

Journal of Information Processing Systems, Vol.8, No.2, June 2012 http://dx.doi.org/10.3745/JIPS.2012.8.2.279

279

Expressive Exceptions for Safe Pervasive Spaces

Eun-Sun Cho* and Sumi Helal**

Abstract—Uncertainty and dynamism surrounding pervasive systems require new and
sophisticated approaches to defining, detecting, and handling complex exceptions. This is
because the possible erroneous conditions in pervasive systems are more complicated
than conditions found in traditional applications. We devised a novel exception description
and detection mechanism based on “situation”- a novel extension of context, which allows
programmers to devise their own handling routines targeting sophisticated exceptions.
This paper introduces the syntax of a language support that empowers the expressiveness
of exceptions and their handlers, and suggests an implementation algorithm with a straw
man analysis of overhead

Keywords—Exceptions, Safety, Programming models for Pervasive Systems, Pervasive
Computing, Contexts, Situations

1. INTRODUCTION

The pervasive computing paradigm, one of theimportant advancements in modern computing
models, has drawnconsiderable attentionever since it was born in 2000.Although not all the
technical challenges it presented have been overcome, there are prospects growing thatits con-
text aware and invisible computing approach canfacilitate our dailylives in various ways. These
days, active works on its early applications in such domains as smart spaces, ubiquitous health-
care, and ubiquitous learning systems result in actual deployments.

However, it does not mean that pervasive computing systems areentirelywelcomed in our
daily lives.People may feel uneasy abouthidden interactions with computers,worrying about
incorrect and dangerous reactions from non-intrusive and invisible computing.Devices and net-
works engaged in pervasive systems are more vulnerable to side effects from physical environ-
ments, which could possibly lead to more serious damages with less robustness than traditional
desktop computers.

Previous solutions torobustness problems in pervasive systems have focused mainly on the
individual device and network faults, which appear exigent to pervasive systems. They adopted
fault management technology, which was originally developed for continuous reasonable-quality
operations of a system in the presence of faults. A system wide monitoriterates a closed control
loop for error detection and proper reaction 0.

However, this approach is far from sufficient, since pervasive systems, like other automatic
control and dynamic systems, are not simple collections of devices and networks0.Thus rather

Manuscript received August 29, 2011; accepted March 5, 2012.
Corresponding Author: Sumi Helal
* Dept. of Computer Science and Engineering, Chungnam National University, Daejeon Korea (eschough@cnu.ac.kr)
** Dept. of Computer and Information Science and Engineering, University of Florida, Gainesville Florida USA (he-

lal@cise.ufl.edu)

Copyright ⓒ 2012 KIPS (ISSN 1976-913X)

Expressive Exceptions for Safe Pervasive Spaces

280

than being dedicated on individual device and network faults, errors in pervasive systems en-
compass a wide range of undesirable ways of executions. Following theclassificationof undesir-
able statuses in pervasive systems according to the seriousness of side effects provides some of
the following examples:

(1) Inconvenient or foolish results: these kind of errors cause unsatisfactory pervasive ser-

vices. For instance, in the case where a user’s PDA is broken, the user suffers from incon-
venience (he may want to use a substitute). As another example, it would be unnecessary
for a robot cleaner to be stuck or hovering around and under a bed.

(2) Annoying results: they are a little more serious than inconvenient or foolish cases, but are
still tolerable. For instance, an alarm clock might be ringing noisily while the user lays
sick in bed0.

(3) Dangerous errors: this category causes most serious results. For instance, a malfunctioning
door might open and close repeatedly in an odd way. In another example, an automatic
temperature control might heat up the room while a window is open, resulting in over-
heating and possible appliance damage.

Note that such classifications do not have absolute criteria, but may vary based on the applica-

tions and users’ perception. For instance, a flickering light could be dangerous for an elderly
woman who just had eye surgery, while for others it could just be annoying.

Furthermore,with a system-wide fault tolerant support that usually operatesunder the igno-
rance of the semantics of application and domain knowledge,remedies for faultsare constrained
tonaiveactions--usually haltingthe applications or switching to using backup devices.

Thus to make a pervasive system robust, we must consider application and domain knowl-
edge.Exception handlingis one of the candidates to achieve this goal. Itallowsprogrammer-
described abnormal cases to be detected and remedied according to semantic-aware handler
programs. With programming language based exception handling tools, programmers are sup-
posed to expressexceptions and handlers based on application semantics.

However, relatively little focus has been placed on exception handling mechanismsfor perva-
sive computing. In addition, a traditional exception handling mechanismin a general-purpose
language (C++/C#/Java)is highly likely to complicate the application codes in pervasive com-
puting. Most of all, it is inefficient for knowing the exact sources of the abnormality due to the
intricate delegation of exceptions that areoften along the asynchronous call chains over inter-
woven devices and networks.

This paper is concentrating on improving exception handling mechanisms in pervasive com-
puting. Our goal is to provide application programmers in pervasive computing with an expres-
sive and efficient way to describe exceptions, which allows for keeping programs as more man-
ageable and less error-prone. We believe that the suggested mechanism helps programmers’
knowledge and expertise about the application (including domain experts who usually support
the programmers) to play a pivotal role in determining what is erroneous and what could go
wrong.

The remainder of this paper is organized as follows. Section 2 presents related work and posi-
tions our approach. Section 3 introduces situations as a powerful and useful concept as utilized
by our definition of exceptions. Section 4 presents a programming interface of exception han-
dling that is based on situations. Section 5 presents two algorithms that implement the pro-

Eun-Sun Cho and Sumi Helal

281

gramming interface and presents a simple analysis of their performance. Section 6 concludes the
paper and reports on our ongoing and future work.

2. RELATED WORKS
Unfortunately, existing efforts do not provide adequate mechanisms to address undesirable

executions (unsafe states) with respect to a specific application. They seem to suggest that appli-
cation-specific safety is achieved in astraightforward manner by using traditional language
based exception-handling features.

However, detecting and handling erroneous cases in pervasive systems are challenging, since
unlike C++/C#/Java, their exceptions are not limited to memory status violations. For instance,
in general purpose languages, an exception can be raised after checking the value of a variable
as follows:

flag = file.read(80);
if (flag < 80) raise exception;

In an application of pervasive systems, an error in the current context can be raised in the

same style:

flag = heater.get(“temperature”);
if (flag != NORMAL) raise exception;

However, this style is not adequate for other more complex and probable exceptions that

could form over time from various devices in a pervasive system. One way to handle such ex-
ceptions is to resort to directly code forking operations that make new threads to monitor the
system over a period of time However, such an approach is not appropriate because the monitor-
ing code is not isolated from the main logic, which will complicate the original application and
make it difficult to test and debug.

Some previous works in pervasive systems extend the runtime systems with separate subsys-
tems to detect and handle the errors from surrounding contexts 00. K. Damasceno 0supports a
device agent for each device, which monitors its corresponding device to recognize errors and
raise an exception if there is any. However, the limitation of this approach is lack of support for
the errors that have been determined collectively from multiple devices. The following code is
for a heater agent, which raises an exception if the heater seems to be experiencing failure:

Heat.start(userpref.get(“Temperature”));
UnableToHeat unaheat = new UnableToHeat();
Unaheat.getContext().setStringProperty(“Thermostat”, “noanswer”);
…
EHMechanism.throw(unaheat);

To overcome such limitations,0 introduces a mechanism to handle a wider range of excep-

tions. Instead of the exceptions from unit devices, they consider the following four kinds of pre-
defined exceptions: (1) service discovery/reconfiguration failures, (2) service-level binding fail-

Expressive Exceptions for Safe Pervasive Spaces

282

ures, (3) service-level exceptions, and (4) context invalidation. The first two types of exceptions
arise in service discovery and binding that are found in service-oriented architectures0. The third
type of exceptions is related to service invocation, which can be handled in ways that are similar
to the remote service invocation (RMI)’s exception handling mechanism 0.

On the other hand, the last type of exceptions requires new mechanisms to handle them, since
they address unique errors in the pervasive computing environment. As mentioned earlier, pro-
grammers’ insight and knowledge are needed in order to detect and handle such errors. This is
followed in 0, which provides their programmers with a new feature named “ContextGuard,”
which enables describing the conditions that must be maintained during the execution. Breaking
the condition will cause a predefined exception named ContextInvalidationException. The fol-
lowing code shows a context guard that ensures that whenever a user changes the status of a
room in a hospital, the user should remain with a doctor; otherwise an exception will be raised.

