs of the two nodes differ only in one bit posi-
tion. There are another two links (cross-edges) for each node in an RDN2(Qm). For k = 1, there is
a link between nodes (0, 1

1mb
−

… 1

0b , 0

1mb
−

… 0

0b) and (1, 0

1mb
−

… 0

0b , 1

1mb
−

… 1

0b). For k = 2, there
is a link between nodes (0, c1, 3

1mb
−

… 3

0b , 2

1mb
−

… 2

0b , c0, 1

1mb
−

… 1

0b , 0

1mb
−

… 0

0b) and (1, c0,
1

1mb
−

… 1

0b , 0

1mb
−

… 0

0b , c1, 3

1mb
−

… 3

0b , 2

1mb
−

… 2

0b).

Two presentation examples of RDN1(Qm) and RDN2(Qm) with m = 2 are shown in Fig. 9 and
Fig. 10, respectively.

The node ID in an RDN2(Qm) has 4m+3 bits. Because the sorting algorithm presented in this
paper requires only the communication between nodes u and u(i) where the IDs of u and u(i) dif-
fer in a bit position i for i = 4m+2,…,1,0. We give a simple routing algorithm for those node
pairs. The routing algorithm for a general case was given in [15].

If we use b4m+2…b0 to denote the (4m+3)-bit ID of a node in an RDN2(Qm), then

▪ bm-1…b0 = 0

1m
b

−
… 0

0
b ;

▪ b2m-1…bm = 1

1m
b

−
… 1

0
b ;

▪ b2m = c0;
▪ b3m…b2m+1 = 2

1m
b

−
… 2

0
b ;

▪ b4m…b3m+1 = 3

1m
b

−
… 3

0
b ;

▪ b4m+1 = c1; and
▪ b4m+2 = c2.

The routing algorithm between nodes u and u(i) for i = 0, 1, …, 4m+2 is simply described as

below:

Fig. 8. Address format of RDN2(Qm)

Fig. 9. A presentation of RDN1(Q2)

Yamin Li, Shietung Peng and Wanming Chu

281

▪Case 1: If m-1≥ i≥ 0, i = 2m, or i = 4m+2, nodes u and u(i) can send and receive data each
other directly because there is a link connecting the two nodes.

▪Case 2: If 2m-1≥ i≥ m, nodes u and u(i) can communicate along with the 2mth dimension
first such that the bits b2m-1…bm will be exchanged to the positions bm-1…b0. Then it be-
comes the same as Case 1. The final step is to route along with the 2mth dimension again
(exchange back).

▪Case 3: If 4m≥ i≥ 2m+1, nodes u and u(i) can communicate along with the 4m+2nd dimen-
sion first such that the bits b4m…b2m+1 will be exchanged to the positions b2m-1…b0. Then
it becomes the same as Case 2 or Case 1. The final step is to route along with the 4m+2nd
dimension again (exchange back).

The following example shows the routing path between nodes u = 0 0 00 00 0 00 00 and u(i) in

an RDN2(Q2) for i = 0, 1, …, 10.

0) 0 0 00 00 0 00 00 → 0 0 00 00 0 00 01
1) 0 0 00 00 0 00 00 → 0 0 00 00 0 00 10
2) 0 0 00 00 0 00 00 → 0 0 00 00 1 00 00 → 0 0 00 00 1 00 01 → 0 0 00 00 0 01 00
3) 0 0 00 00 0 00 00 → 0 0 00 00 1 00 00 → 0 0 00 00 1 00 10 → 0 0 00 00 0 10 00
4) 0 0 00 00 0 00 00 → 0 0 00 00 1 00 00
5) 0 0 00 00 0 00 00 → 1 0 00 00 0 00 00 → 1 0 00 00 0 00 01 → 1 0 00 01 0 00 00
6) 0 0 00 00 0 00 00 → 1 0 00 00 0 00 00 → 1 0 00 00 0 00 10 → 1 0 00 10 0 00 00
7) 0 0 00 00 0 00 00 → 1 0 00 00 0 00 00 → 1 0 00 00 1 00 00 → 1 0 00 00 1 00 01 →