ContextGuard {

When Event RoomStatusChangeEvent
GuardCondition

CurrentWard.isPresent(thisUser) 　
CurrentWard.isPresent(members(Doctor))

}

However, in dealing with this kind of exception, the mechanism in0still has limitations. One

of the noticeable restrictions is the expressiveness of the ContextGuard structure, which is based
on First Order Logic (FOL) 0. Although programmers using FOL can describe snapshots of
some contexts, they cannot use the same to express real and complicated scenarios and time
based exceptions. Unlike traditional exception definitions that are normally defined as a single
context, programmers in pervasive systems should be capable of capturing complex contexts
that evolve and take shape over time. Repeated patterns that themselves are the erroneous execu-
tion (such as flapping doors and flickering lights) cannot be described in FOL.

ContextGuard {

When Event LightChangeEvent
GuardCondition
// hard to described in FOL
// “PreviousChangingTime is not 10sec before.
// This happens repe　 atedly”

}

Additionally, exceptions related to actuation (or the effect of actuation), such as “turn on the

air-conditioner” cannot be immediately detected after the actuation instruction. However, they
can be possibly detected several minutes afterwards that again cannot be captured without inter-
twining threads of control of the program, which is a complicated procedure.

This paper focuses on addressing this limitation and suggests an extensional notion of con-
texts called “situations.” A situation is a temporal sequence of contexts, on which we base our
safety approach. It provides a “natural” interface for programmers to express real and compli-
cated scenarios and time based exceptions and handlers.

Eun-Sun Cho and Sumi Helal

283

As a simple example, the light flickering problem can be described as a situation in which tur-
nOn and turnOff events happen repeatedly every 10sec. or less from each other, as shown in the
code segment below:

on exception(

repeat([turnOn (l); turnOff(l)], 10sec])
) {… /* handler code comes here */ }

The main idea of situation-based exception handling was presented at the IEEE/IPSJ Interna-

tional Symposium on Applications and the Internet0 as a short paper. Without an actual page
limitation, this paper gives detailed descriptions ofsyntacticstructures of exception handling and
detection algorithms.

3. SITUATIONS: A USEFUL DERIVATIVE OF CONTEXTS
Situations are powerful abstractions that are utilized by our approach as follows:

(1) Situations enable programmers to define scenario-style exceptions, which are powerful

means to capture complex semantics and temporal causalities among devices, services,
and contexts.

(2) Situations facilitate the asynchronous detection of exceptions with respect to observation
for a specific time period, which greatly simplifies programming.

Let us begin with brief examples. First, when a door repeatedly opens and closes with less

than a 10sec. time-gaps, a situation for this is described as follows:

repeat([doorOpen(d); doorClose(d)], 10sec])

For the case when a user enters a room more than twice without a single exit, meaning that

the output sensor might be broken or malfunctioning, the situation is described as follows:

[userEntered(u);!userExit(u); userEntered(u)]

Programmers can also describe a malfunctioning robot cleaner that is repeatedly getting into bed

(less than) every 15 sec., no farther than 300mm from the bed, for more than two minutes, as:

[repeat(robot.(“xpos”)-bed.get(“xpos”) < 300mm &&

robot.(“ypos”)–bed.get(“ypos”)<300mm), 15sec)] for 2min

The following code is the situation where too many (more than 20) users entered a room dur-

ing a period (ten minutes). “e.type” is for userEntered, which is a predefined event type, and it is
assumed to have “nomofevents” property for the cardinality of the same typed events:

[e = userEntered(u); e.type.get(“numofevents”) > 20] for 10 min

Expressive Exceptions for Safe Pervasive Spaces

284

An example of asynchronous exception detection is a room temperature that should be
checked three minutes from now:

[later_on [room.get(“temperature”) > 110F] after 3 min]

Before describing our approach, we clarify related concepts for “situations.” A “context” is

viewed as a mapping from context items to their values. “Context items” are attributes describ-
ing pertinent components of a pervasive space such as “humidity “and “temperature.”

As suggested in0, a “fault” is defined as a context in which a device is not working correctly
from the point of view of the system. Unlike0, we use an “exception” or “error” to refer to an
unacceptable context (or a sequence of contexts) from the point of view of the application. Ex-
ceptions (or errors) may be caused by faults. We use “exceptions” and “errors” interchangeably
in this paper, although “exceptions” is often used in the context of programming languages,
whereas “errors” is used in a broader sense.

Context is a vector of values for context items, where a context item is a unit that has a value
in a pervasive space. A history of contexts, along with selected events is called a situation. An
exception occurs when a situation representing an undesirable condition that is disallowed by
the application is detected.

3.1 Situation Patterns

Programmers responsible for describing exception-handler pairs must first specify the excep-
tions. To lessen the programmers’ burden and to avoid tedious and erroneous repetition of simi-
lar exception descriptions, languages such as C++ and Java allow for constructing exceptions as
objects. The subtyping between the exception objects denotes inclusion of the exceptional cases
that those objects represent, which enables the hierarchical construction of exception handlers
and greatly simplifies pairing between exceptions and handlers.

However, simple objects and their hierarchy are not sufficient for specifying context and
situation based exceptions in pervasive systems. For instance, combinations of elementary ex-
ceptions (e.g., as temporal sequences) are likely to be helpful for describing exceptions. Those
descriptions may also embody important system events unrelated to any contexts.

To reduce the burden of the description of complex exceptions, we introduce situation pat-
terns – a regular expression based compositional description of exceptions in pervasive systems.
The semantics of a situation pattern is an (infinite) set of situations that matches the pattern.

Detecting an exception is a process of matching the corresponding situation pattern to a slid-
ing window over the system’s event queue; if it matches, the exception is detected. Note that we
do not look over the entire event queue from start to end as this could entail an enormous over-
head. Instead, guided by the exception definition, we only look into some recent portions of the
queue, which we call the queue window. If an exception is related to the most recent 10 minutes,
the size of the window will follow and will also be 10 minutes.

Like building blocks, a situation pattern is constructed from selected base exceptions (context
exceptions). Predefined event types can be automatically considered as situation patterns, which
are unbreakable units.

The syntax of an exception definition starts by defining a related variable. We call this vari-
able a situation variable, which has formal or actual parameters. These parameters will be uni-

Eun-Sun Cho and Sumi Helal

285

fied with actual values or other parameters. The definition of an exception is embodied by a
situation description that is assigned to the situation variable as shown below1:

exception _definition :=

define exceptionsituation_var [(parameter*)]?:= situation_description;

A situation (pattern)2 description denotes a pattern of temporal sequence of events and other

situations. It is composed of the events that are necessary for the situation to be satisfied, includ-
ing time operators as well as conditions that the subcomponents are subject to, in addition to
other situations. In the situation description syntax, there is one simple and three composite
situation descriptions as follows:

situation_description:= unit_situation

| filtered_situation
| aggregated_situation
| situation_description fornum
| later_on situation_description

“for num” represents the window size, which optionally specifies the sliding window size of

the event stream to match the situation description. If it is omitted, a default window size will be
applied.

In the following three sections, we will introduce the meaning and usage of each kind of
situation.

3.2 Unit and Composite Situations

The description of a unit situation is the simplest definition of a situation description.

unit_situation := any

| event_function
| situation_var
| situation_var := event_function

“any” is the simplest definition of a situation, which matches any exception patterns.
“situation_var” can be an event function, which is a predefined type of event, like user-

Entered(), followed by parameters:

event_function := event_type [(parameter*)]

We assume that event types abort(), operationStart(),and operationEnd() are predefined. The

last two types of events enable access to the execution status of an operation (action) through the
properties of an event. Parameters can be actual values or formal variables, but for simplicity,

1 Reserved words are in typewriter font, and reserved symbols are underlined,while other symbols denotegrammatical-

construction.
2 We will omit the word “pattern” in the name of this grammar symbol to avoid lengthy symbol names.

Expressive Exceptions for Safe Pervasive Spaces

286

we consider only null parameters in this paper.
A variable name of other situations can be a unit situation. This kind of a situation itself may

look redundant, but unit situations are usually combined with other features to make a composite
situation description.

The assignment form of a situation variable and an event function can be also a unit situation.
Similar to the case of two consecutive situation descriptions; a temporary situation variable is
first described with an event function and a new unit situation is then derived from the situation
variable. The following example shows that there is a unit situation description using the built-in
event type userEntered():

e := userEntered()

A unit situation description is used for a set of situations, each of which is made of at most a

single event. A composite situation description is used for situations composed of multiple
events. A composite situation is not appended to the queue, but is conceptually inserted into the
position immediately following the last matched event.

The first category of composite situations is for filtered situation descriptions, which have
conditions attached to them:

filtered_situation := [(situation_description)? : condition]

The condition is a first order predicate empowered with some programming features like

forall/foreach and optional quantifiers, which introduce bounded variables. The predicate itself
is based on event data; of which the exact definition is dependent on the specific language used.
In the later part of this paper, we assume Java syntax:

condition := (forall var | foreach var | some var)? predicates using event data

For example, a simple filtered situation with conditions can be described as follows:

define exception UserEntered(User u) :=

[e:= userEntered():u.id == e.uid;];
define exception guestEntered(User u):=

[userEntered(u): u.id != owner];

This has userEntered(A)as a matched situation where A is a user ID.
The second category of filtered situations is an aggregated situation description for the sophis-

ticated temporal assets of situations. It is theoretically based on the combination operators of
temporal event logic0. Typical approaches to combine two events are ANDing (two situation
descriptions match at the same time), ORing (one of the two situations matches), and Negation
(no matching situation exists). In addition, descriptions of sequences of situation patterns as well
as repeating situation patterns are useful. These basic temporal notions constitute these first five
definitions in the aggregated_situation, as described below. For instance, “;” simply means the
order of the two situation occurrences.

Eun-Sun Cho and Sumi Helal

287

aggregated_situation := situation_description && situation_description
| situation_description || situation_description
| not situation_description
| situation_description ; situation_description
| (situation_description)*
| situation_with_time_constraint

While the above five expressions do not assume time constraint or intervening event-related

constraints, they do require a sliding queue window, the size of which is defined in the situation
description using the “for num” phrase. If this phrase is omitted, the system will use a default
window size. For instance, “s1&&s2” means both s1 and s2 match within the current window of
the queue at the point of checking against this exception.

For the description of time constraints, time can qualify a single situation description or con-
nect two situation descriptions together. Time constraints are made of time-operators together
with constants and “time_variables.”“#T” is a special variable denoting the duration of time (in
milliseconds) (e.g., “#T < 100”). “%T” is a special variable denoting a specific time (e.g., “%T
== 12:00:00/06/03/2010”) We assume a global clock for simplicity.

situation_with_time_constraint := (situation_description)? time_description

situation_description
|repeat (situation_description, time_description)
 (morethan num times)?

time_description := time_duration time_operator num
 | time_stamp time_operator time_data
time_duration := #T
time_stamp := %T
time_operator := < | > | == | nearnum with
time_data := num :num :num /num / num / num

3.3 Advanced Situation Patterns

In addition to allowing for the basic description of situations, our proposed method allows the
asynchronous exception handling code to be attached right after the corresponding invocation.
This approach provides a simpler programming interface to programmers, and achieves more
“separation of concern” 0than existing asynchronous exception handling support0.

For instance, let us assume a context update through the service invocation of aircond.set(on) ,
where the variable aircond is bound to an air-conditioner.

define exception too_hot:=
 [: $. get(“place”).get(“temperature”) > 110F];
aircond.set(on)
 on exception ([later_on [#T == 2min: too_hot]]) {…}

Failure of aircond.set(on)is detected two minutes after the invocation by checking if the situa-

tion too_hot is matched.
Since “#T==“ or “#T>“ phrases are mandatory in the “later_on” situation description, we pro-

Expressive Exceptions for Safe Pervasive Spaces

288

vide a simple syntactic sugar that is denoted by “after,” as shown below:

aircond.set(on) on exception ([later_on too_hot after 2 min]) {…}

A second feature is parameterization, which encourages the reuse of commonly used situation

descriptions. The following situation definition refers to a specific pattern of situations happens
frequently. To make it general enough for reuse, it parameterizes the window size (tt), the time
gap between the two situations (t), and the situation (e).

define exception frequent (e, t, tt) :=[e (#T < t ; e)*] for tt;

By substituting the input parameters with real values, a situation description can yield more

concrete situation descriptions. For example, frequent_entering is used for situations where peo-
ple enter the smart place frequently:

define exception frequent_entering :=
 [frequently(user_entered(u), 60, 300];

In the next example, the situation description e is assigned to the same user ID. It can be real-

ized by attaching an imperative programming style condition with the keyword “forall.”

define exception frequent_same_user (e, t, tt) :=
 [e (#T < t ; e)*:
 forall i e[i].get(“user”) = e[i+1].get(“user”)];

Note that the input parameter e is used twice in the description, and both occurrences of e

match the same situation description. However, they can represent different instantiations,
e[1]and e[2], if necessary. In addition, it embeds the repetition of e in “(#T < t ; e)*,” so that
e[2]can be instantiated again by e[2][1], e[2][2], e[2][3]...e[2][n], in case a series of n situations
matching e are detected. In the following example, the same user u enters the roomfrequently for
some reason:

define exception frequent_entering_of_same_user(u) :=
[frequent_same_user (user_entered(u), 60, 300]

4. DEFINING HANDLERS OVER SITUATIONS
One challenge to the broader adoption of exception handling among programmers is the inde-

pendence of exception handler writing from the main control flow of the application. Thus we
propose that programmers define exception handlers while they define exceptions, entailing that
exceptions and their handlers are separate from the main application. This strategy may simplify
the development of safer and more robust applications 0.

For instance, the exception “too_hot” can be handled with pseudo code commands such as

Eun-Sun Cho and Sumi Helal

289

“chill the system” and “notify the administrator,” as follows (where the concrete routine is as-
sumed to be in an abbreviated Java like language). In the following example, temperature over
110F would run a cooler and notify the administrator.

define exception too_hot :=
 [: $. get(“place”).get(“temperature”)> 110F];
too_hot.handler[1] = {chill_the_room; notify_the administrator}

However,real-world situations are more complicated because programmers cannot have

knowledge about exception handling ahead of the actual exception checking (occurring) point.
For instance, the same fire exception may be handled by halting the system in some cases, while
in other cases it would be handled by cooling.

Thus we introduce a list of exception handler concepts, providing multiple handler options
that the programmer can choose from while developing the main logic. In the following example,
there are two options of handlers, numbered [1]and [2]for when the temperature is too high:

define exception too_hot :=
 [: $.get(“place”).get(“temperature”) > 110F];
too_hot.handler[1] = { chill_the_room; notify_the _administrator}
too_hot.handler[2] = {halt}

In addition to basic handler definition capabilities, important issues to consider related to han-

dlers are: (1) the range of exceptions; (2) frequency of exception monitoring; and (3) how to
compose handlers. The remaining subsections cover these issues and introduce our solutions.

If an exception is raised within a specific block (like “try{}” in Java), the appropriate excep-
tion handler associated with the block processes the exception. In this paper, we assume that
programs in pervasive systems are basically a set of ECA (Event-Condition-Action) rules, and
the unit of code fragment that is bound to exception-handler pairs is a simplified case of an ECA
rule. Thus the exception too_hot can be used as follows, where the situation_variable[1] is the
first handler selected at this point in the program.

on event (…) condition (…) action {
 …
} on exception(too_hot[1])

Our proposed mechanism allows global exception-handler pairs to be bound to the entire pro-

gram. Such exceptions are usually related to real world safety. In the following code fragment,
the previous example of abnormal temperature detection is re-used, with the only difference
being that the “on exception” phase is stand-alone rather than being bound to particular ECA
rules:

define exception too_hot :=
 [: $. get(“place”).get(“temperature”) > 110F];
too_hot.handler[1] = {
 chill_the_room; notify_the _administrator
}on exception (too_hot[1]) ;

Expressive Exceptions for Safe Pervasive Spaces

290

5. IMPLEMENTATION ALGORITHMS
Since exceptions in pervasive systems need sophisticated temporal pattern description and

matching, using Complex Event Processing (CEP)0 techniques to handle nested events will be
useful. However, traditional CEP requires the frequent processing of events and continuous que-
ries on the event stream, which degrades performance.

Recently, data stream techniques have been proposed for handling event matching over con-
tinuous queries with enhanced performance 0, 0. However, as in SQL, their techniques focus
mainly on approximate and statistical data aggregations, and do not address the matching of
multiple sequenced queries or nested patterns 0.

To support the situation concept efficiently, our system is required to handle both nested
events like CEP as well as continuous queries found in stream database systems. In addition, our
implementation algorithm should not incur any unnecessary overhead, and should exploit any
available source of saving in performance overhead in terms of the frequency of event process-
ing and situation assessment.