1 0 00 00 0 01 00 → 0 0 01 00 0 00 00
8) 0 0 00 00 0 00 00 → 1 0 00 00 0 00 00 → 1 0 00 00 1 00 00 → 1 0 00 00 1 00 10 →

1 0 00 00 0 10 00 → 0 0 10 00 0 00 00
9) 0 0 00 00 0 00 00 → 1 0 00 00 0 00 00 → 1 0 00 00 1 00 00 → 0 1 00 00 0 00 00
10) 0 0 00 00 0 00 00 → 1 0 00 00 0 00 00

Theorem 4. In the bidirectional channel communication model, the communication between

Fig. 10. A presentation of RDN2(Q2)

Parallel Prefix Computation and Sorting on a Recursive Dual-Net

282

nodes u and u(i) in RDNk(Qm), where the addresses of u and u(i) differ in ith bit position for 0≤ i <
2km+2k-1 takes at most tk = 2k + 1 steps.

Proof. For k = 0, an RDN is an m-cube, since there is a direct link in every dimension, the

communication takes only one step.
For k = 1, a node address has 2m+1 bits. The routing in each bit of the clusterID (m bits) takes

two more steps: one for going to another type and one for coming back. Therefore, it takes three
steps.

Assume it is true for k-1. For k, the clusterID has 2k-1m + 2k-1-1 bits. Routing in each bit of this
part takes two more steps. Therefore, the communication time is tk = tk-1+ 2 = 2(k-1) + 3 = 2k + 1.
Therefore, the theorem is correct.

5. PARALLEL SORTING ON RECURSIVE DUAL-NETS
In this section, we present a new sorting algorithm on RDNk(Qm) based on parallel bitonic

sorting. Bitonic sorting repeatedly merges two bitonic sequences to form a larger bitonic se-
quence. A bitonic sequence is a sequence of values (a0,a1,…,an-1) with the property that either
(1) there exists an index i, where 0≤ i≤ n-1, such that (a0,…,ai) is monotonically increasing and
(ai+1,…,an-1) is monotonically decreasing, or (2) there exists a cyclic shift of indices so that (1) is
satisfied. For example, (2,3,8,13,15,14,7,0) is a bitonic sequence because it first increases and
then decreases.

Let s = (a0,a1,…,an-1) be a bitonic sequence such that a0≤ a1≤ …≤ an/2-1 and an/2≥ an/2+1≥ …
≥ an-1. The bitonic sequence s can be sorted by a bitonic split operation which halves the se-
quence into two bitonic sequences s1 and s2 such that all the values of s1 are smaller than or
equal to all the values of s2 [18]. That is, the bitonic split operation performs:

s1 = (min{a0,an/2},…,min{an/2-1,an-1});
s2 = (max{a0,an/2},…,max{an/2-1,an-1}).
For example, the bitonic sequence mentioned above s = (2,3,8,13,15,14,7,0) will be divided

into two bitonic sequences s1 = (2,3,7,0) and s2 = (15,14,8,13). Note that both the s1 and s2 are
bitonic sequences. Thus, given a bitonic sequence, we can use bitonic splits recursively to obtain
short bitonic sequences until we obtain sequences of size one, at which point the input bitonic
sequence is sorted. This procedure of sorting a bitonic sequence using bitonic splits is called a
bitonic merge (BM).

Given a set of elements, we must transform them into a bitonic sequence. This can be done
recursively by doubling the size of the bitonic sequence. The bitonic sorting network for sorting
N numbers consists of log2N bitonic sorting stages, where the ith stage is composed of N/2i al-
ternating increasing and decreasing bitonic merges of size 2i.

Fig. 11 shows the block structure of a bitonic sorting network of size N = 16. ○+ BM[k] and
○- BM[k] denote increasing and decreasing bitonic merging networks of size k, k = 2, 4, 8, 16,
respectively. The last merging network (○+ BM[16]) sorts the input.

A bitonic sorting example on a 4-cube is shown in Fig. 12. The computational complexity for
sorting N = 2n numbers in an n-cube is O(n(n+1)/2) = O(n2). Similarly, the communications take
O(n2) steps.