In the following section, we introduce a basic algorithm for the processing of events and the
evaluation of situations. We assume that runtime events are placed in a queue of events as they
occur via basic push, pull, or combined push/pull mechanisms as suggested in 0. Following the
basic algorithm, we present an improved algorithm (the Boxing Algorithm) that exploits addi-
tional situation semantics.

5.1 Basic Algorithm

Since situation description is similar in structure than a regular expression, our algorithm uses
FSA (Finite State Automata) as a state transition mechanism. We have a set of transition rules
for each structure of situation descriptions. The simplest transition rule might be “e1&&
e2

e1⇒ e2,” which means if e1 is detected then the rule “e1&& e2”is partially matched and the sys-
tem is waiting for e2.

However a simple FSA is not sufficient for detecting a situation. One of the important reasons
is that continuous evaluation needs a new FSA for a situation description every time the event
stream is evaluated, which does not seem to be practical. In addition nested structured situations
cannot be straightforwardly detected by FSA.

Moreover, we have to hold more than one state in the FSA for the condition evaluation of the
filtered situations, otherwise backtracking would be largely involved. For instance, in the situa-
tion description [e1&& e2: e1.get(“name”)== e2.get(“name”)], events in the order of e2(m)-
e1(m) will match the situation, when m and n denote the names of the events and e1 and e2 are
types of events. But if events enter the system in the order of e1(m)-e1(n)-e2(n), we have to ig-
nore e1(m), backtrack and start a new matching process for the sequence of e1(n)and e2(n). In
addition, e1(m)-e1(n)-e2(m) should also make us hold e1(m) to meet e2(m), and ignore e1(n).

To avoid backtracking, which is very expensive in terms of performance, we devised eFSA –
an extended notion of FSA, which is a merged form of multiple FSAs for all possible states for
each situation. First, we extend the FSA system and transition so that we use a collection of pos-
sible states of a traditional FSA as a state in eFSA (state of states). It extendse⇒ transition to
represent the transition from/to the collections of states. To avoid confusion, we call a single
state in traditional FSA an “item,” while we use a “state” for the collection of the items. Thus, a
state holds all possible items matched with currently arriving events. For instance, for the situa-

Eun-Sun Cho and Sumi Helal

291

tion descriptions [e1&& e2]and [e1; e3] once e1 enters the system, the next state should include
[e2]and[e3],which represents the remaining events to be matched.

One of the benefits of eFSA is reducing redundant items that could arise from the use of mul-
tiple FSAs. In addition, it is much more efficient to handle the dynamic addition/deletion of
items as will be shown next. Our adoption and use of eFSA is mainly influenced by the famous
LR parsing algorithm, which is widely used in compiler construction 0. Like an LR parser de-
signed for context free grammar supporting nested rules, our eFSA is devised to handle nested
structures of situations (described in context free grammars), rather than limited regular expres-
sions, which are equivalent to FSA’s.

The basic algorithm is based on maintaining the set of situation items for an application A (IA),
which is changed each time the system processes the event queue. More formally, the set of
situation items IU is defined as follows, where IA is a subset of IU:

Definition 1A situation item i∈ IU= {〈s1, s2, b, max〉 | s1∈SituationU , s2∈ SituationU∪ “ac-

cept,”b∈Var → EID, max∈ Timestamp}, where SituationU is the set of all possible situation de-
scriptions, and Var is the set of variable names used for the condition evaluation of a situation.
EID denotes the set of events arriving at runtime, whereas max is the current time plus applica-
tion specified window size.

Usually s2 is a sub-component of s1, denoting the remaining portion of a situation by eliminat-
ing the currently matched prefix from s1.

For instance, “〈e1&& e2, e2, {〈e1,#6〉}, 1200〉“ represents a situation description of “e1 &&
e2” with a window size of 1,200 msec, when the current time oft is 0. This item describes the
situation where after event #6 is matched with the situation (the type of event #6 matching that
of e1), then the system should anticipate and await for e2 to arrive in order to detect the situation
in this example. This situation item will expire 1,200 msec after its insertion to IA.An application
specified window size is given by the “fornum” structure in the situation description.Its concept
is the same as the window size in CEP or stream database systems, and is used for the detection
of a sequence of events. Note that, without the time limit of the duration of a time period, the
system has to hold the entire event stream for good in order to detect combinations of multiple
events like “e1&& e2.”This is why anapplication-widedefault window size is usuallyprovided
for unspecified situations.

A description of the algorithm in terms of situation items over time is depicted in Fig. 1. At
each time point t=0, t=1, t=2,…, a long gray rectangle is assigned, where the ovals representthe
situation items held in the corresponding time point. For simplicity, we do not include variable
binding details. The first situation of an item, which is not varying as time goes by, is also omit-
ted in the figure. The explicit keyword maxis used for themax of the situation items.

Fig. 1 assumes that a programmer wants to detect two situation patterns e1&&e2and e1;e3.
Let us call these situationstarget situations. At the time t = 0, IA is initialized by two initial items
〈e1&&e2, max=3〉and 〈e1;e3, max=2〉. Note that theseitems are repeatedly inserted into the gray
boxat every following time point, as denoted by brackets in the figure, which forces continuous
matching incoming events with the target situations.

As the time point is shifted to the next point, each item is transformedalong the different ar-
rows, according to its cases. (1) The bold arrows and double arrows are for the case in which
some prefix of the situations in the item is matched,(2) the dotted arrows represent the case
where no prefix is matched, but the item should be held because it might be matched after-

Expressive Exceptions for Safe Pervasive Spaces

292

ward,and (3) the curved arrows denote that the item becomes removable because the lifetime of
the item is expired.

In the case (1), a single item spawns two new items at the next time point. For instance, an
item with a situation “e1 && e2”matched with the current event e1 moves along the bold arrow,
resulting in a shorter situation (“e2”) by eliminating the matched prefix. It also spawns the same
item as in the previous time point (denoted by a double arrow)in case the matched prefix does
not satisfy the condition part of a situation description. This arrow is necessary for back tracking
cases, as in example of e1(m)-e1(n)-e2(n). (Note that our matching process concerns only types
ofevents, but not the evaluation of condition part of a situation pattern with parameters. It has
room for improvement, which is included in our future works.)

The maximum frequency possible for processing events (which should lead to the most re-
sponsive detection) cannot exceed the inverse of the minimum amount of time required for the
processing of one event. We assume the maximum frequency in the illustration in Fig. 1. We
also assume that IA is initialized by two situation descriptions (〈〈e1&&e2, max=3〉and 〈e1;e3,
max=2〉), and the initial time t is assumed to be 0. And we assume that one event occurs at each
transition to the next time point and in the bottom of the figure event e1-e3-e4 occurs sequen-
tially, as is shown with curved arrows.

At time t = 1 and as an event whose type is the same as e1enters the system, a transition oc-
curs and IA is updated as follows:

• New items are inserted as the sub-portion of the situation is matched (〈e2, max=3〉 and 〈e3,

max=3〉, shown in thin solid lined ovals in Fig. 1.) This is obtained by a predefined

Fig. 1. Transition of IA over timein a basic algorithm to match the sequence of events against

multiple situation patterns

Eun-Sun Cho and Sumi Helal

293

e⇒ transition, whose details are omitted for brevity.
• Items with initial values are re-inserted as shown in blue lined ovals (〈e1 && e2,

max=4〉and 〈e1;e3, max=3〉 with a big arrow and an oval in Fig. 1) for continuous evalua-
tion. Such re-insertions are made every time the event stream is evaluated. With every fu-
ture re-insertion, the maximum time limit is adjusted accordingly (at t = 1, max values are
changed to 4 and 3, instead of 3 and 2 at t = 0).

• Older items remain in IA, 〈e1 && e2, max=3〉and 〈e1;e3, max=2〉 as shown in bold solid
lined ovals). They remain after the transition just as they were, even though they matched
the current event. Thus every step of transition involves holding onto matched items to
avoid backtracking.

At time t=2, right after an event with the same type as e3 enters the event queue, IA is updated

as follows:

• The situation “e1; e3” is matched, thus 〈e3, max=2〉 in the previous IA (that is, IA(t=1))

makes a transition to “accept,” which means that one situation description is matched by
type and therefore an evaluation of condition will begin (solid yellow oval).

• The dotted ovals (〈e1 && e2, max=3〉, 〈e2, max=3〉 and 〈e1;e3, max=2〉) are the situation
items remaining from IA(t=1) because they are not related at all with the event e3 being
processed.

• As in IA(t=1), IA(t=2) also has newly created items with initial situation descriptions (in a
blue lined circle)

IA = φ　
for each time (according to maximum possible frequency)

// get rid of expired items
IA = IA – {〈s, s’, b, max〉| 〈s, s’, b, max〉∈ IA

and max < current_time}
// insert initial items with max as current_time+wuser
 IA = IA + {〈s, s, ⊥, current_time + wuser〉 |

 s ∈ SituationA, wuser is user defined window size}

if (no unprocessed event remains) break;
or else for each event e

// execute the transition to get a new IA
IA = { i’ | i e⇒ i’, i ∈ IA }
for all 〈s, “accept”, b, max〉∈ IA

c = condition_of (s) // c is condition part of s
tv = evaluate (c, b) // evaluate c with binding b
if (tv is true) raise s
IA = IA - 〈s, “accept”, b, max〉

end of for
end of else

end of for

Fig. 2. Basic algorithm for IA evaluation

Expressive Exceptions for Safe Pervasive Spaces

294

• As in IA(t=1), previous items still remain in IA (〈e3, max=2〉 in thick solid lined oval), even
though the event type is matched as in IA(t=1). This redundancy is intended as we men-
tioned to avoid backtracking.

IA(t=3) includes more dotted ovals since e4 is not related with any situation descriptions. Also,
〈e1; e3, max=2〉and 〈e3, max=2〉 are eliminated after transitioning on e4 at t=3, since their valid
period ended at t=2, according to the application specific window size. The basic algorithm
demonstrated in Fig. 1 is shown in Fig. 2.

IA is initialized with situation descriptions and its application specific window sizes. At each
timeiterating the outermost loop on the event stream, expired items are eliminated from IA, and
old situation items are reinserted with modified max values to IA. Also new items are created and
added as transitions occur (e.g., “e1⇒ transition”). If an “accept” item is created, the system
evaluates the corresponding condition part of the situation description and raises an exception if
the evaluation result comes out to be true.wuser denotes user defined window size. To simplify
the analysis, we assume that only one user window exists.

5.2 Boxing Algorithm

This section presents the Boxing algorithm, which is an improvement over the basic algorithm
presented in the previous section, in the following two respects:

(1) Time constraints in the situation descriptions can be further exploited to reduce the size of
IA, by ignoring items that cannot occur at certain times according to these constraints. For in-
stance, events such as waking up in the morning or eating a meal cannot be followed by the
same events. In fact, and at a much lower scale, some types of sensors (e.g., RFID) need some
minimal time to “forget” or “consume” a sensed event before detecting another (refer to the
UserEntered event example in Section II). More explicitly, situation descriptions could provide
such constraints conveniently (e.g., “later on ~ after”), which nicely allows for ignoring the cor-
responding situation items for a calculable amount of time.

(2) The frequency of update of IA (outer loop in Fig. 2) can be significantly reduced byex-
ploiting additionalexplicit information about situation items. Specifically, if certain types of
events known prior towill not occur for some period of time, we can utilize this information to
slow down the update frequency without loss of promptness. We refer to the resulting slower
frequency (its inverse to be more accurate) as the “evaluation window,”which is different from
the application-defined windowwuser (related to max). The former is unified over an application
or a system, while the application defined window is situation-specific.

The improved algorithm is presented in Fig. 3. Situation items are different from the basic al-
gorithm, with an additional field named min, which means the earliest time for evaluating the
item. If no explicit time parameters like “later on~ after” or the minimum time from the sensor
property exists, min is usually set to the current time. We call the pair of this min value and the
max introduced in the basic algorithm a time span of a situation item, which focuses a situation
evaluation within a box or an envelope (hence, we refer to our improved algorithm as the Boxing
algorithm.)

In the algorithm, we denote the evaluation window size as w. Each window has its own tem-
poral IA, called IW, which exists only for that window. From IA, IW is selected by eliminating
those items of which time spans are not intersected with the current window. Whenever one
window processing is completed, the new IA is evaluated with a new min-value, based on fre-

Eun-Sun Cho and Sumi Helal

295

quency(e) and last(e). frequency(e) is the frequency of occurrences of events of the same type as
e, and t∈last(e) is the time of last occurrence of event of type e. lookahead(s) means the first
expected event(s) needed to match a certain situation description, which are calculated based on
e1⇒ transition rules prior to execution.

5.3 Performance Analysis

We now evaluate and compare our algorithms based on the following straw man performance
model and notations:

ns : # of situation descriptions of an application
ne : average # of events in an evaluation window per unit time
ms : average # of items that are accepted per a unit of time (whether or not the condition is

true)
rs: ratio of the increment of number of items after a e⇒ transition
rB: ratio of the # of the remaining items after the boxing (based on the expected next occur-

IA = φ　
for each window with size w

// remove expired items
IA = IA – {〈s, s’, 〈min, max〉, b〉 |

〈s, s’, 〈min, max〉, b〉∈ IA and max < current_time}
// insert the initial items with max as current_time+wuser

IA = IA + {〈s, s, 〈current_time, current_time+wuser〉 , ⊥〉|s ∈ SituationA}
IW = {〈s, s’, 〈min, max〉, b〉| 〈s, s’, 〈min, max〉, b 〉∈ IA

and min ≤current_time + w}
IA = IA - IW

if (no unprocessed event remains) break;
or else for each event e

//execute the transition to get a new IW
IW = {i’ | i e⇒ i’, i ∈ IW}
for each 〈s, “accept”, 〈min, max〉, b〉∈IW

c = condition_of (s) //c is condition part of s
tv = evaluate (c, b) //evaluate c with binding b
if (tv is true) raise s
IW = IW - 〈s, “accept”, 〈min, max〉, b〉
 end of for each

IA = IA- IW
IA = {〈s, s’,〈MIN(last (e)+1/frequency (e), min), max〉, b〉|
　〈s, s’, 〈min, max〉, b〉∈ IA& type(e) ∈lookahead (s’)}
 end of for each
 end of if

end of for each

Fig. 3. Boxing algorithm for IA evaluation

Expressive Exceptions for Safe Pervasive Spaces

296

rence time) over the # of the original items
rw: ratio of selection from IA to form IW

The situation detection time for a time quantum Δt is proportionally tied to the number of

situation items and the number of events arriving within Δt. The overhead is consumed in
searching the IA and IW spaces to find matching items. Thus, where c0 is the cost to process each
item:

Toverhead = # of items×c0×ne×Δt. (1)

In the Basic algorithm, if we denote IA(j) to be the number of items in the jth evaluation on the
event stream, then the number of items for IA can be estimated as follows:

 IA(0) = 0, IA(1) = ns

IA(j) = (IA(j-1) – expiredj +ns)(1+rs)ne× (j -1) –ms, if j>1 (2)

To calculate IA(j), we first subtract expiredj, which is the number of expired items from IA(j-1)

and add ns. That is, the number of inserted items that are initialized with the situation descrip-
tions. This number increases by the rate of rs after e⇒ transition and powered by (ne× (j-1)),
which is the number of events that have arrived until that time. Then, the number of the matched
items (ms) will be eliminated from IA whether the condition part with the binding b is satisfied
or not. If a situation item i was inserted into IA at wuser before a certain time point, i, then those
items created by the e⇒ transition from i until that point in time will be eliminated. Since new
items initialized with situation descriptions are inserted into IA every time point, expiredj can be
further formulated as follows:

 expiredj= 0 , if j < wuser

= ns× (1+rs)ne×wuser, otherwise (3)

For the Boxing algorithm, the number of items can be estimated as follows: let us denote IA(k)

and IW(k) to be the cardinalities of IA and IW in the kth evaluation on the event stream. Note that
k is different from j in the Basic algorithm since the time for the k window = w× jth unit time
with window size w. IW(k) is learned by the following formula (expiredk is the same as in the
Basic algorithm.)

 IA(0) = 0, IW(1) = ns×rw, IA(1)= ns ´ (1+rs) – ms
 IW(k) = ((IA(k-1) – expiredk +ns) × rB)(1+rs)ne×w× (k -1) – ms

IA(k) = (IA(k-1) – expiredk + ns) × (1- rw) + IW(k) , for k>1 (4)

At the beginning, IW(1) is inferred directly from the situation description, and no expired

items exist. After that, at each window, to obtain IW(k) we subtract expiredk from the previous
IA(k-1) and add ns to it. Then we select only therB portion of the result due to boxing. This num-
ber will be increased by rate rs and powered by the number of events. IA(k) is then adjusted re-
flecting the changes brought about by the new Iw(k).