We assume that each node in RDNk(Qm) holds a single element (number). The sorting algo-

Yamin Li, Shietung Peng and Wanming Chu

283

rithm compares and exchanges elements so that, at the end, all the elements are in the ascending
order arranged by their addresses.

The parallel sorting on an RDN is based on bitonic sorting on hypercubes. The basic opera-
tion is compare-and-exchange: Nodes u and u(i) whose addresses differ in the ith bit position for
0≤ i < 2km+2k-1 send their elements to each other. Nodes u and u(i) retain the smaller number
and bigger number, respectively, if u < u(i). However, there may be no direct links in some di-
mensions between nodes u and u(i) in an RDN.

The node address has 2km+2k-1 bits (dimensions) and there are only k+m links per node in
RDNk(Qm). For k = 2, there are four m-bit fields and three single-bit fields. We build a path be-
tween nodes u and u(i) for 0≤ i < 2km+2k-1 in seven cases (one for each field). The sorting algo-
rithm on RDN2(Qm) is formally given in Algorithm 2.

There are four parameters in the algorithm: my_id is the binary node address; my_number is
the number residing in the node; m is the dimension of the hypercube; and result is the sorted
number. The sorted numbers are in the same order as the node addresses. The outer for loop
generates bitonic sequences in the dimension order of i = 0 to 4m+2. Each iteration of the loop
doubles the size of the bitonic sequences. The bitonic merge is done by the inner for loop, which

Fig. 11. A bitonic sorting network of size 16

Fig. 12. Bitonic sorting on a 4-cube

Parallel Prefix Computation and Sorting on a Recursive Dual-Net

284

takes the order of j = i to 0. In the current step j, nodes u and u(j) exchange their numbers with
each other through the path and compare the two numbers, where the addresses of nodes u and
u(j) differ only in the dimension j. After the comparison, node u keeps the number as result based
on the following rule: If the value of the jth bit of the address differs from the value of i+1st bit
of the address, the node keeps the maximum of the two numbers; minimum otherwise.

Theorem 5. In the bidirectional channel communication model, bitonic sorting on RDNk(Qm)

with 2 2 12
k kmN + −= nodes can be done in O((m2k)2) computation steps and O((mk2k)2) com-

Yamin Li, Shietung Peng and Wanming Chu

285

munication steps, respectively.
Proof. The Algorithm 2 performs bitonic sorting on RDN2(Qm). The outer for loop generates bi-

tonic sequences in the dimension order of i = 0 to 4m+2. Each iteration of the loop doubles the size
of the bitonic sequences. The bitonic merge is done by the inner for loop. At each iteration of the
loop, a compare-and-exchange operation is executed between nodes u and u(j) through a path of
length at most five (from Theorem 4). There are seven cases since there are four m-bit fields and
three single-bit fields in the node address for k = 2. It is not difficult to extend Algorithm 2 to
RDNk(Qm) for k > 2. Since bitonic sorting is used, the computation time is O((m2k)2) as that on an
n-cube, where n = 2km+2k 1. From Theorem 4, the worst-case for communication time between
the pair u and u(j) is 2k+1. Therefore, the upper bound of the communication time is O((mk2k)2).

6. CONCLUDING REMARKS
In this paper, we presented efficient algorithms for parallel prefix computation and parallel

sorting on RDN2(B). The algorithm for parallel sorting is restricted on the case B = Qm. One of
the further research topics on RDN is to extend the algorithm for parallel sorting to a general
RDNk(B) assuming that parallel sorting on B can be done efficiently.

The recursive dual-net is a potential candidate for the supercomputers of future generations. It
has many interesting properties that are very attractive as an interconnection network of massively
parallel computers. To design efficient algorithms for basic computational problems on an inter-
connection network is an important issue. The other research topics may include the design of effi-
cient algorithms for numerical computations and the fault tolerant routing on recursive dual-nets.