Fig. 4(a) shows the expected time overhead in each algorithm according to the time elapsed.
The overhead exponentially increases with time, but the Boxing algorithm eliminates more

Eun-Sun Cho and Sumi Helal

297

items, which slows down the overhead curve. We assume that 1event comes every 1 msec, 1 out
of 100 incoming events are matched to the current window and to 10situation descriptions. The
processing time per an event is assumed to be10.0 msec 0, and 80% of the items are meaningful
for the current window.

Fig.4(b) shows the expected time overhead and data loss of each algorithm as the window size
is increased. It also shows the data loss when we use the average time of the arrival of events
(such as the minimum of time spans of items), which is easier to estimate. We can see that the
time overhead is decreasing as the window size grows. Thus,a bigger window size is better as
long as it does not impair responsiveness. This is achieved by taking the smallest among the
expected inter event times of all events as a window size.

Fig.5(a) shows how time overhead reacts to the inter-arrival time between events. It shows the
Boxing algorithm to be more robust in face of eventful systems than the Basic algorithm.If some
degree of irresponsiveness is tolerable or acceptable, the average arrival time of events can be

0

50

100

150

200

250

300

350

non-boxing
boxing

Window size
(msec)

Time o/h
in msecTime o/h

(log) in msec

Elapsed time in msec
(number of windows so far)

0

10

20

30

40

50

1 3 5 7 9 11 13

non-boxing

boxing

Fig. 4. (a) Time overhead according to elapsed times and (b) Time overhead according as (evaluation)

the window size is growing0

0
20
40
60
80

100
120

10 20 30 40 50 60 70 80 90 100

avg=1

avg=10

avg=100

avg=1000

Non-responsive
detection rate

Window size
(msec)

0
50

100
150
200
250
300

non-boxing

boxing

Inter arrival times of events

Time o/h
(log) in msec

less frequent
Fig. 5. (a) Time overhead according to inter event times, and (b) Non-responsive detection rates

according to window sizes 0

Expressive Exceptions for Safe Pervasive Spaces

298

used as a direct hint for choosing the window size. In this case, detection might be either missed
or delayed because next events may arrive earlier than the average.When we assume that the
arrival of events follows an exponential distribution, the probability that the actual waiting time
is less than the window size is 1-e-(1/avg)×w where avg is the average inter event time. Fig.5(b)
depicts the variation of this non-responsive detection rate according to the inter event time,
showing the result of using the average of inter-arrival time of events as a window size instead
of the minimum inter arrival time. Note that, if the average arrival time is 50 msec, more than
60% of the events are missed or delayed for detection. However, such a loss of time accuracy
can be reduced if we take less than the average as the window size. If we take 20 msec as a win-
dow size rather than 50 msec, the rate of loss of time accuracy drops to around 30% when the
average arrival time is 50 msec (as indicated by the arrow in the graph).

5.4 Architecture

During the development phase, programmers who utilize our methodare supposed to describe
the exceptionsas situation patterns. To describe their related handlers within a given applicationa
named exception is defined as a situation pattern, and handlersare defined and bound to the
named exception as mentioned earlier.

During application provisioning (activation), as shown in the lower left part of Fig. 6, a Situa-
tion Rewriter pre-processor translates exception definitions into normal forms and then eFSAs.
It then initializes the state transition tools used by the situation manager to execute the eFSAs at
the run time.

As the system begins at run time, contexts are monitored and are buffered into an event queue
by the Application Event Queue Manager, where situation patterns are searched for and identi-
fied based on the State Transition Engine for the registered eFSA. If the matching “catches” a
situation pattern, the corresponding handler will be selected and executed by the handling engine.

Before the Execution

a program
with

situation &
handler

descriptions

Situation
Rewriter

Translator
to normal

forms
Translator
to eFSA

During the Execution

eventi

QUEUE
(head)

event1 event2 …

context
information

context
information

Situation Detector

context
information

Situation
Manager

Handling
Engine

Control Flattener

Pre-
processed
program

eFSA

Physical World
with

Context Providers

Situation
Monitor

Runtime Execution Engine

Event
Optimizer

State
Transition

engine

Application Event Queue Manager

Fig. 6. Flow of the situation handling system

Eun-Sun Cho and Sumi Helal

299

The matching process can be optimized during the eFSA generation phase before execution,
or can be optimized based on the runtime status.

Preliminary partial implementation employsKnopflerfish 1.3.5 0 and ANTLRv3 0 on top of
the ATLAS platform 0.

6. CONCLUSIONS
It is important to describe an exception with a powerful language model, because the possible

erroneous conditions in pervasive systems are more complicated than conditions found in tradi-
tional applications. This paper proposes a novel exception handling mechanism in pervasive
systems, which allows programmers to devise their own handling routines targeting sophisti-
cated exceptions. Our approach utilizes situations, which is a novel extension of content. This
empowers the expressiveness of exceptions and their handlers. We presented the syntax of a
language support along with implementation algorithms. We also provided a straw man analysis
of the performance of the algorithms in terms of overhead.We believe our work is an important
starting step to enabling exception handler writing for pervasive systems programmers.Our fu-
ture work will focus on enhancing the algorithms with optimization techniques in stream data-
base systems.

REFERENCES
[1] S. Bruning, S. Weissleder and M.Malek, “A Fault Taxonomy for Service-Oriented Architecture,”

Proceedings of the10th IEEE High Assurance Systems Engineering Symposium, Dallas, Texas, USA,
November, 2007, pp.367-368.

[2] Safety Research & Strategies Inc., “Toyota Sudden Acceleration Time Line”, http://www.
safetyresearch.net/toyota-sudden-unintended-acceleration/toyota-sudden-acceleration-timeline/

[3] H.-I.Yang and Sumi Helal,”Safety Enhancing Mechanisms for Pervasive Computing Systems in
Intelligent Environments,”Proceedings of the 2008 Sixth Annual IEEE International Conference on
Pervasive Computing and Communications, Hong Kong, March, 2008, pp.525-530.

[4] K.Damasceno,N.Cachoand A. Garcia, A. Romanovsky and C. Lucena,” Context-Aware Exception
Handling in Mobile Agent Systems: The MoCA Case,”Proceedings of Software Engineering for
Large-scale Multi-Agent Systems, Shanghai, China, May 2006,pp.37-44.

[5] D. Kulkarni,and A.Tripathi,”A Framework for Programming Robust Context-Aware Application,”
IEEE Transactions on Software Engineering, Vol.36, No.2, 2010,pp.184-197.

[6] Oracle, “Java RMI Remote Exception,”http://java.sun.com/j2se/1.4.2/docs/api/java/rmi/RemoteException.html
[7] A. Ranganathan and R. H. Campbell, “An infrastructure for context-awareness based on first order

logic”, Personal and Ubiquitous Computing, Vol.7, No.6, 2000, pp.353-364.
[8] E.-S. Cho, S. Helal, “A Situation-based Exception Detection Mechanism for Safety in Pervasive

Systems”, Proceedings of 11th IEEE/IPSJ International Symposium on Applications and the Internet,
Munich, Germany, July 2011.

[9] B. Randell,”Dependable pervasive systems,”Proceedings of 23rd IEEE International Symposium on
Reliable Distributed Systems, Florianpolis, Brazil, October, 2004, pp.2-2.

[10] I. Cervesato, M. Franceschet and A. Montanari, “A Guided Tour Through Some Extensions Of The
Event Calculus”, Computational Intelligence, Vol.16 No.2, 2000, pp.307-347.

[11] M. Lippert,C.V. Lopes,”A study on exception detection and handling using aspect-oriented
programming,”Proceedings ofInternational Conference on Software Engineering, Limerick, Ireland,
June 2000, pp.418-427.

[12] “AsyncCallback Delegate-.NET Framework Class Library,”MSDN, http://msdn.microsoft.com/en-

Expressive Exceptions for Safe Pervasive Spaces

300

us/library/system.asynccallback(v=VS.71).aspx
[13] P. R. Pietzuch, B. Shand and J. Bacon, “A framework for event composition in distributed

systems,”Proceedings of the ACM/IFIP/USENIX 2003 International Conference on Middleware, Rio
de Janeiro, Brazil, June 2003, pp.62-82.

[14] Ja. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efficient Pattern Matching over Event
Streams,”Proceedings of ACM SIGMOD conference, Vancouver, BC, Canada,June 2008, pp.147-160.

[15] S.White, A.Alves,D.Rorke,”WebLogic event server: a lightweight, modular application server for
event processing,”Proceedings ofSecond international conference on Distributed Event-based
Systems,Rome Italy, July 2008, pp.193-200.

[16] M. Liu, M. Ray, E. A. Rundensteiner and D. J. Dougherty, “Processing Nested Complex Sequence
Pattern Queriesover Event Streams,”Proceedings of the 7th Workshop on Data Management for
Sensor Networks, Singapore,September 2010, pp.14-19.

[17] C. Chen, Y. Xu, K. Li and S. Helal, “Reactive Programming Optimizations in Pervasive
Computing,”Proceedings of 10th IEEE/IPSJ International Symposium on Applications and the
Internet, Seoul, Korea, July 2010, pp.96-104.

[18] A. Aho, R. Sethi,M. S. Lam and J. Ulman, Compilers: Principles, Techniques, and Tools, 2nd ed.,
Prentice Hall, 2006, pp.241-246.

[19] N. H. Cohen and K. T. Kalleberg, “EventScript: an event-processing language based on regular
expressions with actions”, Proceedings of the 2008 ACM SIGPLAN-SIGBED conference on
Languages, compilers, and tools for embedded systems, Tucson, USA, June 2008, pp.111-120.

[20] R. Bose, J. King, H. El-zabadani, S. Pickles, and A. Helal, “Building Plug-and-Play Smart Homes
Using the Atlas Platform,”Proceedings of the 4th International Conference on Smart Homes and
Health Telematic (ICOST), Belfast, the Northern Islands, June 2006, pp.265-272.

[21] “Knopflerfish-Open Source OSGi,”The Knopflerfish Project,http://www.knopflerfish.org/
[22] “ANTLR Parser Generator v3,”ANTLR Project,http://www.antlr.org

Eun-Sun Cho
She received her BS, MS, and PhD degrees in Computer Science and Statistics
from Seoul National University in 1991, 1993, and 1998, respectively. She is an
Assistant Professor in the Department of Computer Science & Engineering at
Chungnam National University in Daejeon, Korea. Her research interests include
the area of programming languages and program analysis related issues, espe-
cially for pervasivecomputing environments.

Sumi Helal
He earned his B.E. and M.E. degrees in Computer Science and Engineering
from Alexandria University in Egypt in 1982 and 1985, respectively, and received
his Ph.D. in Computer Sciences from Purdue University in 1991. He held aca-
demic and industrial research positions at MCC, Purdue University, and the Uni-
versity of Texas in Arlington, and is nowa full Professor in the Computer and
Information Science and Engineering Department (CISE) at the University of
Florida.He is the co-founder and an editorial board member of the IEEE Perva-