REFERENCE
[1] S. G. Aki, Parallel Computation, Models and Methods, Prentice-Hall, 1997.
[2] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,

Morgan Kaufmann, 1992.
[3] A. Varma and C. S. Raghavendra, Interconnection Networks for Multiprocessors and Multicomput-

ers: Theory and Practice, IEEE Computer Society Press, 1994.
[4] K. Ghose and K. R. Desai, “Hierarchical cubic networks,” IEEE Transactions on Parallel and Distrib-

uted Systems, Vol.6, No.4, pp.427–435, April 1995.
[5] Y. Li and S. Peng, “Dual-cubes: a new interconnection network for high-performance computer clus-

ters,” Proceedings of the 2000 International Computer Symposium, Workshop on Computer Architec-
ture, ChiaYi, Taiwan, December 2000, pp.51–57.

[6] Y. Li, S. Peng, and W. Chu, “Efficient collective communications in dual-cube,” The Journal of Su-
percomputing, Vol.28, No.1, pp.71–90, April 2004.

[7] F. P. Preparata and J. Vuillemin, “The cube-connected cycles: a versatile network for parallel compu-
tation,” Commun. ACM, Vol.24, pp.300–309, May 1981.

[8] Y. Saad and M. H. Schultz, “Topological properties of hypercubes,” IEEE Transactions on Com-
puters, Vol.37, No.7, pp.867–872, July 1988.

[9] G. H. Chen and D. R. Duh, “Topological properties, communication, and computation on wk-
recursive networks,” Networks, Vol.24, No.6, pp.303–317, 1994.

[10] G. Vicchia and C. Sanges, “A recursively scalable network vlsi implementation,” Future Generation
Computer Systems, Vol.4, No.3, pp.235–243, 1988.

[11] TOP500, Supercomputer Sites, http://www.top500.org/, Nov. 2010.
[12] P. Beckman, “Looking toward exascale computing, keynote speaker,” in International Conference on

Parallel Prefix Computation and Sorting on a Recursive Dual-Net

286

Parallel and Distributed Computing, Applications and Technologies (PDCAT'08), University of Ota-
go, Dunedin, New Zealand, December 2008.

[13] R. Cypher and C. G. Plaxton, “Deterministic sorting in nearly logarithmic time on the hypercube and
related computers,” Proceedings of the 22dn Annual ACM Symposium on Theory of Computing,
1990, pp.193–203.

[14] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Giampapa, P. Heidelberger, S.
Singh, B. D. Steinmacher-Burow, T. Takken, M. Tsao, and P. Vranas, “Blue gene/l torus interconnec-
tion network,” IBM Journal of Research and Development, http://www.research.ibm.com/journal/rd/
492/tocpdf.html, Vol.49, No.2/3, pp.265–276, 2005.

[15] Y. Li, S. Peng, and W. Chu, “Recursive dual-net: A new universal network for supercomputers of the
next generation,” Proceedings of the 9th International Conference on Algorithms and Architectures
for Parallel Processing (ICA3PP'09), Taipei, Taiwan, Springer, Lecture Notes in Computer Science
(LNCS), June 2009, pp.809–820.

[16] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel Computing, Addison-
Wesley, 2003.

[17] W. D. Hillis and G. L. S. Jr, “Data parallel algorithms,” Communications of the ACM, Vol.29, No.12,
pp.1170–1183, Dec. 1986.

[18] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to parallel computing: design and anal-
ysis of algorithms, Benjamin/Cummings Press, 1994.

Yamin Li
He received his Ph.D in computer science from Tsinghua University in 1989. He
currently is a professor in the Department of Computer Science at Hosei Univer-
sity. His research interests include computer arithmetic algorithms, computer
architecture, CPU design, parallel and distributed computing, interconnection
networks, and fault tolerant computing. Dr. Li is a senior member of the IEEE and
a member of the IEEE Computer Society.

Shietung Peng
He received Ph.D (1986) in computer science from the University of Texas in
Dallas, Texas. He was a faculty member of the University of Maryland in Balti-
more, Maryland, and the University of Aizu in Japan. He joined the Faculty of
Computer and Information Science at Hosei University as a full professor in 2000.
His research interests are parallel and distributed processing, interconnection
networks, fault-tolerant and optical routing.

Wanming Chu
She is a faculty member of the Department of Computer Hardware, the Univer-
sity of Aizu in Japan. Her research interests include computer arithmetic algo-
rithm and hardware implementation, multithreaded computer architecture, inter-
connection networks, fault tolerant computing, and performance evaluation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