sive Computing magazine, and Editor of the magazine's column on Standards, Tools, and Emerging
Technologies. He has been on the editorial board of IEEE Transactions on Mobile Computing, and
currently serves as the Networking Area Chair of the IEEE Computer magazine. His research interests
span the areas of pervasive computing, mobile computing and networking, and Internet computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /!BM-dolhdip1
 /!BM-gaulr
 /!BM-joyakr
 /AGA-Arabesque
 /AGA-ArabesqueDesktop
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AharoniBold
 /ahn2006-B
 /ahn2006-L
 /ahn2006-M
 /AkhbarMT
 /AkhbarMT-Bold
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Algerian
 /AmericanGaramondBT-Roman
 /AmiR-HM
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /ArborWin
 /ArialBackslanted
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Astro2KT
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /AvQest
 /BaskOldFace
 /Batang
 /BatangChe
 /BatangOldHangulJamo
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BirdB
 /BirdL
 /BirdM
 /BlackadderITC-Regular
 /BlackChancery
 /BM-dolchulip1
 /BM-gaulr
 /BM-joyakr
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /Brush445BT-Regular
 /BrushScript
 /BrushScriptBT-Regular
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ChungB
 /ChungCB
 /ChungL
 /ChungM
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Condensed-Bold
 /Clarendon-Light
 /CliperSKana
 /CMjoB
 /CMjoL
 /CMjoM
 /Cmsy10
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolekana
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Crayon
 /CrounB
 /CrounM
 /CseriB
 /CstreB
 /CstreL
 /CstreM
 /CstreUL
 /CurlzMT
 /DanzinRegular
 /David-Bold
 /David-Reg
 /DavidTransparent
 /DFKMincho-Bd-WIN-KSC-H
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dinbla
 /Dinbol
 /DinerRegular
 /DingDongBold
 /Dinlig
 /Dinmed
 /Dinreg
 /Dotum
 /DotumChe
 /DTnaskh0
 /DTnaskh1
 /DTnaskh2
 /DTnaskh3
 /DTthuluth0
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /ExpoL-HM
 /ExpoM-HM
 /FelixTitlingMT
 /FencesPlain
 /FixedMiriamTransparent
 /Flora-Bold
 /Flora-BoldEx
 /Flora-BoldHo
 /Flora-BoldWd
 /Floralies
 /Flora-Normal
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSY--SURROGATE-0
 /Gaeul
 /GaramB-HM
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /GaramondNo4CyrTCY-Medi
 /GasiIIB
 /GasiIIL
 /GasiIIM
 /GauFontShirousagi
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GothicL-HM
 /GothicRoundB-HM
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /Goudy-Italic
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GraphicSansR-HM
 /GTB
 /GTM
 /Gulim
 /GulimChe
 /GulimOldHangulJamo
 /Gungsuh
 /GungsuhChe
 /H2bulL
 /H2gprM
 /H2gsrB
 /H2gtrB
 /H2gtrE
 /H2gtrM
 /H2hdrM
 /H2hsrM
 /H2mjmM
 /H2mjrB
 /H2mjrE
 /H2mjsM
 /H2mjuM
 /H2mkpB
 /H2mkrB
 /H2pirL
 /H2porL
 /H2porM
 /H2sa1B
 /H2sa1M
 /H2sa2L
 /H2snrB
 /H2ta1L
 /H2ta2M
 /H2wulE
 /H2wulL
 /H2yerM
 /H2ysrM
 /HaansoftBatang
 /HaansoftDotum
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HeadG
 /HeadlineR-HM
 /HeadlineSansR-HM
 /HeadR
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HGMinchoB
 /HGPMinchoB
 /HGSMinchoB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HMKBP
 /HMKBS
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /HSalB
 /HSalL
 /HSalM
 /HYbdaL
 /HYbdaM
 /HYbsrB
 /HYBuDle-Medium
 /HYcysM
 /HYdnkB
 /HYdnkM
 /HYGoThic-Light
 /HYgprM
 /HYGraPhic-Bold
 /HYgsrB
 /HYgtrE
 /HYhaeseo
 /HYHeadLine-Bold
 /HyhwpEQ
 /HYkanB
 /HYkanM
 /HYKHeadLine-Bold
 /HYKHeadLine-Medium
 /HYLongSamul-Bold
 /HYLongSamul-Medium
 /HYmjrE
 /HYMokPan-Bold
 /HYmprL
 /HYMyeongJo-Light
 /HYMyeongJo-Medium
 /HYMyeongJo-Ultra
 /HYnamB
 /HYnamL
 /HYnamM
 /HYPMokPan-Bold
 /HYPMokPan-Light
 /HYPop-Medium
 /HYporM
 /HYPost-Bold
 /HYRGoThic-Bold
 /HYRGoThic-Medium
 /HYsanB
 /HYShortSamul-Light
 /HYSinGraPhic-Medium
 /HYSinMyeongJo-Bold
 /HYsnrL
 /HYsupB
 /HYsupM
 /HYSymbolD
 /HYSymbolE
 /HYSymbolF
 /HYSymbolG
 /HYSymbolH
 /HYTaJa-Bold
 /HYTaJaFull-Bold
 /HYTaJaFull-Light
 /HYTaJa-Medium
 /HYtbrB
 /HYwulB
 /HYwulM
 /HYYeasoL-Bold
 /HYYeatGul-Bold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisB
 /IrisL
 /IrisM
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KirillicaWincyr
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KristenITC-Regular
 /KunstlerScript
 /KyunKo
 /KyunMyung
 /Latha
 /LatinWide
 /LCDReg
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Love
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /MagicR-HM
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Marigold
 /MaturaMTScriptCapitals
 /MDAlong
 /MDArt
 /MDEasop
 /Mdesb
 /MDGaesung
 /MDSol
 /Mfoxb
 /Mfoxl
 /Mfoxm
 /MicrosoftSansSerif
 /MingLiU
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /MJB
 /MJL
 /MJM
 /MMchonL
 /MMchonM
 /Modern-Regular
 /MoeumTR-HM
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MonotypeKoufi-Bold
 /MonotypeSorts
 /Mpaperb
 /Mpaperl
 /Mpaperm
 /Msam10
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Symbol
 /MudirMT
 /Munhem
 /MVBoli
 /MWORLD
 /MyungjoL-HM
 /MyungjoXB-HM
 /NamuB-HM
 /NamuR-HM
 /Narkisim
 /Nekoyanagi
 /NemoB
 /NemoL
 /NemoM
 /NemoXB
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewGulim
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /OldEnglishTextMT
 /Onyx
 /OriginalGaramondBT-Roman
 /Oxford
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /PinoB
 /PinoL
 /PinoM
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /PyunjiR-HM
 /QDotum
 /QGulim
 /QGungsuh
 /Raavi
 /RageItalic
 /Ravie
 /Retort
 /RetortOutline
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RodTransparent
 /SaenaegiR-HM
 /SaenaegiXB-HM
 /SAKURAhira
 /San02B
 /San02L
 /San02M
 /San60B
 /San60L
 /San60M
 /San60R
 /San60SB
 /SanBiB
 /SanBiL
 /SanBiM
 /SanBoB
 /SanBoL
 /SanBoM
 /SanBsB
 /SanBsL
 /SanBsU
 /SanCrB
 /SanCrK
 /SanCrL
 /SandArB
 /SandArL
 /SandArM
 /SandArXB
 /SandAtM
 /SandAtXB
 /SandJg
 /SandKg
 /SandKm
 /SandMtB
 /SandMtL
 /SandMtM
 /SandSaB
 /SandSaL
 /SandSaM
 /SandSm
 /SandTg
 /SandTm
 /SanHgB
 /SanHgL
 /SanHgM
 /SanIgM
 /SanKbB
 /SanKbL
 /SanKbM
 /SanKsB
 /SanKsL
 /SanKsM
 /SanMogfilB
 /SanMogfilL
 /SanMogfilM
 /SanMrB
 /SanMrJ
 /SanMrM
 /SanPkB
 /SanPkL
 /SanPkM
 /SanPuB
 /SanPuW
 /SanSrB
 /SanSrL
 /SanSrM
 /SanSwB
 /SanSwL
 /SanSwM
 /SapphIIB
 /SapphIIL
 /SapphIIM
 /ScriptMTBold
 /SegoeMediaCenter-Regular
 /SegoeMediaCenter-Semibold
 /SeUtum
 /SgreekMedium
 /Shadow9
 /SHeadG
 /SHeadR
 /ShowcardGothic-Reg
 /Shruti
 /Shusha
 /Shusha02
 /Shusha05
 /SILDoulosIPA
 /SILDoulosIPA93Bold
 /SILDoulosIPA93BoldItalic
 /SILDoulosIPA93Italic
 /SILDoulosIPA93Regular
 /SILManuscriptIPA
 /SILManuscriptIPA93Bold
 /SILManuscriptIPA93BoldItalic
 /SILManuscriptIPA93Italic
 /SILManuscriptIPA93Regular
 /SILSophiaIPA
 /SILSophiaIPA93Bold
 /SILSophiaIPA93BoldItalic
 /SILSophiaIPA93Italic
 /SILSophiaIPA93Regular
 /SimHei
 /SimplifiedArabicBackslantedBoldItalic
 /SimSun
 /SimSun-PUA
 /SinGraphic
 /SinMun
 /SnapITC-Regular
 /SohaR-HM
 /Sol
 /SolB
 /SolL
 /SolM
 /SomaB
 /SomaL
 /SomaM
 /SPgoJ1-KSCpc-EUC-H
 /SPgoJ-KSCpc-EUC-H
 /SPgoJS-KSCpc-EUC-H
 /SPgoT-KSCpc-EUC-H
 /SPmuS-KSCpc-EUC-H
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /Stencil
 /SwiriB-KSCpc-EUC-H
 /SwiriL-KSCpc-EUC-H
 /SwiriM-KSCpc-EUC-H
 /Sylfaen
 /Symbol
 /SymbolMT
 /TaeKo
 /TaeM
 /TaeUtum
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /TahomaSmallCap-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldTh
 /TimesIPAnew
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Tiplo
 /TMjoB
 /TMjoL
 /TMjoM
 /ToodamB
 /ToodamL
 /ToodamM
 /TraditionalArabicBackslantedBoldItalic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TSTNamr
 /TSTPenC
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypewriteB
 /TypewriteL
 /TypewriteM
 /Univers
 /Univers-BlackExt
 /Univers-Black-Normal
 /Univers-BoldExt
 /UniversCondensedLight
 /UniversCondensedOblique
 /Univers-Light-Italic
 /Univers-Light-Light
 /Univers-Light-LightTh
 /Univers-Light-Normal
 /Univers-Medium
 /Univers-Oblique
 /Uri
 /Utum
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WingsB
 /WingsL
 /WingsM
 /WoorinR-HM
 /WP-CyrillicA
 /WP-GreekCentury
 /WP-MultinationalARoman
 /WriSin
 /YDIBirdB
 /YDIBirdL
 /YDIBirdM
 /YDIBlueB
 /YDIBlueEB
 /YDIBlueL
 /YDIBlueM
 /YDIChungM
 /YDICMjoL
 /YDICMjoM
 /YDICstreB
 /YDICstreL
 /YDICstreM
 /YDICstreUL
 /YDIFadeB
 /YDIFadeL
 /YDIFadeM
 /YDIGasiIIB
 /YDIGasiIIL
 /YDIGasiIIM
 /YDIGirlB
 /YDIGirlL
 /YDIGirlM
 /YDIGukB
 /YDIGukL
 /YDIGukM
 /YDIHSalM
 /YDIHsangIIB
 /YDIHsangIIL
 /YDIHsangIIM
 /YDIMokB
 /YDIMokL
 /YDIPinoB
 /YDIPinoL
 /YDIPinoM
 /YDIPu
 /YDISmileB
 /YDISmileL
 /YDISmileM
 /YDISprIIB
 /YDISprIIL
 /YDISprIIM
 /YDISumB
 /YDISumL
 /YDISumM
 /YDIWebBatan
 /YDIWebDotum
 /YDIWriSin
 /YDIYGO310
 /YDIYGO330
 /YDIYGO340
 /YDIYGO350
 /YDIYGO360
 /YDIYMjO220
 /YDIYMjO230
 /YDIYMjO310
 /YDIYMjO330
 /YDIYMjO340
 /YDIYMjO350
 /YDIYMjO360
 /YDIYSin
 /YetR-HM
 /YGO11
 /YGO115
 /YGO12
 /YGO125
 /YGO13
 /YGO135
 /YGO14
 /YGO145
 /YGO15
 /YGO155
 /YGO16
 /YGO165
 /YGO22-KSCpc-EUC-H
 /YGO23-KSCpc-EUC-H
 /YGO24-KSCpc-EUC-H
 /YGO25-KSCpc-EUC-H
 /YGO31
 /YGO32
 /YGO33
 /YGO34
 /YGO35
 /YGO36
 /YGO520
 /YGO530
 /YGO540
 /YGO550
 /YheadB
 /YheadL
 /YheadM
 /YheadUL
 /YjBACDOOBold
 /YJBELLAMedium
 /YJBLOCKMedium
 /YJBONMOKGAKMedium
 /YjBUTGOTLight
 /YjCHMSOOTBold
 /YjDOOLGIMedium
 /YjDWMMOOGJOMedium
 /YjGABIBold
 /YjGOTGAEMedium
 /YjINITIALPOSITIVEMedium
 /YJINJANGMedium
 /YjMAEHWASemiBold
 /YjNANCHOMedium
 /YjSHANALLMedium
 /YjSOSELSemiBold
 /YjTEUNTEUNBold
 /YjWADAGMedium
 /YMjO11
 /YMjO115
 /YMjO12
 /YMjO125
 /YMjO13
 /YMjO135
 /YMjO14
 /YMjO145
 /YMjO15
 /YMjO155
 /YMjO16
 /YMjO165
 /YMjO22
 /YMjO23
 /YMjO24
 /YMjO31
 /YMjO32
 /YMjO33
 /YMjO34
 /YMjO35
 /YMjO36
 /YMjO42
 /YMjO44
 /YMjO45
 /YMjO520
 /YMjO530
 /YMjO540
 /YMjO550
 /YonseiB
 /YonseiL
 /YoolB-KSCpc-EUC-H
 /YoolL-KSCpc-EUC-H
 /YoolM-KSCpc-EUC-H
 /YSin
 /YtalB-KSCpc-EUC-H
 /YtalL-KSCpc-EUC-H
 /YtalM-KSCpc-EUC-H
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

